S型异质结In2O3/ZnIn2S4光催化5-羟甲基糠醛选择性氧化耦合产氢

骆泽 朱玉坤 罗雅丹 任广敏 王永红 唐华

引用本文: 骆泽, 朱玉坤, 罗雅丹, 任广敏, 王永红, 唐华. S型异质结In2O3/ZnIn2S4光催化5-羟甲基糠醛选择性氧化耦合产氢[J]. 物理化学学报, 2026, 42(3): 100166. doi: 10.1016/j.actphy.2025.100166 shu
Citation:  Ze Luo, Yukun Zhu, Yadan Luo, Guangmin Ren, Yonghong Wang, Hua Tang. Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction[J]. Acta Physico-Chimica Sinica, 2026, 42(3): 100166. doi: 10.1016/j.actphy.2025.100166 shu

S型异质结In2O3/ZnIn2S4光催化5-羟甲基糠醛选择性氧化耦合产氢

    通讯作者: Email: huatang79@163.com (唐华)
摘要: 发展可持续的光催化技术,以实现生物质向高附加值化学品和清洁燃料的高效转化,是应对全球能源与环境危机有效途径。本研究通过原位生长法构建了一种新型一维/二维(1D/2D)In2O3/ZnIn2S4 S型异质结光催化剂。该设计巧妙结合棒状In2O3与片状ZnIn2S4,促进定向电荷传输并提供高密度活性位点。因此,优化后的In2O3/ZnIn2S4异质结在420 nm LED光照下对5-羟甲基糠醛(HMF)转化率达81.6%,且对2,5-二甲酰基呋喃(DFF)和2,5-呋喃二甲酸(FDCA)的选择性高达78.2%。同时,该异质结表现出257.69 μmol g−1 h−1的产氢(H2)速率。这些结果表明,S型异质结能有效实现空间电荷分离并提升光催化活性,为太阳能驱动的生物质增值与可持续产氢提供了可行策略。

English

    1. [1]

      M. Wang, H. Zhou, F. Wang, Acc. Chem. Res. 56 (2023) 1057. https://doi.org/10.1021/acs.accounts.3c00039. doi: 10.1021/acs.accounts.3c00039

    2. [2]

      X. Liu, X. Duan, W. Wei, S. Wang, B. Ni, Green Chem. 21 (2019) 4266. https://doi.org/10.1039/C9GC01728C. doi: 10.1039/C9GC01728C

    3. [3]

      X. Fu, H. Huang, G. Tang, J. Zhang, J. Sheng, H. Tang, Chin. J. Struct. Chem. 43 (2024) 100214. https://doi.org/10.1016/j.cjsc.2024.100214. doi: 10.1016/j.cjsc.2024.100214

    4. [4]

      Z. Huang, N. Luo, C. Zhang, F. Wang, Nat. Rev. Chem. 6 (2022) 197. https://doi.org/10.1038/s41570-022-00359-9. doi: 10.1038/s41570-022-00359-9

    5. [5]

      X. Wu, N. Luo, S. Xie, H. Zhang, Q. Zhang, F. Wang, Y. Wang, Chem. Soc. Rev. 49 (2020) 6198. https://doi.org/10.1039/D0CS00314J. doi: 10.1039/D0CS00314J

    6. [6]

      L. Granone, F. Sieland, N. Zheng, R. Dillert, D. Bahnemann, Green Chem. 20 (2018) 1169. https://doi.org/10.1039/C7GC03522E. doi: 10.1039/C7GC03522E

    7. [7]

      Q. Qin, T. Li, X. Sun, A. Pei, Y. Jia, H. He, F. Gao, P. Wang, Q. Wu, R. Liu, S. Dai, H. Lin, Q. Zhang, Y. Zhao, G. Chen, Nano Lett. 24 (2024) 16351. https://doi.org/10.1021/acs.nanolett.4c04786. doi: 10.1021/acs.nanolett.4c04786

    8. [8]

      G. Han, Y.H. Jin, R.A. Burgess, N.E. Dickenson, X.M. Cao, Y. Sun, J. Am. Chem. Soc. 139 (2017) 15584. https://doi.org/10.1021/jacs.7b08657. doi: 10.1021/jacs.7b08657

    9. [9]

      Y. Wan, J. Lee, ACS Catal. 11 (2021) 2524. https://doi.org/10.1021/acscatal.0c05419. doi: 10.1021/acscatal.0c05419

    10. [10]

      B. Zhu, C. Chen, L. Huai, Z. Zhou, L. Wang, J. Zhang, Appl. Catal. B Environ. 297 (2021) 120396. https://doi.org/10.1016/j.apcatb.2021.120396. doi: 10.1016/j.apcatb.2021.120396

    11. [11]

      X. Liu, J. Tang, Y. Chen, X. Song, J. Guo, G. Wang, S. Han, X. Chen, C. Zhang, S. Dou, ACS Catal. 15 (2025) 7308. https://doi.org/10.1021/acscatal.4c06577. doi: 10.1021/acscatal.4c06577

    12. [12]

      H.T. Vuong, D.V. Nguyen, L.P. Phuong, P.P. Minh, B.N. Ho, H.A. Nguyen, Carbon Neutral. 2 (2023) 425. https://doi.org/10.1002/cnl2.65. doi: 10.1002/cnl2.65

    13. [13]

      J. Yu, X. Li, Z. Jin, H. Tang, E. Liu, Chin. J. Struct. Chem. 41 (2022) 2206001. https://doi.org/10.14102/j.cnki.0254-5861.2022-0158. doi: 10.14102/j.cnki.0254-5861.2022-0158

    14. [14]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4. https://doi.org/10.1016/s1872-2067(24)60011-2. doi: 10.1016/s1872-2067(24)60011-2

    15. [15]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185. https://doi.org/10.1016/s1872-2067(23)64610-8. doi: 10.1016/s1872-2067(23)64610-8

    16. [16]

      Y. An, T. Lei, W. Jiang, H. Pang, Green Chem. 26 (2024) 35. https://doi.org/10.1039/D4GC03597F. doi: 10.1039/D4GC03597F

    17. [17]

      Q. Zhang, H. Zhang, B. Gu, Q. Tang, Q. Cao, W. Fang, Appl. Catal. B Environ. 320 (2023) 122006. https://doi.org/0.1016/j.apcatb.2022.122006.

    18. [18]

      K. Liu, D. Li, Y. Zhu, J. Ren, S. Sarina, D. Yang, Ind. Crops Prod. 230 (2025) 121058. https://doi.org/10.1016/j.indcrop.2025.121058. doi: 10.1016/j.indcrop.2025.121058

    19. [19]

      P. Zhu, W. Zhang, Q. Li, ACS Sustain. Chem. Eng. 10 (2022) 8778. https://doi.org/10.1021/acssuschemeng.2c01143. doi: 10.1021/acssuschemeng.2c01143

    20. [20]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286. https://doi.org/10.1016/j.jmst.2025.02.013. doi: 10.1016/j.jmst.2025.02.013

    21. [21]

      L. Sun, X. Yu, L. Tang, W. Wang, Q. Liu, Chin. J. Catal. 52 (2023) 164. https://doi.org/10.1016/S1872-2067(23)64507-3. doi: 10.1016/S1872-2067(23)64507-3

    22. [22]

      F. Wang, J. Li, X. Yu, H. Tang, J. Xu, L. Sun, Q. Liu, J. Mater. Sci. Technol. 146 (2023) 49. https://doi.org/10.1016/j.jmst.2022.10.040. doi: 10.1016/j.jmst.2022.10.040

    23. [23]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48. https://doi.org/10.1016/j.jmst.2024.12.047. doi: 10.1016/j.jmst.2024.12.047

    24. [24]

      S. Liu, B. Zhang, Z. Yang, Z. Xue, T. Mu, Green Chem. 25 (2023) 2620. https://doi.org/10.1039/D2GC04535D. doi: 10.1039/D2GC04535D

    25. [25]

      S. Meng, H. Wu, Y. Cui, X. Zheng, H. Wang, S. Chen, Y. Wang, X. Fu, Appl. Catal. B Environ. 266 (2020) 118617. https://doi.org/10.1016/j.apcatb.2020.118617. doi: 10.1016/j.apcatb.2020.118617

    26. [26]

      S. Dhingra, T. Chhabra, V. Krishnan, C.M. Nagaraja, ACS Appl. Energy Mater. 3 (2020) 7138. https://doi.org/10.1021/acsaem.0c01189. doi: 10.1021/acsaem.0c01189

    27. [27]

      J. Li, L. Sun, H. Jiang, L. Wang, Q. Liu, J. Alloy. Compd. 1008 (2024) 176770. https://doi.org/10.1016/j.jallcom.2024.176770. doi: 10.1016/j.jallcom.2024.176770

    28. [28]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328–342. https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    29. [29]

      S. Wang, K. Qi, J. Mater. Sci. Technol. 226 (2025) 317. https://doi.org/10.1016/j.jmst.2024.11.056. doi: 10.1016/j.jmst.2024.11.056

    30. [30]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803. https://doi.org/10.1002/adma.202414803. doi: 10.1002/adma.202414803

    31. [31]

      M. Wei, X. Zhou, C. Cheng, J. Zhang, C. Jiang, B. Cheng, J. Mater. Sci. Technol. 232 (2025) 302. https://doi.org/10.1016/j.jmst.2025.01.036. doi: 10.1016/j.jmst.2025.01.036

    32. [32]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182. https://doi.org/10.1016/j.jmst.2023.06.011. doi: 10.1016/j.jmst.2023.06.011

    33. [33]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084. https://doi.org/10.1016/j.actphy.2025.100084. doi: 10.1016/j.actphy.2025.100084

    34. [34]

      Y. Zhang, S. Wang, Chin. J. Catal. 71 (2025) 1. https://doi.org/10.1016/S1872-2067(24)60253-6. doi: 10.1016/S1872-2067(24)60253-6

    35. [35]

      R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Methods 5 (2021) 2100887. https://doi.org/10.1002/smtd.202100887. doi: 10.1002/smtd.202100887

    36. [36]

      J. Cheng, Z. Niu, Z. Zhao, X. Pei, S. Zhang, H. Wang, D. Li, Z. Guo, Adv. Energy Mater. 13 (2023) 2203248. https://doi.org/10.1002/aenm.202203248. doi: 10.1002/aenm.202203248

    37. [37]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183. https://doi.org/10.1016/j.jmst.2024.02.012. doi: 10.1016/j.jmst.2024.02.012

    38. [38]

      L. Xu, L. Ni, W. Shi, J. Guan, Chin. J. Catal. 33 (2012) 1101. https://doi.org/10.1016/s1872-2067(11)60382-3. doi: 10.1016/s1872-2067(11)60382-3

    39. [39]

      P. Lu, B. Du, K. Liu, Z. Luo, A. Sikandaier, L. Diao, J. Sun, L. Jiang, Y. Zhu, Chin. J. Struct. Chem. 43 (2024) 100361. https://doi.org/10.1016/j.cjsc.2024.100361. doi: 10.1016/j.cjsc.2024.100361

    40. [40]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1. https://doi.org/10.1016/S1872-2067(24)60102-6. doi: 10.1016/S1872-2067(24)60102-6

    41. [41]

      J. Sun, P. Song, S. Zhang, Z. Sima, Z. Lu, Q. Wang, J. Alloys Compd. 888 (2021) 161509. https://doi.org/10.1016/j.jallcom.2021.161509. doi: 10.1016/j.jallcom.2021.161509

    42. [42]

      W. Yang, L. Zhang, J. Xie, X. Zhang, Q. Liu, T. Yao, S. Wei, Q. Zhang, Y. Xie, Angew. Chem. Int. Ed. 55 (2016) 6716. https://doi.org/10.1002/anie.201602543. doi: 10.1002/anie.201602543

    43. [43]

      P. Lu, K. Liu, Y. Liu, Z. Ji, X. Wang, B. Hui, Y. Zhu, D. Yang, L. Jiang, Appl. Catal. B Environ. 345 (2024) 123697. https://doi.org/10.1016/j.apcatb.2024.123697. doi: 10.1016/j.apcatb.2024.123697

    44. [44]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088. https://doi.org/10.1002/adma.202505088. doi: 10.1002/adma.202505088

    45. [45]

      X. Guo, B. Du, W. Yan, Y. Wu, J. Feng, Y. Zhu, Environ. Res. 283 (2025) 122129. https://doi.org/10.1016/j.envres.2025.122129. doi: 10.1016/j.envres.2025.122129

    46. [46]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016. https://doi.org/10.3866/PKU.WHXB202307016. doi: 10.3866/PKU.WHXB202307016

    47. [47]

      Y. Fan, X. Hao, N. Yi, Z. Jin, Appl. Catal. B Environ. 357 (2024) 124313. https://doi.org/10.1016/j.apcatb.2024.124313. doi: 10.1016/j.apcatb.2024.124313

    48. [48]

      M.M. Fang, J.X. Shao, X.G. Huang, J.Y. Wang, W. Chen, J. Mater. Sci. Technol. 56 (2020) 10. https://doi.org/10.1016/j.jmst.2020.01.054. doi: 10.1016/j.jmst.2020.01.054

    49. [49]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. Chim. Sin. 41 (2025) 100052. https://doi.org/10.1016/j.actphy.2025.100052. doi: 10.1016/j.actphy.2025.100052

    50. [50]

      Z. Wang, S. Meng, J. Li, D. Guo, S. Fu, D. Zhang, X. Yang, G. Sui, Small 20 (2024) 2406125. https://doi.org/10.1002/smll.202406125. doi: 10.1002/smll.202406125

    51. [51]

      J. Li, C. Jin, Y. Zhao, X. Yu, W. Ren, L. Sun, L. Wang, W. Wang, J. Zhang, J. Yang, ACS Catal. 15 (2025) 12123. https://doi.org/10.1021/acscatal.5c03346. doi: 10.1021/acscatal.5c03346

    52. [52]

      T. Xia, W. Gong, Y. Chen, M. Duan, J. Ma, X. Cui, Y. Dai, C. Gao, Y. Xiong, Angew. Chem. Int. Ed. 61 (2022) e202204225. https://doi.org/10.1002/anie.202204225. doi: 10.1002/anie.202204225

    53. [53]

      S. Si, P. Gong, X. Bao, X. Tan, Y. Mao, H. Zhang, D. Xiao, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, B. Huang, H. Cheng, ACS Catal. 14 (2024) 8343. https://doi.org/10.1021/acscatal.4c00123. doi: 10.1021/acscatal.4c00123

    54. [54]

      D. Zeng, W. Wang, B. Cui, B. Jiang, C. Zhang, L. Zhang, W. Wang, Fuel 381 (2025) 133238. https://doi.org/10.1016/j.fuel.2024.133238. doi: 10.1016/j.fuel.2024.133238

    55. [55]

      R. Wang, J. Shen, W. Zhang, Q. Liu, M. Zhang, H. Tang, Ceram. Int. 46 (2020) 23. https://doi.org/10.1016/j.ceramint.2019.08.226. doi: 10.1016/j.ceramint.2019.08.226

    56. [56]

      L. Sun, W. Wang, P. Lu, Q. Liu, L. Wang, H. Tang, Chin. J. Catal. 51 (2023) 90. https://doi.org/10.1016/s1872-2067(23)64492-4. doi: 10.1016/s1872-2067(23)64492-4

    57. [57]

      Z. Li, Y. Yang, C. Zhang, W. Fan, G. Li, J. Fang, L. Lu, Chem Catal. 4 (2024) 100902. https://doi.org/10.1016/j.checat.2024.100902. doi: 10.1016/j.checat.2024.100902

    58. [58]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M.S. Ahmed, Z. Lin, M.M.-J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y.H. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756. https://doi.org/10.1002/anie.202405756. doi: 10.1002/anie.202405756

    59. [59]

      J. Yan, L. Wei, Acta Phys. Chim. Sin. 40 (2024) 2312024. https://doi.org/10.3866/PKU.WHXB202312024. doi: 10.3866/PKU.WHXB202312024

    60. [60]

      L. Sun, J. Gao, J. Shen, Z. Lu, H. Jiang, W. Wang, L. Wang, X. Yu, J. Yang, Q. Liu, Ceram. Int. 50 (2024) 53801. https://doi.org/10.1016/j.ceramint.2024.10.234. doi: 10.1016/j.ceramint.2024.10.234

    61. [61]

      H. Huang, L. Li, R. Wang, A.R.M. Shaheer, T. Liu, H. Liu, R. Cao, Sci. China Mater. 67 (2024) 1839. https://doi.org/10.1007/s40843-024-2885-0. doi: 10.1007/s40843-024-2885-0

    62. [62]

      A. Sikandaier, Y. Zhu, D. Yang, Chin. J. Struct. Chem. 43 (2024) 100242. https://doi.org/10.1016/j.cjsc.2024.100242. doi: 10.1016/j.cjsc.2024.100242

    63. [63]

      Y. Zhuang, S. Meng, X. Yang, D. Guo, D. Zhang, T. Peng, Y. Li, J. Li, Appl. Surf. Sci. 699 (2025) 163188. https://doi.org/10.1016/j.apsusc.2025.163188. doi: 10.1016/j.apsusc.2025.163188

    64. [64]

      X. Yang, Y. Luo, J. Xue, Z. Yang, T. Feng, W. Shan, H. Zhang, H. Tang, J. Colloid Interface Sci. 688 (2025) 317. https://doi.org/10.1016/j.jcis.2025.02.148. doi: 10.1016/j.jcis.2025.02.148

    65. [65]

      J. Tang, R. Xu, G. Sui, D. Guo, Z. Zhao, S. Fu, X. Yang, Y. Li, J. Li, Small 19 (2023) 2208232. https://doi.org/10.1002/smll.202208232. doi: 10.1002/smll.202208232

    66. [66]

      B. Zhu, X. Hong, L. Tang, Q. Liu, H. Tang, Acta Phys. Chim. Sin. 38 (2022) 2111008. https://doi.org/10.3866/pku.whxb202111008. doi: 10.3866/pku.whxb202111008

    67. [67]

      B. Zhang, C. Fang, J. Ning, R. Dai, Y. Liu, Q. Wu, F. Zhang, W. Zhang, S. Dou, X. Liu, Carbon Neutral. 2 (2023) 646. https://doi.org/10.1002/cnl2.96. doi: 10.1002/cnl2.96

    68. [68]

      X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5. https://doi.org/10.1016/S1872-2067(24)60223-8. doi: 10.1016/S1872-2067(24)60223-8

    69. [69]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946. https://doi.org/10.1038/s41467-025-56306-x. doi: 10.1038/s41467-025-56306-x

    70. [70]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2024) 251. https://doi.org/10.1016/j.mattod.2024.11.012. doi: 10.1016/j.mattod.2024.11.012

    71. [71]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147. https://doi.org/10.1016/j.jmst.2023.06.048. doi: 10.1016/j.jmst.2023.06.048

    72. [72]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672. https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    73. [73]

      C. An, A. Sikandaier, X. Guo, Y. Zhu, H. Tang, D. Yang, Acta Phys. Chim. Sin. 40 (2024) 2405019. https://doi.org/10.3866/pku.whxb202405019. doi: 10.3866/pku.whxb202405019

    74. [74]

      X. Hao, W. Deng, Y. Fan, Z. Jin, J. Mater. Chem. A 12 (2024) 18. https://doi.org/10.1039/D4TA01140F. doi: 10.1039/D4TA01140F

    75. [75]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874. https://doi.org/10.1039/d4cs01091d. doi: 10.1039/d4cs01091d

    76. [76]

      R. He, D. Xu, M. Sayed, J. Materiomics 11 (2025) 100989. https://doi.org/10.1016/j.jmat.2024.100989. doi: 10.1016/j.jmat.2024.100989

    77. [77]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. (2025) e202505456. https://doi.org/10.1002/ange.202505456. doi: 10.1002/ange.202505456

    78. [78]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172. https://doi.org/10.1002/anie.202313172. doi: 10.1002/anie.202313172

    79. [79]

      Y. Zhu, J. Ren, G. Huang, C. Dong, Y. Huang, P. Lu, H. Tang, Y. Liu, S. Shen, D. Yang, Adv. Funct. Mater. 34 (2024) 2311623. https://doi.org/10.1002/adfm.202311623. doi: 10.1002/adfm.202311623

    80. [80]

      Y. Zhu, Y. Zhuang, L. Wang, H. Tang, X. Meng, X. She, Chin. J. Catal. 43 (2022) 11. https://doi.org/10.1016/S1872-2067(22)64099-3. doi: 10.1016/S1872-2067(22)64099-3

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  73
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2026-03-15
  • 收稿日期:  2025-07-16
  • 接受日期:  2025-08-17
  • 修回日期:  2025-08-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章