通过间接两电子还原的HOF/BiVO4 (010) S型光催化剂增强H2O2生产性能

周玲 李龙 黄礼文 吴艳

引用本文: 周玲, 李龙, 黄礼文, 吴艳. 通过间接两电子还原的HOF/BiVO4 (010) S型光催化剂增强H2O2生产性能[J]. 物理化学学报, 2026, 42(3): 100172. doi: 10.1016/j.actphy.2025.100172 shu
Citation:  Ling Zhou, Long Li, Liwen Huang, Yan Wu. Enhanced H2O2 production performance via indirect two-electron reduction of HOF/BiVO4 (010) S-scheme photocatalyst[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100172. doi: 10.1016/j.actphy.2025.100172 shu

通过间接两电子还原的HOF/BiVO4 (010) S型光催化剂增强H2O2生产性能

    通讯作者: hlw@hbeu.edu.cn (黄礼文); Email: wuyan@cug.edu.cn (吴艳)
摘要: 太阳能驱动的氧还原制取H2O2为传统工业蒽醌法和直接H2/O2合成法提供了一种绿色、高效且环境友好的替代方案。本研究通过定向晶面工程,将氢键有机框架(HOF)选择性锚定在BiVO4的(010)晶面上,构建了以HOF为还原端、通过氧还原反应生成H2O2的S型异质结。该结构使H2O2产率显著提升至555 μmol g−1 h−1,较随机锚定的HOF/BiVO4体系提高约37%。原位开尔文探针力显微镜(KPFM)揭示了原始BiVO4的(110)与(010)晶面间存在内建电场,且(010)晶面在光照下富集电子。对HOF定向锚定于BiVO4 (010)晶面的材料研究表明,两组分间还建立了额外的内建电场。由此,我们提出了一种在异质结中具有双内建电场的新型HOF/BiVO4 (010)光催化材料,这种结构显著促进了单晶BiVO4不同晶面与S型异质结界面的双向定向电荷转移。原位X射线光电子(XPS)进一步证实了S型异质结的电子转移机制。通过引入电子清除剂与空穴捕获剂,我们证实该异质结介导的光催化过程遵循两电子氧还原反应(ORR)路径。电子顺磁共振(EPR)光谱检测到超氧自由基(∙O2)的存在,表明ORR通过间接两电子转移机制进行。双内建电场、S型异质结结构与两电子ORR路径的协同效应共同促成了该体系优异的光催化性能。

English

    1. [1]

      J. Qiu, D. Dai, J. Yao, Coord Chem. Rev. 501 (2024) 215597, https://doi.org/10.1016/j.ccr.2023.215597. doi: 10.1016/j.ccr.2023.215597

    2. [2]

      J. Ji, Z. Wang, Q. Xu, Q. Zhu, M. Xing, Chem. Eur. J. 29 (2023) e202203921.https://doi.org/10.1002/chem.202203921. doi: 10.1002/chem.202203921

    3. [3]

      B. Liu, J. Zhang, H. Li, B. Cheng, C. Bie, Acta Phys. Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      H. Li, W. Wang, K. Xu, B. Cheng, J. Xu, S. Cao, Chin. J. Catal. 72 (2025) 24, https://doi.org/10.1016/S1872-2067(24)60257-3. doi: 10.1016/S1872-2067(24)60257-3

    5. [5]

      X. Ruan, M. Xu, C. Ding, J. Leng, G. Fang, D. Meng, W. Zhang, Z. Jiang, S. Ravi, X. Cui, et al., Adv. Energy Mater. 15 (2025) 2405478, https://doi.org/10.1002/aenm.202405478. doi: 10.1002/aenm.202405478

    6. [6]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    7. [7]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/D4CS01091D. doi: 10.1039/D4CS01091D

    8. [8]

      J. Li, N. Xu, Y. Zhang, H. Dong, C. Li, Chin. Chem. Lett. (2024) 110470, https://doi.org/10.1016/j.cclet.2024.110470. doi: 10.1016/j.cclet.2024.110470

    9. [9]

      X. Cheng, L. Liang, J. Ye, N. Li, B. Yan, G. Chen, Sci. Total Environ. 888 (2023) 164086, https://doi.org/10.1016/j.scitotenv.2023.164086. doi: 10.1016/j.scitotenv.2023.164086

    10. [10]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69 (2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X. doi: 10.1016/S1872-2067(24)60210-X

    11. [11]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079. doi: 10.1002/smll.202409079

    12. [12]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0. doi: 10.1016/S1872-2067(24)60069-0

    14. [14]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0

    15. [15]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8. doi: 10.1016/S1872-2067(24)60014-8

    16. [16]

      Z. Lu, R. Chen, G. Liu, B. Xia, K. Fan, T. Liu, Y. Xia, S. Liu, B. You, Adv. Funct. Mater. (2025) 2500944, https://doi.org/10.1002/adfm.202500944. doi: 10.1002/adfm.202500944

    17. [17]

      B. Xia, G. Liu, K. Fan, R. Chen, X. Liu, L. Li, Chin. J. Catal. 69 (2025) 315, https://doi.org/10.1016/S1872-2067(24)60210-X. doi: 10.1016/S1872-2067(24)60210-X

    18. [18]

      Z. Xie, H. Tan, H. Wu, R. Amal, J. Scott, Y. Ng, Mater. Today Energy 26 (2022) 100986, https://doi.org/10.1016/j.mtener.2022.100986. doi: 10.1016/j.mtener.2022.100986

    19. [19]

      G. Wang, H. Cheng, Sep. Purif. Technol. 318 (2023) 123949, https://doi.org/10.1016/j.seppur.2023.123949. doi: 10.1016/j.seppur.2023.123949

    20. [20]

      Y. Zhao, Q. Jia, Z. Tian, Y. Wang, J. Li, S. Song, T. Fu, X. Cui, G. Liu, X. Zhou, L. Jiang, J. Energy Chem. 103 (2025) 877, https://doi.org/10.1016/j.jechem.2024.12.003. doi: 10.1016/j.jechem.2024.12.003

    21. [21]

      D. Seo, V. Somjit, D.H. Wi, G. Galli, K. Choi, J. Am. Chem. Soc. 147 (2025) 3261, https://doi.org/10.1021/jacs.4c13290. doi: 10.1021/jacs.4c13290

    22. [22]

      K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4 (2021) 13158, https://doi.org/10.1021/acsanm.1c02688. doi: 10.1021/acsanm.1c02688

    23. [23]

      X. Wang, D. Liao, H. Yu, J. Yu, Dalton Trans. 47 (2018) 6370, https://doi.org/10.1039/C8DT00780B. doi: 10.1039/C8DT00780B

    24. [24]

      X. Liu, G. Liu, T. Fu, K. Ding, J. Guo, Z. Wang, W. Xia, H. Shangguan, Adv. Sci. 11 (2024) 2400101, https://doi.org/10.1002/advs.202400101. doi: 10.1002/advs.202400101

    25. [25]

      Y. Yao, Q. Wu, S. Ren, Y. Zhao, L. Guan, Adv. Opt. Mater. 13 (2025) 2402260, https://doi.org/10.1002/adom.202402260. doi: 10.1002/adom.202402260

    26. [26]

      X. Li, Z. Su, H. Jiang, J. Liu, L. Zheng, H. Zheng, S. Wu, X. Shi, Small 20 (2024) 2400617, https://doi.org/10.1002/smll.202400617. doi: 10.1002/smll.202400617

    27. [27]

      Y. Lin, X. Jiang, S.T. Kim, S. Alahakoon, X. Hou, Z. Zhang, C. Thompson, R.A. Smaldone, C. Ke, J. Am. Chem. Soc. 139 (2017) 7172, https://doi.org/10.1021/jacs.7b03204. doi: 10.1021/jacs.7b03204

    28. [28]

      C. Ban, Y. Wang, Y. Feng, Z. Zhu, Y. Duan, J. Ma, X. Zhang, X. Liu, K. Zhou, H. Zou, D. Yu, X. Tao, L. Gan, G. Han, X. Zhou, Energy Environ. Sci. 17 (2024) 518, https://doi.org/10.1039/D3EE02800C. doi: 10.1039/D3EE02800C

    29. [29]

      Q. Zhang, G. Liu, T. Liu, ACS Sustain. Chem. Eng. 12 (2024) 5675, https://doi.org/10.1021/acssuschemeng.4c00637. doi: 10.1021/acssuschemeng.4c00637

    30. [30]

      Q. Zhou, Y. Guo, Y. Zhu, Nat. Catal. 6 (2023) 574, https://doi.org/10.1038/s41929-023-00972-x. doi: 10.1038/s41929-023-00972-x

    31. [31]

      J. Wang, J. Bai, Y. Zhang, L. Li, C. Zhou, T. Zhou, J. Li, H. Zhu, B. Zhou, ACS Appl. Mater. Interfaces 15 (2023) 14359, https://doi.org/10.1021/acsami.2c23169. doi: 10.1021/acsami.2c23169

    32. [32]

      X. Luo, S. Yang, Z. Wang, Y. Xu, Sep. Purif. Technol. 318 (2023) 123966, https://doi.org/10.1016/j.seppur.2023.123966. doi: 10.1016/j.seppur.2023.123966

    33. [33]

      N. Zhang, Q. Yin, S. Guo, K. Chen, T. Liu, P. Wang, Z. Zhang, T. Lu, Appl. Catal. B Environ. 296 (2021) 120337, https://doi.org/10.1016/j.apcatb.2021.120337. doi: 10.1016/j.apcatb.2021.120337

    34. [34]

      H. Shi, Y. Li, X. Wang, H. Yu, J. Yu, Appl. Catal. B Environ. 297 (2021) 120414, https://doi.org/10.1016/j.apcatb.2021.120414. doi: 10.1016/j.apcatb.2021.120414

    35. [35]

      H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443 (2022) 136429, https://doi.org/10.1016/j.cej.2022.136429. doi: 10.1016/j.cej.2022.136429

    36. [36]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7. doi: 10.1038/s41467-024-47624-7

    37. [37]

      W. Wang, Z. Chen, C. Li, B. Cheng, K. Yang, S. Zhang, G. Luo, J. Yu, S. Cao, Adv. Funct. Mater. (2025) 2422307.https://doi.org/10.1002/adfm.202422307. doi: 10.1002/adfm.202422307

    38. [38]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005. doi: 10.3866/PKU.WHXB202406005

    39. [39]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038. doi: 10.1002/anie.202425038

    40. [40]

      H. Tan, C. Chai, J. Heng, Q.V. Thi, X. Wu, Y.H. Ng, E. Ye, Adv. Sci. 12 (2025) 2407801, https://doi.org/10.1002/advs.202407801. doi: 10.1002/advs.202407801

    41. [41]

      L. Jian, Y. Dong, H. Zhao, C. Pan, G. Wang, Y. Zhu, Appl. Catal. B Environ. 342 (2024) 123340, https://doi.org/10.1016/j.apcatb.2023.123340. doi: 10.1016/j.apcatb.2023.123340

    42. [42]

      L. Ding, Z. Pan, Q. Wang, Chin. Chem. Lett. 35 (2024) 110125, https://doi.org/10.1016/j.cclet.2024.110125. doi: 10.1016/j.cclet.2024.110125

    43. [43]

      H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan, et al., Appl. Catal. B Environ. 337 (2023) 122933, https://doi.org/10.1016/j.apcatb.2023.122933. doi: 10.1016/j.apcatb.2023.122933

    44. [44]

      L. Lin, Y. Ma, J. Vequizo, M. Nakabayashi, C. Gu, X. Tao, H. Yoshida, Y. Pihosh, Y. Nishina, A. Yamakata, et al., Nat. Commun. 15 (2024) 397, https://doi.org/10.1038/s41467-024-44706-4. doi: 10.1038/s41467-024-44706-4

    45. [45]

      Q. Zhang, B. Wang, H. Miao, J. Fan, T. Sun, E. Liu, Chem. Eng. J. 482 (2024) 148844, https://doi.org/10.1016/j.cej.2024.148844. doi: 10.1016/j.cej.2024.148844

    46. [46]

      X. Wang, S. Yuan, B. Feng, X. Qiu, C. Yu, W. Lu, X. Xu, Y. Hu, Y. Shi, J. Colloid Interface Sci. 691 (2025) 137371, https://doi.org/10.1016/j.jcis.2025.137371. doi: 10.1016/j.jcis.2025.137371

    47. [47]

      J. Zhou, T. Shan, S. Wu, J. Li, F. Zhang, L. Huang, L. Chen, H. Xiao, Chem. Eng. J. 492 (2024) 152441, https://doi.org/10.1016/j.cej.2024.152441. doi: 10.1016/j.cej.2024.152441

    48. [48]

      J. Tang, X. Wang, Y. Huang, X. Du, Z. He, D. Wang, S. Song, Chem. Eng. J. 499 (2024) 156055, https://doi.org/10.1016/j.cej.2024.156055. doi: 10.1016/j.cej.2024.156055

    49. [49]

      K. Wang, Y. Yang, S. Farhan, Y. Wu, W. Lin, Chem. Eng. J. 490 (2024) 151408, https://doi.org/10.1016/j.cej.2024.151408. doi: 10.1016/j.cej.2024.151408

    50. [50]

      W. Fu, S. Wang, Y. Zhang, B. Cheng, Y. Wu, J. Mater. Sci. Technol. 232 (2025) 181, https://doi.org/10.1016/j.jmst.2024.12.081. doi: 10.1016/j.jmst.2024.12.081

    51. [51]

      S. Yang, K. Wang, Q. Chen, Y. Wu, J. Mater. Sci. Technol. 175 (2024) 104, https://doi.org/10.1016/j.jmst.2023.07.044. doi: 10.1016/j.jmst.2023.07.044

    52. [52]

      S. Yang, K. Wang, Z. Wu, Y. Wu, J. Mater. Sci. Technol. 200 (2024) 253, https://doi.org/10.1016/j.jmst.2024.02.055. doi: 10.1016/j.jmst.2024.02.055

    53. [53]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229. doi: 10.1002/anie.202414229

    54. [54]

      M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, App. Catal. B: Environ. 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227. doi: 10.1016/j.apcatb.2022.122227

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  85
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-07-15
  • 接受日期:  2025-08-24
  • 修回日期:  2025-08-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章