Citation: Qishen Wang, Changzhao Chen, Mengqing Li, Lingmin Wu, Kai Dai. Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100147. doi: 10.1016/j.actphy.2025.100147 shu

Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production

  • Corresponding author: Changzhao Chen, chzhchen@aust.edu.cn Lingmin Wu, 202110184982@mail.scut.edu.cn Kai Dai, daikai940@chnu.edu.cn
  • Received Date: 6 July 2025
    Revised Date: 30 July 2025
    Accepted Date: 3 August 2025

    Fund Project: the National Natural Science Foundation of China 22278169the National Natural Science Foundation of China 12304134the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province 2022AH010028the Natural Science Foundation of Anhui Province 2108085ME148

  • This study presents an innovative photocatalytic system utilizing waste biomass resources for sustainable synthesis of hydrogen peroxide (H2O2) and high-value lignin derivatives. A lignin derived carbon quantum dots (LCQDs) loaded S-scheme heterojunction photocatalyst LCQDs/Bi2WO6 (LCD/BWO) was synthesized via hydrothermal method. The LCD/BWO composite demonstrates exceptional H2O2 production rate (3.776 mmol·h−1·g−1) and maintains 89.72% activity retention after 5 cycles under visible light irradiation, representing a 5.97-fold enhancement over catalyst BWO−A. The performance leap stems from synergistic effects between LCQDs and oxygen vacancies (OVs) defects: the unique up-conversion luminescence of LCQDs combined with S-scheme charge transfer mechanism enhances light absorption and carrier separation efficiency, while interfacial OVs act as electron traps to prolong carrier lifetime. In situ electron paramagnetic resonance (In situ EPR) analysis revealed substantial generation of •O2⁻ and •OH radicals on catalyst surfaces. Band structure characterization confirms optimized H2O2 synthesis through consecutive single-electron reactions. Synergistic regulation of band positions significantly enhances oxygen reduction reaction (ORR) and water oxidation reaction (WOR) capabilities. As lignin primarily originates from agricultural/forestry waste, this work not only provides new design strategies for efficient photocatalytic systems but also advances high−value utilization of waste biomass resources.
  • 加载中
    1. [1]

      H. W. He, Z. L. Wang, J. F. Zhang, S. Mamatkulov, O. Ruzimuradov, K. Dai, J. X. Low, Y. Li, Energy Environ. Sci. 18 (2025) 6191. https://doi.org/10.1039/D5EE01295C.  doi: 10.1039/D5EE01295C

    2. [2]

      W. K. Wang, Y. D. Wu, J. J. Zhang, K. Meng, J. H. Li, L. L. Wang, Q. Q. Liu, Acta Phys. Chim. Sin. 41 (2025) 100093. https://doi.org/10.1016/j.actphy.2025.100093.  doi: 10.1016/j.actphy.2025.100093

    3. [3]

      Y. H. Ma, S. Wang, Y. J. Zhang, B. Cheng, L. Y. Zhang, J. Materiomics. 11 (2025) 100978. https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    4. [4]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Y. Zhang, J. Mater. Sci. Technol. 233 (2025) 201. https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    5. [5]

      M. R. Liu, C. Y. Liu, T. F. Yang, S. X. Hu, S. Y. Li, S. Z. Liu, Y. Liu, Y. Chen, B. C. Ge, S. Y. Gao, Chin. J. Catal. 66 (2024) 212. https://doi.org/10.1016/S1872−2067(24)60121−X.  doi: 10.1016/S1872−2067(24)60121−X

    6. [6]

      H. W. He, Z. L. Wang, J. F. Zhang, C. F. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426. https://doi.org/10.1002/adfm.202315426.  doi: 10.1002/adfm.202315426

    7. [7]

      M. Sayed, H. Li, C. B. Bie, Acta Phys. Chim. Sin. 41 (2025) 100117. https://doi.org/10.1016/j.actphy.2025.100117.  doi: 10.1016/j.actphy.2025.100117

    8. [8]

      F. L. Sun, Y. D. Luo, S. P. Kuang, M. Zhou, W. −K. Ho, H. Tang, J. Mater. Sci. Technol. 229 (2025) 287. https://doi.org/10.1016/j.jmst.2024.12.060.  doi: 10.1016/j.jmst.2024.12.060

    9. [9]

      Y. Y. Zhao, S. M. Zhang, Z. Wu, B. C. Zhu, G. T. Sun, J. J. Zhang, Chin. J. Catal. 60 (2024) 219. https://doi.org/10.1016/S1872-2067(23)64645-5.  doi: 10.1016/S1872-2067(23)64645-5

    10. [10]

      G. Y. Wei, Y. X. Li, X. P. Liu, J. R. Huang, M. R. Liu, D. Y. Luan, S. Y. Gao, X. W. Lou, Angew. Chem. Int. Ed. 62 (2023) e202313914. https://doi.org/10.1002/anie.202313914.  doi: 10.1002/anie.202313914

    11. [11]

      Z. Liu, Y. Q. Bian, G. Dawson, J. W. Zhu, K. Dai, Chin. Chem. Lett. 36 (2025) 111272. https://doi.org/10.1016/j.cclet.2025.111272.  doi: 10.1016/j.cclet.2025.111272

    12. [12]

      Y. Y. Zhao, Y. Zhang, H. Y. Tan, C. B. Ai, J. J. Zhang, J. Materiomics. 11 (2025) 100970. https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    13. [13]

      J. P. Li, S. D. Yan, J. X. Wu, Q. Cheng, K. Wang, Acta Phys. Chim. Sin. 41 (2025) 100104. https://doi.org/10.1016/j.actphy.2025.100104.  doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Y. Zhang, Y. J. Wang, Y. C. Liu, S. M. Zhang, Y. Y. Zhao, J. J. Zhang, J. Materiomics. 11 (2025) 100985. https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    15. [15]

      Y. Yang, X. Zhou, M. L. Gu, B. Cheng, Z. Wu, J. J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064. https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    16. [16]

      J. Z. Cheng, W. Wang, J. J. Zhang, S. J. Wan, B. Cheng, J. G. Yu, S. W. Cao, Angew. Chem. Int. Ed. 63 (2024) e202406310. https://doi.org/10.1002/anie.202406310.  doi: 10.1002/anie.202406310

    17. [17]

      Y. Y. Cui, J. F. Zhang, H. L. Chu, L. X. Sun, K. Dai, Acta Phys. Chim. Sin. 40 (2024) 2405016. https://doi.org/10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    18. [18]

      X. D. Zhang, D. D. Gao, B. C. Zhu, B. Cheng, J. G. Yu, H. G. Yu, Nat. Commun. 15 (2024) 3212. https://doi.org/10.1038/s41467−024−47624−7.  doi: 10.1038/s41467−024−47624−7

    19. [19]

      K. Villa, L. Děkanovský, J. Plutnar, J. Kosina, M. Pumera, Adv. Funct. Mater. 30 (2020) 2007073. https://doi.org/10.1002/adfm.202007073.  doi: 10.1002/adfm.202007073

    20. [20]

      R. Khan, J. Chakraborty, K. Singh Rawat, R. Morent, N. De Geyter, V. Van Speybroeck, P. Van Der Voort, Angew. Chem. Int. Ed. 62 (2023) e202313836. https://doi.org/10.1002/anie.202313836.  doi: 10.1002/anie.202313836

    21. [21]

      A. Verma, E. Dhanaraman, W.-T. Chen, Y.-P. Fu, ACS Appl. Mater. Interfaces. 15 (2023) 37540. https://doi.org/10.1021/acsami.3c07489.  doi: 10.1021/acsami.3c07489

    22. [22]

      Y. S. Kochergin, K. Villa, A. Nemeškalová, M. Kuchař, M. Pumera, ACS Nano. 15 (2021) 18458. https://doi.org/10.1021/acsnano.1c08136.  doi: 10.1021/acsnano.1c08136

    23. [23]

      D. Aboagye, R. Djellabi, F. Medina, S. Contreras, Angew. Chem. Int. Ed. 62 (2023) e202301909. https://doi.org/10.1002/anie.202301909.  doi: 10.1002/anie.202301909

    24. [24]

      J. Anderson, N. P. Nazirkar, A. Ndiaye, J. Barringer, V. Tran, P. Bassène, W. Cha, J. Jiang, J. Shi, R. Harder, M. N'Gom, E. Fohtung, Adv. Mater. 37 (2025) 2504445. https://doi.org/10.1002/adma.202504445.  doi: 10.1002/adma.202504445

    25. [25]

      G. Murali, J. K. Reddy Modigunta, Y. H. Park, J.-H. Lee, J. Rawal, S.-Y. Lee, I. In, S.-J. Park, ACS Nano. 16 (2022) 13370. https://doi.org/10.1021/acsnano.2c04750.  doi: 10.1021/acsnano.2c04750

    26. [26]

      N. Q. Thang, A. Sabbah, R. Putikam, C.-Y. Huang, T.-Y. Lin, M. K. Hussien, H.-L. Wu, M.-C. Lin, C.-H. Lee, K.-H. Chen, et al., Adv. Funct. Mater. 35 (2025) 2423751. https://doi.org/10.1002/adfm.202423751.  doi: 10.1002/adfm.202423751

    27. [27]

      E. M. Akinoglu, D. A. Hoogeveen, C. Cao, A. N. Simonov, J. J. Jasieniak, ACS Nano. 15 (2021)https://doi.org/10.1021/acsnano.0c10387.  doi: 10.1021/acsnano.0c10387

    28. [28]

      C. G. Chen, J. F. Zhang, H. L. Chu, L. X. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81. https://doi.org/10.1016/S1872−2067(24)60072−0.  doi: 10.1016/S1872−2067(24)60072−0

    29. [29]

      K. Ahmad, G. Song, H. Kim, ACS Sustainable Chem. Eng. 10 (2022) 11948. https://doi.org/10.1021/acssuschemeng.2c03229.  doi: 10.1021/acssuschemeng.2c03229

    30. [30]

      M. Hussein Abdurahman, A. Zuhairi Abdullah, W. Da Oh, N. Fazliani Shopware, M. Faisal Gasim, P. Okoye, A. Ul-Hamid, A. Rahman Mohamed, J. Colloid Interf. Sci. 629 (2023) 189. https://doi.org/10.1016/j.jcis.2022.08.172.  doi: 10.1016/j.jcis.2022.08.172

    31. [31]

      S. Narwal, A. Sura, A. Singh, M. Azam, M. Alam, S. Duhan, S. Nain, Carbon. 219 (2024) 118768. https://doi.org/10.1016/j.carbon.2023.118768.  doi: 10.1016/j.carbon.2023.118768

    32. [32]

      S. Kumar, G. Saeed, L. Zhu, K. N. Hui, N. H. Kim, J. H. Lee, Chem. Eng. J. 403 (2021) 126352. https://doi.org/10.1016/j.cej.2020.126352.  doi: 10.1016/j.cej.2020.126352

    33. [33]

      G. A. Eken, N. Chalmpes, Y. Huang, E. P. Giannelis, C. Ober, Angew. Chem. Int. Ed. 64 (2025) e202506448. https://doi.org/10.1002/anie.202506448.  doi: 10.1002/anie.202506448

    34. [34]

      S. Mondal, S. R. Das, L. Sahoo, S. Dutta, U. K. Gautam, J. Am. Chem. Soc. 144 (2022) 2580. https://doi.org/10.1021/jacs.1c10636.  doi: 10.1021/jacs.1c10636

    35. [35]

      Y. L. Hu, O. Seivert, Y. Tang, H. E. Karahan, A. Bianco, Angew. Chem. Int. Ed. 63 (2024) e202412341. https://doi.org/10.1002/anie.202412341.  doi: 10.1002/anie.202412341

    36. [36]

      T. C. Wareing, P. Gentile, A. N. Phan, ACS Nano. 15 (2021) 15471. https://doi.org/10.1021/acsnano.1c03886.  doi: 10.1021/acsnano.1c03886

    37. [37]

      L. H. Kugelmass, C. Tagnon, E. E. Stache, J. Am. Chem. Soc. 145 (2023) 16090. https://doi.org/10.1021/jacs.3c04448.  doi: 10.1021/jacs.3c04448

    38. [38]

      S. W. Park, S. H. Im, W. T. Hong, H. K. Yang, Y. K. Jung, Int. J. Biol. Macromol. 268 (2024) 131919. https://doi.org/10.1016/j.ijbiomac.2024.131919.  doi: 10.1016/j.ijbiomac.2024.131919

    39. [39]

      E. Gomez, A. Mehmood, Z. Bian, S. A. Lee, L. J. Tauzin, S. Adhikari, M. Gruebele, B. G. Levine, S. Link, J. Am. Chem. Soc. 147 (2025) 17784. https://doi.org/10.1021/jacs.5c01367.  doi: 10.1021/jacs.5c01367

    40. [40]

      W. Zhong, A. Y. Meng, Y. R. Su, H. G. Yu, P. G. Han, J. G. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038. https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    41. [41]

      L. Hao, R. C. Shen, C. C. Qin, N. Li, H. B. Hu, G. J. Liang, X. Li, Sci. China Mater. 67 (2024) 504. https://doi.org/10.1007/s40843-023-2747-6.  doi: 10.1007/s40843-023-2747-6

    42. [42]

      Y. K. Liu, C. G. Chen, G. Dawson, J. F. Zhang, C. F. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10. https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    43. [43]

      J. Sun, H. W. Liu, S. Wang, Y. J. Zhang, C. B. Bie, L. Y. Zhang, J. Materiomics. 11 (2025) 100975. https://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    44. [44]

      J. Wang, Z. L. Wang, J. F. Zhang, S. Mamatkulov, K. Dai, O. Ruzimuradov, J. X. Low, ACS Nano. 18 (2024) 20740. https://doi.org/10.1021/acsnano.4c06954.  doi: 10.1021/acsnano.4c06954

    45. [45]

      L. J. Li, P. Zhang, Y. C. Yu, R. Tuerhong, X. P. Su, L. J. Han, E. Z. Liu, J. Z. Jiang, Chin. Chem. Lett. 36 (2025) 111118. https://doi.org/10.1016/j.cclet.2025.111118.  doi: 10.1016/j.cclet.2025.111118

    46. [46]

      K. H. Huang, D. J. Chen, X. Zhang, R. C. Shen, P. Zhang, D. F. Xu, X. Li, Acta Phys. Chim. Sin. 40 (2024) 2407020. https://doi.org/10.3866/PKU.WHXB202407020.  doi: 10.3866/PKU.WHXB202407020

    47. [47]

      Y. Huang, J. F. Zhang, O. Ruzimuradov, S. Mamatkulov, K. Dai, J. X. Low, Compos. Funct. Mater. 1 (2025) 20250103. https://doi.org/10.63823/20250103.  doi: 10.63823/20250103

    48. [48]

      H. Y. Li, J. J. Zhang, X. Zhou, Z. Wu, L. Y. Zhang, J. Mater. Sci. Technol. 231 (2025) 1. https://doi.org/10.1016/j.jmst.2024.12.076.  doi: 10.1016/j.jmst.2024.12.076

    49. [49]

      T. T. Yang, B. Wang, P. K. Chu, J. X. Xia, H. M. Li, Chin. J. Catal. 59 (2024) 204. https://doi.org/10.1016/S1872-2067(24)60003-3.  doi: 10.1016/S1872-2067(24)60003-3

    50. [50]

      J. Wan, Y. Wang, J. Q. Liu, R. Song, L. Liu, Y. P. Li, J. Y. Li, J. X. Low, F. Fu, Y. J. Xiong, Adv. Mater. 36 (2024) 2405060. https://doi.org/10.1002/adma.202405060.  doi: 10.1002/adma.202405060

    51. [51]

      C. B. Wu, B. Z. Wang, X. Li, J. X. Gu, Y. H. Wu, Z. Zhao, P. F. Jia, J. Z. Jiang, Chin. Chem. Lett. 36 (2025) 111162. https://doi.org/10.1016/j.cclet.2025.111162.  doi: 10.1016/j.cclet.2025.111162

    52. [52]

      L. Y. Zhang, J. J. Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328. https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    53. [53]

      R. Q. Gao, R. C. Shen, C. Huang, K. H. Huang, G. J. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229. https://doi.org/10.1002/anie.202414229.  doi: 10.1002/anie.202414229

    54. [54]

      R. C. Shen, C. C. Qin, L. Hao, X. Z. Li, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2305397. https://doi.org/10.1002/adma.202305397.  doi: 10.1002/adma.202305397

    55. [55]

      E. T. Cui, Y. L. Lu, Z. X. Li, Z. L. Chen, C. Y. Ge, J. Z. Jiang, Chin. Chem. Lett. 36 (2025) 110288. https://doi.org/10.1016/j.cclet.2024.110288.  doi: 10.1016/j.cclet.2024.110288

    56. [56]

      H. T. Ren, S. C. Wang, A. Labidi, B. Pan, J. M. Luo, C. Y. Wang, Sep. Purif. Technol. 362 (2025) 131717. https://doi.org/10.1016/j.seppur.2025.131717.  doi: 10.1016/j.seppur.2025.131717

    57. [57]

      K. H. Cheng, D. Shen, Y. P. Xia, K. Dai, C. F. Shao, Y. Jiang, Y. Chen, Angew. Chem. Int. Ed. 64 (2025) e202508932. https://doi.org/10.1002/anie.202508932.  doi: 10.1002/anie.202508932

    58. [58]

      C. C. Jiang, C. C. Yuan, K. Q. Xu, X. Zhou, C. B. Bie, J. Mater. Sci. Technol. 231 (2025) 36. https://doi.org/10.1016/j.jmst.2024.12.071.  doi: 10.1016/j.jmst.2024.12.071

    59. [59]

      X. Y. Miao, H. Yang, J. He, J. Wang, Z. L. Jin, Acta Phys. Chim. Sin. 41 (2025) 100051. https://doi.org/10.1016/j.actphy.2025.100051.  doi: 10.1016/j.actphy.2025.100051

    60. [60]

      X. F. Hou, C. B. Ai, S. Y. Yang, J. J. Zhang, Y. F. Zhang, J. Z. Liu, J. Materiomics. 11 (2025) 100998. https://doi.org/10.1016/j.jmat.2024.100998.  doi: 10.1016/j.jmat.2024.100998

    61. [61]

      H. J. Dong, C. H. Qu, C. M. Li, B. Hu, X. Li, G. J. Liang, J. Z. Jiang, Chin. J. Catal. 70 (2025) 142. https://doi.org/10.1016/S1872-2067(24)60184-1.  doi: 10.1016/S1872-2067(24)60184-1

    62. [62]

      Z. Meng, J. J. Zhang, H. Y. Long, H. García, L. Y. Zhang, B. C. Zhu, J. G. Yu, Angew. Chem. Int. Ed. 64 (2025) e202505456. https://doi.org/10.1002/anie.202505456.  doi: 10.1002/anie.202505456

    63. [63]

      C. B. Bie, C. C. Jiang, J. D. Yang, X. Sun, X. K. Zeng, J. J. Zhang, B. C. Zhu, J. Mater. Sci. Technol. 229 (2025) 48. https://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    64. [64]

      X. Q. Yang, J. T. Zhao, J. W. Ye, D. Zhou, T. M. Di, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100074. https://doi.org/10.1016/j.actphy.2025.100074.  doi: 10.1016/j.actphy.2025.100074

    65. [65]

      J. Lei, Z. L. Wang, J. Q. Huo, S. K. Sang, C. Zhang, E. Q. Zhu, T. T. Kong, F. Karadas, J. X. Low, Y. L. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202422667. https://doi.org/10.1002/anie.202422667.  doi: 10.1002/anie.202422667

    66. [66]

      H. T. Ren, F. Qi, A. Labidi, J. J. Zhao, H. Wang, Y. Xin, J. M. Luo, C. Y. Wang, Appl. Catal. B Environ. 330 (2023) 122587. https://doi.org/10.1016/j.apcatb.2023.122587.  doi: 10.1016/j.apcatb.2023.122587

    67. [67]

      H. Y. Long, X. D. Zhang, Z. Y. Zhang, J. J. Zhang, J. G. Yu, H. G. Yu, Nat. Commun. 16 (2025) 946. https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    68. [68]

      J. Lin, J. L. He, Q. L. Huang, Y. Luo, Y. Zhang, W. Li, G. B. Zhou, J. Q. Hu, Z. Yang, Y. Zhou, Appl. Catal. B Environ. 362 (2025) 124747. https://doi.org/10.1016/j.apcatb.2024.124747.  doi: 10.1016/j.apcatb.2024.124747

    69. [69]

      R. C. Shen, G. J. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649. https://doi.org/10.1002/adma.202303649.  doi: 10.1002/adma.202303649

    70. [70]

      P. Li, Y. Y. Cui, Z. L. Wang, G. Dawson, C. F. Shao, K. Dai, Acta Phys. Chim. Sin. 41 (2025) 100065. https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    71. [71]

      J. J. Cai, X. Y. Li, B. Su, B. B. Guo, X. H. Lin, W. D. Xing, X. F. Lu, S. B. Wang, J. Mater. Sci. Technol. 234 (2025) 82. https://doi.org/10.1016/j.jmst.2025.01.050.  doi: 10.1016/j.jmst.2025.01.050

    72. [72]

      M. L. Gu, Y. Yang, B. Cheng, L. Y. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185. https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    73. [73]

      J. Li, M. H. Du, Z. F. Wu, X. R. Zhang, W. J. Xue, H. L. Huang, C. L. Zhong, Angew. Chem. Int. Ed. 63 (2024) e202407975. https://doi.org/10.1002/anie.202407975.  doi: 10.1002/anie.202407975

    74. [74]

      X. Y. Deng, J. J. Zhang, K. Z. Qi, G. J. Liang, F. Y. Xu, J. G. Yu, Nat. Commun. 15 (2024) 4807. https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    75. [75]

      M. H. Du, S. Y. Yang, J. J. Zhang, D. A. Syrtsov, J. B. Ghasemi, M. V. Fedin, L. Y. Zhang, J. Mater. Sci. Technol. 243 (2026) 245. https://doi.org/10.1016/j.jmst.2025.05.016.  doi: 10.1016/j.jmst.2025.05.016

    76. [76]

      F. Y. Xu, Y. He, J. J. Zhang, G. J. Liang, C. Y. Liu, J. G. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672. https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    77. [77]

      J. J. Cai, C. Cheng, B. W. Liu, J. J. Zhang, C. J. Jiang, B. Cheng, Acta Phys. Chim. Sin. 41 (2025) 100084. https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    78. [78]

      T. T. Yang, J. Wang, Z. L. Wang, J. F. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157. https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    79. [79]

      M. Li, Y. Liu, S. Y. Yang, Y. Zhang, L. Wei, B. C. Zhu, J. Mater. Sci. Technol. 224 (2025) 245. https://doi.org/10.1016/j.jmst.2024.12.001.  doi: 10.1016/j.jmst.2024.12.001

    80. [80]

      Z. X. Lu, J. S. Gao, S. S. Rao, C. Jin, H. P. Jiang, J. Shen, X. H. Yu, W. K. Wang, L. L. Wang, J. Yang, et al., Appl. Catal. B Environ. 342 (2024) 123374. https://doi.org/10.1016/j.apcatb.2023.123374.  doi: 10.1016/j.apcatb.2023.123374

    81. [81]

      M. L. Gu, J. J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. G. Yu, L. Y. Zhang, Adv. Mater. 37 (2025) 2414803. https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    82. [82]

      F. H. Wang, J. H. Li, X. H. Yu, H. Tang, J. Xu, L. J. Sun, Q. Q. Liu, J. Mater. Sci. Technol. 146 (2023) 49. https://doi.org/10.1016/j.jmst.2022.10.040.  doi: 10.1016/j.jmst.2022.10.040

    83. [83]

      H. Yang, Z. L. Wang, J. F. Zhang, K. Dai, J. X. Low, J. Materiomics. 11 (2025) 100996. https://doi.org/10.1016/j.jmat.2024.100996.  doi: 10.1016/j.jmat.2024.100996

    84. [84]

      X. F. Wu, N. X. Kang, X. F. Li, Z. H. Xu, S. A. C. Carabineiro, K. L. Lv, J. Mater. Sci. Technol. 196 (2024) 40. https://doi.org/10.1016/j.jmst.2024.01.048.  doi: 10.1016/j.jmst.2024.01.048

    85. [85]

      L. J. Sun, X. H. Yu, L. Y. Tang, W. K. Wang, Q. Q. Liu, Chin. J. Catal. 52 (2023) 164. https://doi.org/10.1016/S1872-2067(23)64507-3.  doi: 10.1016/S1872-2067(23)64507-3

  • 加载中
    1. [1]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

    2. [2]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    3. [3]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    6. [6]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    9. [9]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    12. [12]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    13. [13]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    14. [14]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    15. [15]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    16. [16]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    17. [17]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    18. [18]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

Metrics
  • PDF Downloads(0)
  • Abstract views(16)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return