Citation: Xinyu Xu, Jiale Lu, Bo Su, Jiayi Chen, Xiong Chen, Sibo Wang. Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100153. doi: 10.1016/j.actphy.2025.100153 shu

Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2

  • Corresponding author: Jiayi Chen, jiayi9236@fzu.edu.cn Xiong Chen, chenxiong987@fzu.edu.cn Sibo Wang, sibowang@fzu.edu.cn
  • Received Date: 19 July 2025
    Revised Date: 4 August 2025
    Accepted Date: 6 August 2025

    Fund Project: the financial support from the National Natural Science Foundation of China 2237203the financial support from the National Natural Science Foundation of China 22302039the 111 Proiect D16008

  • The selective oxidation of methane to value-added chemicals under mild conditions presents a sustainable yet challenging route, hindered by sluggish CH4 activation and overoxidation. Herein, we report a delicate strategy combining Ti doping and Au loading to construct a high-performance Au/Ti−CeO2 photocatalyst for ethane production from oxidative methane coupling. The optimized catalyst achieves a C2H6 production rate of 2971.4 μmol·g−1·h−1 with 85.1% C2+ selectivity, stably operating over 20 reaction cycles. In situ X-ray photoelectron spectroscopy, electron paramagnetic resonance, and diffuse reflectance infrared Fourier transform spectroscopy analyses reveal that Ti doping introduces impurity energy levels into CeO2, promoting directional electron migration to surface Au nanoparticles (NPs) via a built-in electric field. The Au NPs act as electron accumulation sites to activate O2, facilitate *CH3 radical coupling into C2H6, and stabilize reactive intermediates, thus enhancing charge separation and suppressing intermediate overoxidation. This study highlights the significance of synergistic modulation via elemental doping and cocatalyst engineering in tuning charge dynamics and surface reactivity for efficient photocatalytic methane conversion.
  • 加载中
    1. [1]

      D. Saha, H. A. Grappe, A. Chakraborty, G. Orkoulas, Chem. Rev. 116 (2016) 11436, http://doi.org/10.1021/acs.chemrev.5b00745.  doi: 10.1021/acs.chemrev.5b00745

    2. [2]

      X. Meng, X. Cui, N. P. Rajan, L. Yu, D. Deng, X. Bao, Chem 5 (2019) 2296, http://doi.org/10.1016/j.chempr.2019.05.008.  doi: 10.1016/j.chempr.2019.05.008

    3. [3]

      X. Li, C. Wang, J. Tang, Nat. Rev. Mater 7 (2022) 617, http://doi.org/10.1038/s41578-022-00422-3.  doi: 10.1038/s41578-022-00422-3

    4. [4]

      Y. Jiang, S. Li, Y. Fan, Z. Tang, Angew. Chem. Int. Ed. 63 (2024) e202404658, http://doi.org/10.1002/anie.202404658.  doi: 10.1002/anie.202404658

    5. [5]

      H. Song, X. Meng, Z. J. Wang, H. Liu, J. Ye, Joule 3 (2019) 1606, http://doi.org/10.1016/j.joule.2019.06.023.  doi: 10.1016/j.joule.2019.06.023

    6. [6]

      S. Nie, L. Wu, X. Wang, J. Am. Chem. Soc. 145 (2023) 23681, http://doi.org/10.1021/jacs.3c07984.  doi: 10.1021/jacs.3c07984

    7. [7]

      G. Wang, X. Mu, R. Tan, Z. Pan, J. Li, Q. Zhan, R. Fu, S. Song, L. Li, ACS Catal. 13 (2023) 11666, http://doi.org/10.1021/acscatal.3c02192.  doi: 10.1021/acscatal.3c02192

    8. [8]

      W. Fu, S. Wang, Y. Zhang, B. Cheng, Y. Wu, J. Mater. Sci. Technol. 232 (2025) 181, http://doi.org/10.1016/j.jmst.2024.12.081.  doi: 10.1016/j.jmst.2024.12.081

    9. [9]

      H. Ran, X. Liu, L. Ye, J. Fan, B. Zhu, Q. Xu, Y. Wei, J. Mater. Sci. Technol. 234 (2025) 24, http://doi.org/10.1016/j.jmst.2024.12.089.  doi: 10.1016/j.jmst.2024.12.089

    10. [10]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, http://doi.org/10.1016/j.jmst.2024.12.102.  doi: 10.1016/j.jmst.2024.12.102

    11. [11]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, http://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    12. [12]

      W. Li, Z. Ni, O. Akdim, T. Liu, B. Zhu, P. Kuang, J. Yu, Adv. Mater. 37 (2025) 2503742, http://doi.org/10.1002/adma.202503742.  doi: 10.1002/adma.202503742

    13. [13]

      W. Chen, S.-Z. Lin, Z. Song, G.-B. Huang, M. Zhang, J. Mater. Sci. Technol. 232 (2025) 246, http://doi.org/10.1016/j.jmst.2024.12.092.  doi: 10.1016/j.jmst.2024.12.092

    14. [14]

      H. Li, J. Zhang, X. Zhou, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 231 (2025) 1, http://doi.org/10.1016/j.jmst.2024.12.076.  doi: 10.1016/j.jmst.2024.12.076

    15. [15]

      X. Xu, C. Shao, J. Zhang, Z. Wang, K. Dai, Acta Phys. Chim. Sin. 40 (2024) 2309031, http://doi.org/10.3866/PKU.WHXB202309031.  doi: 10.3866/PKU.WHXB202309031

    16. [16]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin. 40 (2024) 2307016, http://doi.org/10.3866/PKU.WHXB202307016.  doi: 10.3866/PKU.WHXB202307016

    17. [17]

      X. Zhang, J. Xu, H. Long, J. Yu, H. Yu, ACS Catal. 14 (2024) 18669, http://doi.org/10.1021/acscatal.4c05674.  doi: 10.1021/acscatal.4c05674

    18. [18]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229 (2025) 213, http://doi.org/10.1016/j.jmst.2024.12.040.  doi: 10.1016/j.jmst.2024.12.040

    19. [19]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun 15 (2024) 4807, http://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    20. [20]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun 15 (2024) 9612, http://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    21. [21]

      X. Deng, Z. Wen, X. Li, W. Macyk, J. Yu, F. Xu, Small 20 (2024) 2305410, http://doi.org/10.1002/smll.202305410.  doi: 10.1002/smll.202305410

    22. [22]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, http://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    23. [23]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202505456, http://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    24. [24]

      H. He, Z. Wang, J. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191, http://doi.org/10.1039/D5EE01295C.  doi: 10.1039/D5EE01295C

    25. [25]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    26. [26]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.  doi: 10.1016/S1872-2067(24)60072-0

    27. [27]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    28. [28]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    29. [29]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    30. [30]

      Y. Che, K. Wang, C. Wang, B. Weng, S. Chen, S. Meng, J. Mater. Sci. Technol. 243 (2026) 228, https://doi.org/10.1016/j.jmst.2025.04.030.  doi: 10.1016/j.jmst.2025.04.030

    31. [31]

      Z. Liu, Y. Bian, G. Dawson, J. Zhu, K. Dai, Chin. Chem. Lett. 36 (2025) 111272, https://doi.org/10.1016/j.cclet.2025.111272.  doi: 10.1016/j.cclet.2025.111272

    32. [32]

      B. Su, S. Wang, W. Xing, K. Liu, S. F. Hung, X. Chen, Y. Fang, G. Zhang, H. Zhang, X. Wang, Angew. Chem. Int. Ed. 64 (2025) e202505453, http://doi.org/10.1002/anie.202505453.  doi: 10.1002/anie.202505453

    33. [33]

      L. Luo, Z. Gong, Y. Xu, J. Ma, H. Liu, J. Xing, J. Tang, J. Am. Chem. Soc. 144 (2022) 740, http://doi.org/10.1021/jacs.1c09141.  doi: 10.1021/jacs.1c09141

    34. [34]

      K. Zheng, Y. Li, B. Liu, F. Jiang, Y. Xu, X. Liu, Angew. Chem. Int. Ed. 61 (2022) e202210991, http://doi.org/10.1002/anie.202210991.  doi: 10.1002/anie.202210991

    35. [35]

      B. Han, W. Wei, M. Li, K. Sun, Y. H. Hu, Chem. Commun. 55 (2019) 7816, http://doi.org/10.1039/C9CC04193A.  doi: 10.1039/C9CC04193A

    36. [36]

      K. Shimura, H. Kawai, T. Yoshida, H. Yoshida, ACS Catal. 2 (2012) 2126, http://doi.org/10.1021/cs2006229.  doi: 10.1021/cs2006229

    37. [37]

      X. Pan, X. Chen, Z. Yi, PCCP 18 (2016) 31400, http://doi.org/10.1039/C6CP04604E.  doi: 10.1039/C6CP04604E

    38. [38]

      P. Li, Y. Xin, Q. Li, Z. Wang, Z. Zhang, L. Zheng, Environ. Sci. Technol. 46 (2012) 9600, http://doi.org/10.1021/es301661r.  doi: 10.1021/es301661r

    39. [39]

      Q. Huang, J. Cai, F. Wei, Y. Fan, Z. Liang, K. Liu, X. F. Lu, Z. Ding, S. Wang, J. Mater. Chem. A 12 (2024) 21334, http://doi.org/10.1039/D4TA02049A.  doi: 10.1039/D4TA02049A

    40. [40]

      Y. F. Wang, M. Y. Qi, M. Conte, Z. R. Tang, Y. J. Xu, Angew. Chem. Int. Ed. 63 (2024) e202407791, http://doi.org/10.1002/anie.202407791.  doi: 10.1002/anie.202407791

    41. [41]

      B. Su, M. Zheng, W. Lin, X. F. Lu, D. Luan, S. Wang, X. W. Lou, Adv. Energy Mater. 13 (2023) 2203290, http://doi.org/10.1002/aenm.202203290.  doi: 10.1002/aenm.202203290

    42. [42]

      B. Su, Y. Kong, S. Wang, S. Zuo, W. Lin, Y. Fang, Y. Hou, G. Zhang, H. Zhang, X. Wang, J. Am. Chem. Soc. 145 (2023) 27415, http://doi.org/10.1021/jacs.3c08311.  doi: 10.1021/jacs.3c08311

    43. [43]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, http://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    44. [44]

      C. Zhang, X. Tao, W. Jiang, J. Guo, P. Zhang, C. Li, R. Li, Acta Phys. Chim. Sin. 40 (2024) 2303034, http://doi.org/10.3866/PKU.WHXB202303034.  doi: 10.3866/PKU.WHXB202303034

    45. [45]

      J. Su, J. Zhang, S. Chai, Y. Wang, S. Wang, Y. Fang, Acta Phys. Chim. Sin. 40 (2024) 2408012, http://doi.org/10.3866/PKU.WHXB202408012.  doi: 10.3866/PKU.WHXB202408012

    46. [46]

      E. Lu, J. Tao, C. Yang, Y. Hou, J. Zhang, X. Wang, X. Fu, Acta Phys. Chim. Sin. 39 (2023) 2211029, http://doi.org/10.3866/PKU.WHXB202211029.  doi: 10.3866/PKU.WHXB202211029

    47. [47]

      D. Gao, P. Deng, J. Zhang, L. Zhang, X. Wang, H. Yu, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202304559, http://doi.org/10.1002/anie.202304559.  doi: 10.1002/anie.202304559

    48. [48]

      M. Zhou, H. Wang, R. Liu, Z. Liu, X. Xiao, W. Li, C. Gao, Z. Lu, Z. Jiang, W. Shi, et al., Angew. Chem. Int. Ed. 63 (2024) e202407468, http://doi.org/10.1002/anie.202407468.  doi: 10.1002/anie.202407468

    49. [49]

      Y. F. Wang, M. Y. Qi, M. Conte, Z. R. Tang, Y. J. Xu, Angew. Chem. Int. Ed. 62 (2023) e202304306, http://doi.org/10.1002/anie.202304306.  doi: 10.1002/anie.202304306

    50. [50]

      F. Sun, Y. Luo, S. Kuang, M. Zhou, W. K. Ho, H. Tang, J. Mater. Sci. Technol. 229 (2025) 287, http://doi.org/10.1016/j.jmst.2024.12.060.  doi: 10.1016/j.jmst.2024.12.060

    51. [51]

      F. Liu, J. Deng, B. Su, K.-S. Peng, K. Liu, X. Lin, S.-F. Hung, X. Chen, X. F. Lu, Y. Fang, et al., ACS Catal. 15 (2025) 1018, http://doi.org/10.1021/acscatal.4c06685.  doi: 10.1021/acscatal.4c06685

    52. [52]

      J. Cai, X. Li, B. Su, B. Guo, X. Lin, W. Xing, X. F. Lu, S. Wang, J. Mater. Sci. Technol. 234 (2025) 82, http://doi.org/10.1016/j.jmst.2025.01.050.  doi: 10.1016/j.jmst.2025.01.050

    53. [53]

      X. Xia, Y. Jia, W. Wang, J. Zhang, L. Wang, Q. Liu, J. Mater. Sci. Technol. 236 (2025) 301, http://doi.org/10.1016/j.jmst.2024.12.093.  doi: 10.1016/j.jmst.2024.12.093

    54. [54]

      M. Xiao, L. Wang, H. Wang, J. Yuan, X. Chen, Z. Zhang, X. Fu, W. Dai, Catal. Sci. Technol. 13 (2023) 4148, http://doi.org/10.1039/D3CY00515A.  doi: 10.1039/D3CY00515A

    55. [55]

      M. Sun, Y. Chen, X. Fan, D. Li, J. Song, K. Yu, Z. Zhao, Nat. Commun. 15 (2024) 9900, http://doi.org/10.1038/s41467-024-54226-w.  doi: 10.1038/s41467-024-54226-w

    56. [56]

      C. Wang, Y. Xu, L. Xiong, X. Li, E. Chen, T. J. Miao, T. Zhang, Y. Lan, J. Tang, Nat. Commun. 15 (2024) 7535, http://doi.org/10.1038/s41467-024-51690-2.  doi: 10.1038/s41467-024-51690-2

    57. [57]

      Y. Liu, W. Xue, X. Liu, F. Wei, X. Lin, X. F. Lu, W. Lin, Y. Hou, G. Zhang, S. Wang, Small 20 (2024) 2402004, http://doi.org/10.1002/smll.202402004.  doi: 10.1002/smll.202402004

    58. [58]

      F. Wei, J. Zhao, Y. C. Liu, Y. H. Hsu, S. F. Hung, J. Fu, K. Liu, W. Lin, Z. Yu, L. Tan, et al., Nat. Commun. 16 (2025) 6586, http://doi.org/10.1038/s41467-025-61634-z.  doi: 10.1038/s41467-025-61634-z

    59. [59]

      J. Li, J. Zhao, S. Wang, K. S. Peng, B. Su, K. Liu, S. F. Hung, M. Huang, G. Zhang, H. Zhang, et al., J. Am. Chem. Soc. 147 (2025) 14705, http://doi.org/10.1021/jacs.5c03098.  doi: 10.1021/jacs.5c03098

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yanyan ZhaoZhen WuYong ZhangBicheng ZhuJianjun Zhang . Enhancing photocatalytic H2O2 production via dual optimization of charge separation and O2 adsorption in Au-decorated S-vacancy-rich CdIn2S4. Acta Physico-Chimica Sinica, 2025, 41(11): 100142-0. doi: 10.1016/j.actphy.2025.100142

    5. [5]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    9. [9]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    10. [10]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    12. [12]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    13. [13]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    14. [14]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    15. [15]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    18. [18]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    20. [20]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return