Citation: Ling Zhou, Long Li, Liwen Huang, Yan Wu. Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100172. doi: 10.1016/j.actphy.2025.100172
通过间接两电子还原的HOF/BiVO4 (010) S型光催化剂增强H2O2生产性能
English
Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst
-
-
[1]
J. Qiu, D. Dai, J. Yao, Coord Chem. Rev. 501 (2024) 215597, https://doi.org/10.1016/j.ccr.2023.215597. doi: 10.1016/j.ccr.2023.215597
-
[2]
J. Ji, Z. Wang, Q. Xu, Q. Zhu, M. Xing, Chem. Eur. J. 29 (2023) e202203921.https://doi.org/10.1002/chem.202203921. doi: 10.1002/chem.202203921
-
[3]
B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084
-
[4]
H. Li, W. Wang, K. Xu, B. Cheng, J. Xu, S. Cao, Chin. J. Catal. 72 (2025) 24, https://doi.org/10.1016/S1872-2067(24)60257-3. doi: 10.1016/S1872-2067(24)60257-3
-
[5]
X. Ruan, M. Xu, C. Ding, J. Leng, G. Fang, D. Meng, W. Zhang, Z. Jiang, S. Ravi, X. Cui, et al., Adv. Energy Mater. 15 (2025) 2405478, https://doi.org/10.1002/aenm.202405478. doi: 10.1002/aenm.202405478
-
[6]
Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064
-
[7]
M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D. doi: 10.1039/D4CS01091D
-
[8]
J. Li, N. Xu, Y. Zhang, H. Dong, C. Li, Chin. Chem. Lett. (2024) 110470, https://doi.org/10.1016/j.cclet.2024.110470. doi: 10.1016/j.cclet.2024.110470
-
[9]
X. Cheng, L. Liang, J. Ye, N. Li, B. Yan, G. Chen, Sci. Total Environ. 888 (2023) 164086, https://doi.org/10.1016/j.scitotenv.2023.164086. doi: 10.1016/j.scitotenv.2023.164086
-
[10]
B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69 (2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X. doi: 10.1016/S1872-2067(24)60210-X
-
[11]
Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079. doi: 10.1002/smll.202409079
-
[12]
Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027
-
[13]
Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0. doi: 10.1016/S1872-2067(24)60069-0
-
[14]
C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0
-
[15]
G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8. doi: 10.1016/S1872-2067(24)60014-8
-
[16]
Z. Lu, R. Chen, G. Liu, B. Xia, K. Fan, T. Liu, Y. Xia, S. Liu, B. You, Adv. Funct. Mater. (2025) 2500944, https://doi.org/10.1002/adfm.202500944. doi: 10.1002/adfm.202500944
-
[17]
B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69 (2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X. doi: 10.1016/S1872-2067(24)60210-X
-
[18]
Z. Xie, H. Tan, H. Wu, R. Amal, J. Scott, Y. Ng, Mater. Today Energy 26 (2022) 100986, https://doi.org/10.1016/j.mtener.2022.100986. doi: 10.1016/j.mtener.2022.100986
-
[19]
G. Wang, H. Cheng, Sep. Purif. Technol. 318 (2023) 123949, https://doi.org/10.1016/j.seppur.2023.123949. doi: 10.1016/j.seppur.2023.123949
-
[20]
Y. Zhao, Q. Jia, Z. Tian, Y. Wang, J. Li, S. Song, T. Fu, X. Cui, G. Liu, X. Zhou, L. Jiang, J. Energy Chem. 103 (2025) 877, https://doi.org/10.1016/j.jechem.2024.12.003. doi: 10.1016/j.jechem.2024.12.003
-
[21]
D. Seo, V. Somjit, D.H. Wi, G. Galli, K. Choi, J. Am. Chem. Soc. 147 (2025) 3261, https://doi.org/10.1021/jacs.4c13290. doi: 10.1021/jacs.4c13290
-
[22]
K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4 (2021) 13158, https://doi.org/10.1021/acsanm.1c02688. doi: 10.1021/acsanm.1c02688
-
[23]
X. Wang, D. Liao, H. Yu, J. Yu, Dalton Trans. 47 (2018) 6370, https://doi.org/10.1039/C8DT00780B. doi: 10.1039/C8DT00780B
-
[24]
X. Liu, G. Liu, T. Fu, K. Ding, J. Guo, Z. Wang, W. Xia, H. Shangguan, Adv. Sci. 11 (2024) 2400101, https://doi.org/10.1002/advs.202400101. doi: 10.1002/advs.202400101
-
[25]
Y. Yao, Q. Wu, S. Ren, Y. Zhao, L. Guan, Adv. Opt. Mater. 13 (2025) 2402260, https://doi.org/10.1002/adom.202402260. doi: 10.1002/adom.202402260
-
[26]
X. Li, Z. Su, H. Jiang, J. Liu, L. Zheng, H. Zheng, S. Wu, X. Shi, Small 20 (2024) 2400617, https://doi.org/10.1002/smll.202400617. doi: 10.1002/smll.202400617
-
[27]
Y. Lin, X. Jiang, S.T. Kim, S. Alahakoon, X. Hou, Z. Zhang, C. Thompson, R.A. Smaldone, C. Ke, J. Am. Chem. Soc. 139 (2017) 7172, https://doi.org/10.1021/jacs.7b03204. doi: 10.1021/jacs.7b03204
-
[28]
C. Ban, Y. Wang, Y. Feng, Z. Zhu, Y. Duan, J. Ma, X. Zhang, X. Liu, K. Zhou, H. Zou, D. Yu, X. Tao, L. Gan, G. Han, X. Zhou, Energy Environ. Sci. 17 (2024) 518, https://doi.org/10.1039/D3EE02800C. doi: 10.1039/D3EE02800C
-
[29]
Q. Zhang, G. Liu, T. Liu, ACS Sustain. Chem. Eng. 12 (2024) 5675, https://doi.org/10.1021/acssuschemeng.4c00637. doi: 10.1021/acssuschemeng.4c00637
-
[30]
Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 6 (2023) 574, https://doi.org/10.1038/s41929-023-00972-x. doi: 10.1038/s41929-023-00972-x
-
[31]
J. Wang, J. Bai, Y. Zhang, L. Li, C. Zhou, T. Zhou, J. Li, H. Zhu, B. Zhou, ACS Appl. Mater. Interfaces 15 (2023) 14359, https://doi.org/10.1021/acsami.2c23169. doi: 10.1021/acsami.2c23169
-
[32]
X. Luo, S. Yang, Z. Wang, Y. Xu, Sep. Purif. Technol. 318 (2023) 123966, https://doi.org/10.1016/j.seppur.2023.123966. doi: 10.1016/j.seppur.2023.123966
-
[33]
N. Zhang, Q. Yin, S. Guo, K. Chen, T. Liu, P. Wang, Z. Zhang, T. Lu, Appl. Catal. B Environ. 296 (2021) 120337, https://doi.org/10.1016/j.apcatb.2021.120337. doi: 10.1016/j.apcatb.2021.120337
-
[34]
H. Shi, Y. Li, X. Wang, H. Yu, J. Yu, Appl. Catal. B Environ. 297 (2021) 120414, https://doi.org/10.1016/j.apcatb.2021.120414. doi: 10.1016/j.apcatb.2021.120414
-
[35]
H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443 (2022) 136429, https://doi.org/10.1016/j.cej.2022.136429. doi: 10.1016/j.cej.2022.136429
-
[36]
X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7
-
[37]
W. Wang, Z. Chen, C. Li, B. Cheng, K. Yang, S. Zhang, G. Luo, J. Yu, S. Cao, Adv. Funct. Mater. (2025) 2422307.https://doi.org/10.1002/adfm.202422307. doi: 10.1002/adfm.202422307
-
[38]
W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005. doi: 10.3866/PKU.WHXB202406005
-
[39]
W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038. doi: 10.1002/anie.202425038
-
[40]
H. Tan, C. Chai, J. Heng, Q.V. Thi, X. Wu, Y.H. Ng, E. Ye, Adv. Sci. 12 (2025) 2407801, https://doi.org/10.1002/advs.202407801. doi: 10.1002/advs.202407801
-
[41]
L. Jian, Y. Dong, H. Zhao, C. Pan, G. Wang, Y. Zhu, Appl. Catal. B Environ. 342 (2024) 123340, https://doi.org/10.1016/j.apcatb.2023.123340. doi: 10.1016/j.apcatb.2023.123340
-
[42]
L. Ding, Z. Pan, Q. Wang, Chin. Chem. Lett. 35 (2024) 110125, https://doi.org/10.1016/j.cclet.2024.110125. doi: 10.1016/j.cclet.2024.110125
-
[43]
H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan, et al., Appl. Catal. B Environ. 337 (2023) 122933, https://doi.org/10.1016/j.apcatb.2023.122933. doi: 10.1016/j.apcatb.2023.122933
-
[44]
L. Lin, Y. Ma, J. Vequizo, M. Nakabayashi, C. Gu, X. Tao, H. Yoshida, Y. Pihosh, Y. Nishina, A. Yamakata, et al., Nat. Commun. 15 (2024) 397, https://doi.org/10.1038/s41467-024-44706-4. doi: 10.1038/s41467-024-44706-4
-
[45]
Q. Zhang, B. Wang, H. Miao, J. Fan, T. Sun, E. Liu, Chem. Eng. J. 482 (2024) 148844, https://doi.org/10.1016/j.cej.2024.148844. doi: 10.1016/j.cej.2024.148844
-
[46]
X. Wang, S. Yuan, B. Feng, X. Qiu, C. Yu, W. Lu, X. Xu, Y. Hu, Y. Shi, J. Colloid Interface Sci. 691 (2025) 137371, https://doi.org/10.1016/j.jcis.2025.137371. doi: 10.1016/j.jcis.2025.137371
-
[47]
J. Zhou, T. Shan, S. Wu, J. Li, F. Zhang, L. Huang, L. Chen, H. Xiao, Chem. Eng. J. 492 (2024) 152441, https://doi.org/10.1016/j.cej.2024.152441. doi: 10.1016/j.cej.2024.152441
-
[48]
J. Tang, X. Wang, Y. Huang, X. Du, Z. He, D. Wang, S. Song, Chem. Eng. J. 499 (2024) 156055, https://doi.org/10.1016/j.cej.2024.156055. doi: 10.1016/j.cej.2024.156055
-
[49]
K. Wang, Y. Yang, S. Farhan, Y. Wu, W. Lin, Chem. Eng. J. 490 (2024) 151408, https://doi.org/10.1016/j.cej.2024.151408. doi: 10.1016/j.cej.2024.151408
-
[50]
W. Fu, S. Wang, Y. Zhang, B. Cheng, Y. Wu, J. Mater. Sci. Technol. 232 (2025) 181, https://doi.org/10.1016/j.jmst.2024.12.081. doi: 10.1016/j.jmst.2024.12.081
-
[51]
S. Yang, K. Wang, Q. Chen, Y. Wu, J. Mater. Sci. Technol. 175 (2024) 104, https://doi.org/10.1016/j.jmst.2023.07.044. doi: 10.1016/j.jmst.2023.07.044
-
[52]
S. Yang, K. Wang, Z. Wu, Y. Wu, J. Mater. Sci. Technol. 200 (2024) 253, https://doi.org/10.1016/j.jmst.2024.02.055. doi: 10.1016/j.jmst.2024.02.055
-
[53]
R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229. doi: 10.1002/anie.202414229
-
[54]
M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, App. Catal. B: Environ. 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227. doi: 10.1016/j.apcatb.2022.122227
-
[1]
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 85
- HTML全文浏览量: 12

下载: