Citation: Yiting Huo, Xin Zhou, Feifan Zhao, Chenbin Ai, Zhen Wu, Zhidong Chang, Bicheng Zhu. Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100148. doi: 10.1016/j.actphy.2025.100148 shu

Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study

  • Corresponding author: Zhidong Chang, zdchang@ustb.edu.cn Bicheng Zhu, zhubicheng@cug.edu.cn
  • Received Date: 16 July 2025
    Revised Date: 30 July 2025
    Accepted Date: 3 August 2025

    Fund Project: the National Natural Science Foundation of China 52173065the National Natural Science Foundation of China 22469001Natural Science Foundation of Inner Mongolia Autonomous Region of China 2025QN05107Natural Science Foundation of Inner Mongolia Autonomous Region of China 2025ZDLH002

  • The conversion of CO2 into value-added hydrocarbons via photocatalysis holds great promise for sustainable energy, yet achieving high activity and selectivity remains challenging. Herein, a novel TiO2/CdS heterostructured photocatalyst exhibits exceptional performance in CO2 photoreduction. The optimized catalyst delivers a 4.2-fold increase in CH4 production rate compared to pristine TiO2, with a remarkable 65.4% selectivity toward CH4 (34.6% CO). The enhanced activity arises from the unique morphology, facilitating CO2 adsorption and mass transfer, and the intimate S-scheme heterojunction between CdS and TiO2, which boosts charge separation while preserving strong redox potentials. Critically, femtosecond transient absorption spectroscopy (fs-TAS) combined with in situ DRIFTS provides direct evidence for the S-scheme pathway and identifies sulfur sites on CdS as key for stabilizing *CH3O, *CHO and *CO intermediates, steering selectivity toward CH4. In addition, theoretical calculations based on density functional theory (DFT) further complement the experimental findings. The calculations confirm the electronic structure characteristics of the S-scheme heterojunction, revealing the energy levels and charge transfer mechanisms at the atomic scale. This not only deepens our understanding of the photocatalytic process but also provides a theoretical basis for further optimizing the photocatalyst design. Overall, our work demonstrates the outstanding performance of the TiO2/CdS heterostructured photocatalyst in CO2 photoreduction.
  • 加载中
    1. [1]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    2. [2]

      W. Fang, W. Guo, R. Lu, Y. Yan, X. Liu, D. Wu, X. B., Nature 626 (2024) 86, https://doi.org/10.1038/s41586-023-06917-5.  doi: 10.1038/s41586-023-06917-5

    3. [3]

      S. Capelo-Avilés, M. de Fez-Febré, S. R. Balestra, J. Cabezas-Giménez, R. Tomazini de Oliveira, I. I. Gallo Stampino, J. R. Galán-Mascarós, Nat. Commun. 16 (2025) 3243, https://doi.org/10.1038/s41467-025-58426-w.  doi: 10.1038/s41467-025-58426-w

    4. [4]

      Y. Huo, Z. Wu, Y. Yang, B. Dong, Z. Chang, Molecules 30 (2025) 2317, https://doi.org/10.3390/molecules30112317.  doi: 10.3390/molecules30112317

    5. [5]

      L. Liu, H. W. Huang, Z. Chen, H. Yu, K. Wang, J. Huang, H. Yu, Y. Zhang, Angew. Chem. Int. Ed. 60 (2021) 18303, https://doi.org/10.1002/anie.202106310.  doi: 10.1002/anie.202106310

    6. [6]

      C. Guo, L. Wang, Y. Tang, Z. Yang, Y. Zhao, Y. Jiang, X. Wen, F. Wang, Adv. Funct. Mater. 35 (2025) 2414931, https://doi.org/10.1002/adfm.202414931.  doi: 10.1002/adfm.202414931

    7. [7]

      A. Anus, S. Park, Chem. Eng. J. 486 (2024) 150213, https://doi.org/10.1016/j.cej.2024.150213.  doi: 10.1016/j.cej.2024.150213

    8. [8]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B: Environ. 355 (2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167.  doi: 10.1016/j.apcatb.2024.124167

    9. [9]

      Y. He, P. Hu, J. Zhang, G. Liang, J. Yu, F. Xu, ACS Catal. 14 (2024) 1951, https://pubs.acs.org/doi/full/10.1021/acscatal.4c00026.  doi: 10.1021/acscatal.4c00026

    10. [10]

      Z. Yuan, X. Zhu, X. Gao, C. An, Z. Wang, C. Zuo, D. D. Dionysiou, H. He, Z. Jiang, Environ. Sci. Ecotechnol. 20 (2024) 100368, https://doi.org/10.1016/j.ese.2023.100368.  doi: 10.1016/j.ese.2023.100368

    11. [11]

      J. Chen, T. Li, X. An, D. Fu, Energy Fuels 38 (2024) 7614, https://pubs.acs.org/doi/full/10.1021/acs.energyfuels.4c00203.  doi: 10.1021/acs.energyfuels.4c00203

    12. [12]

      H. Kmentová, M. F. Edelmannová, Z. Baďura, R. Zbořil, L. Obalová, Š. Kment, K. Kočí, J. CO2 Util. 91 (2025) 103008, https://doi.org/10.1016/j.jcou.2024.103008.  doi: 10.1016/j.jcou.2024.103008

    13. [13]

      M. Li, Y. Liu, S. Yang, Y. Zhang, L. Wei, B. Zhu, J. Mater. Sci. Technol. 224 (2025) 245, https://doi.org/10.1016/j.jmst.2024.12.001.  doi: 10.1016/j.jmst.2024.12.001

    14. [14]

      X. Zhang, J. Xu, H. Long, J. Yu, H. Yu, ACS Catal. 14 (2024) 18669, https://pubs.acs.org/doi/full/10.1021/acscatal.4c05674.  doi: 10.1021/acscatal.4c05674

    15. [15]

      M. Sabir, M. Sayed, Z. Zeng, B. Cheng, W. Wang, C. Wang, J. Xu, S. Cao, Appl. Surf. Sci. 693 (2025) 162752, https://doi.org/10.1016/j.apsusc.2025.162752.  doi: 10.1016/j.apsusc.2025.162752

    16. [16]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://pubs.rsc.org/en/content/articlehtml/2001/v6/d4cs01091d.
       

    17. [17]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    18. [18]

      K. Wang, Q. Cheng, W. Hou, H. Guo, X. Wu, J. Wang, J. Li, Z. Liu, L. Wang, Adv. Funct. Mater. 34 (2024) 2309603, https://doi.org/10.1002/adfm.202309603.  doi: 10.1002/adfm.202309603

    19. [19]

      X. Liu, Z. Jiang, Chin. J. Catal. 70 (2025) 5, https://doi.org/10.1016/S1872-2067(24)60223-8.  doi: 10.1016/S1872-2067(24)60223-8

    20. [20]

      J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002.  doi: 10.3866/PKU.WHXB202408002

    21. [21]

      Y. An, W. Liu, Y. Zhang, J. Zhang, Z. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/PKU.WHXB202407021.  doi: 10.3866/PKU.WHXB202407021

    22. [22]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    23. [23]

      M. Sayed, B. Zhu, P. Kuang, X. Liu, B. Cheng, A. A. Al-Ghamdi, S. Wageh, L. Zhang, J. Yu, Adv. Sustain. Syst. 6 (2022) 2100264, https://doi.org/10.1002/adsu.202100264.  doi: 10.1002/adsu.202100264

    24. [24]

      Y. Li, B. Chen, L. Liu, B. Zhu, D. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202319432, https://doi.org/10.1002/anie.202319432.  doi: 10.1002/anie.202319432

    25. [25]

      J. Li, C. Zhang, T. Bao, Y. Xi, L. Yuan, Y. Zou, Y. Bi, C. Liu, C. Yu, Adv. Mater. 37 (2025) 2416210, https://doi.org/10.1002/adma.202416210.  doi: 10.1002/adma.202416210

    26. [26]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B: Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560.  doi: 10.1016/j.apcatb.2024.124560

    27. [27]

      G. dos Santos, L. Tian, R. Gonçalves, H. García, L. Rossi, Adv. Funct. Mater. (2025) 2422055, https://doi.org/10.1002/adfm.202422055.  doi: 10.1002/adfm.202422055

    28. [28]

      M. Malhotra, V. Soni, R. Kumar, Tarannum, P. Singh, S. Thakur, Q. V. Le, L. H. Nguyen, V.-H. Nguyen, P. Raizada, Chem. Eng. J. 506 (2025) 160238, https://doi.org/10.1016/j.cej.2025.160238.  doi: 10.1016/j.cej.2025.160238

    29. [29]

      W. Wang, W. Hao, L. He, J. Qiao, N. Li, C. Chen, Y. Qin, Acta Phys. -Chim. Sin. (2025) 100116, https://doi.org/10.1016/j.actphy.2025.100116.  doi: 10.1016/j.actphy.2025.100116

    30. [30]

      D. D. Hu, R. T. Guo, C. F. Li, J. S. Yan, W. G. Pan, Sep. Purif. Technol. 353 (2025) 128473, https://doi.org/10.1016/j.seppur.2024.128473.  doi: 10.1016/j.seppur.2024.128473

    31. [31]

      M. Sun, Y. Ma, Y. Tan, J. Wang, G. Mi, J. Luo, C. Wang, X. Tong, X. Zhao, P. Chen, M. Huang, SusMat (2025) 70011, https://doi.org/10.1002/sus2.70011.  doi: 10.1002/sus2.70011

    32. [32]

      D. Xu, R. He, Z. Jiang, J. Mater. Sci. Technol. 236 (2025) 280, https://doi.org/10.1016/j.jmst.2025.02.040.  doi: 10.1016/j.jmst.2025.02.040

    33. [33]

      Y. Ren, Y. Li, G. Pan, N. Wang, Y. Xing, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 162, https://doi.org/10.1016/j.jmst.2023.06.052.  doi: 10.1016/j.jmst.2023.06.052

    34. [34]

      K. Sharma, V. Hasija, M. Malhotra, P. K. Verma, A. A. P. Khan, S. Thakur, Q. V. Le, H. H. P. Quang, V.-H. Nguyen, P. Singh, et al., Int. J. Hydrogen Energy 52 (2024) 804, https://doi.org/10.1016/j.ijhydene.2023.09.033.  doi: 10.1016/j.ijhydene.2023.09.033

    35. [35]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    36. [36]

      M. Gu, X. Xiang, B. Cheng, J. Yu, L. Zhang, Chem. Commun. 61 (2025) 6118, https://doi.org/10.1039/d5cc00433k.  doi: 10.1039/d5cc00433k

    37. [37]

      J. Cai, X. Li, B. Su, B. Guo, X. Lin, W. Xing, X. F. Lu, S. Wang, J. Mater. Sci. Technol. 234 (2025) 82, https://doi.org/10.1016/j.jmst.2025.01.050.  doi: 10.1016/j.jmst.2025.01.050

    38. [38]

      C. Li, X. Xu, A. Jia, Surfaces Interfaces 58 (2025) 105807, https://doi.org/10.1016/j.surfin.2025.105807.  doi: 10.1016/j.surfin.2025.105807

    39. [39]

      K. Khan, A. M. Idris, H. Hassan, S. Haider, S. U. D. Khan, A. Miotello, I. Khan, Adv. Powder Mater. 4 (2025) 100284, https://doi.org/10.1016/j.apmate.2025.100284.  doi: 10.1016/j.apmate.2025.100284

    40. [40]

      H. Li, B. Zhu, J. Sun, H. Gong, J. Yu, L. Zhang, J. Colloid Interface Sci. 654 (2024) 1010, https://doi.org/10.1016/j.jcis.2023.10.074.  doi: 10.1016/j.jcis.2023.10.074

    41. [41]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    42. [42]

      C. E. McNamee, Y. Tsujii, M. Matsumoto, Langmuir 21 (2005) 11283, https://doi.org/10.1021/la0517890.  doi: 10.1021/la0517890

    43. [43]

      Y. Huo, Z. Chang, X. Zhang, B. Dong, Waste Biomass Valorization 15 (2024) 6775, https://doi.org/10.1007/s12649-024-02584-3.  doi: 10.1007/s12649-024-02584-3

    44. [44]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, https://doi.org/10.1002/ange.202218688.  doi: 10.1002/ange.202218688

    45. [45]

      R. Kostić, N. Romčević, Phys. Status Solidi C 1 (2004) 2646, https://doi.org/10.1002/pssc.200405349.  doi: 10.1002/pssc.200405349

    46. [46]

      L. Wang, B. Cheng, L. Zhang, J. Yu, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447.  doi: 10.1002/smll.202103447

    47. [47]

      Z. Yan, W. Wang, L. Du, J. Zhu, D. L. Phillips, J. Xu, Appl. Catal. B: Environ. 275 (2020) 119151, https://doi.org/10.1016/j.apcatb.2020.119151.  doi: 10.1016/j.apcatb.2020.119151

    48. [48]

      C. Luo, Q. Long, B. Cheng, B. Zhu, L. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212026, https://doi.org/10.3866/PKU.WHXB202212026.  doi: 10.3866/PKU.WHXB202212026

    49. [49]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170 (2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028  doi: 10.1016/j.jmst.2023.06.028

    50. [50]

      B. Zhu, H. Tan, J. Fan, B. Cheng, J. Yu, W. Ho, J. Materiomics 7 (2021) 988, https://doi.org/10.1016/j.jmat.2021.02.015.  doi: 10.1016/j.jmat.2021.02.015

    51. [51]

      Y. Tang, H. Wang, C. Guo, L. Wang, T. Zhao, Z. Yang, S. Xiao, J. Liu, Y. Jiang, Y. Zhao, et al., J. Mater. Chem. A 12 (2024) 20958, https://pubs.rsc.org/en/content/articlehtml/2024/ta/d4ta02984d.
       

    52. [52]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659 (2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173.  doi: 10.1016/j.jcis.2023.12.173

    53. [53]

      Y. He, Z. Yang, J. Yu, D. Xu, C. Liu, Y. Pan, F. Xu, J. Mater. Chem. A 11 (2023) 14860, https://pubs.rsc.org/en/content/articlehtml/2023/ta/d3ta02951d.
       

    54. [54]

      Y. Zeng, Z. Tang, X. Wu, A. Huang, X. Luo, G. Q. Xu, Y. Zhu, S. L. Wang, Appl. Catal. B: Environ. 306 (2022) 120919, https://doi.org/10.1016/j.apcatb.2021.120919.  doi: 10.1016/j.apcatb.2021.120919

    55. [55]

      P. Liu, Y. L. Men, X. Y. Meng, C. Peng, Y. Zhao, Y. X. Pan, Angew. Chem. Int. Ed. 62 (2023) e202309443, https://doi.org/10.1002/anie.202309443.  doi: 10.1002/anie.202309443

    56. [56]

      Z. Zhang, X. Wang, H. Tang, D. Li, J. Xu, Chin. J. Catal. 55 (2023) 227, https://doi.org/10.1016/S1872-2067(23)64549-8.  doi: 10.1016/S1872-2067(23)64549-8

    57. [57]

      F. Wang, X. Li, K. Lu, M. Zhou, C. Yu, K. Yang, Chin. J. Catal. 63 (2024) 190, https://doi.org/10.1016/S1872-2067(24)60066-5.  doi: 10.1016/S1872-2067(24)60066-5

    58. [58]

      S. Chen, C. Li, Z. Hou, Int. J. Hydrogen Energy 44 (2019) 25473, https://doi.org/10.1016/j.ijhydene.2019.08.049.  doi: 10.1016/j.ijhydene.2019.08.049

    59. [59]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20 (2024) 2402867, https://doi.org/10.1002/smll.202402867.  doi: 10.1002/smll.202402867

    60. [60]

      R. Li, C.-W. Tung, B. Zhu, Y. Lin, F.-Z. Tian, T. Liu, H. M. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674 (2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176.  doi: 10.1016/j.jcis.2024.06.176

    61. [61]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    62. [62]

      Z. Chen, T. Ma, Z. Li, W. Zhu, L. Li, J. Mater. Sci. Technol. 179 (2024) 198, https://doi.org/10.1016/j.jmst.2023.07.029.  doi: 10.1016/j.jmst.2023.07.029

    63. [63]

      L. Yang, Z. Li, X. Wang, L. Li, Z. Chen, Chin. J. Catal. 59 (2024) 237, https://doi.org/10.1016/S1872-2067(23)64566-8.  doi: 10.1016/S1872-2067(23)64566-8

    64. [64]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.  doi: 10.3866/PKU.WHXB202402006

    65. [65]

      X. Zhou, S. Yang, X. Wang, Z. Wu, Y. Huo, J. Zhang, J. Mater. Sci. Technol. 234 (2025) 60, https://doi.org/10.1016/j.jmst.2025.02.027.  doi: 10.1016/j.jmst.2025.02.027

    66. [66]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064. https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    67. [67]

      J. Li, S. Jiang, S. Song, Chin. J. Catal. 59 (2024) 1, https://doi.org/10.1016/S1872-2067(23)64647-9.  doi: 10.1016/S1872-2067(23)64647-9

    68. [68]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    69. [69]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002.  doi: 10.3866/PKU.WHXB202407002

    70. [70]

      J. Zhang, G. Yang, B. He, B. Cheng, Y. Li, G. Liang, L. Wang, Chin. J. Catal. 43 (2022) 2530, https://doi.org/10.1016/S1872-2067(22)64108-1.  doi: 10.1016/S1872-2067(22)64108-1

    71. [71]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    72. [72]

      W. Yu, Chin. J. Catal. 73 (2025) 8, https://doi.org/10.1016/S1872-2067(25)60706-1.  doi: 10.1016/S1872-2067(25)60706-1

  • 加载中
    1. [1]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    4. [4]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    5. [5]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    7. [7]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    8. [8]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    9. [9]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    12. [12]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    13. [13]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    15. [15]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    20. [20]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return