Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution
- Corresponding author: Ping Wang, wangping0904@whut.edu.cn Huogen Yu, yuhuogen@cug.edu.cn
Citation:
Ruiyun Liu, Ping Wang, Xuefei Wang, Feng Chen, Huogen Yu. Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution[J]. Acta Physico-Chimica Sinica,
;2025, 41(11): 100137.
doi:
10.1016/j.actphy.2025.100137
S. Parwaiz, M. M. Khan, J. Environ. Chem. Eng. 12 (2024) 113175, https://doi.org/10.1016/j.jece.2024.113175.
doi: 10.1016/j.jece.2024.113175
H. Xie, K. Wang, S. Li, Z. Jin, Surf. Interfaces 42 (2023) 103353, https://doi.org/10.1016/j.surfin.2023.103353.
doi: 10.1016/j.surfin.2023.103353
Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chin. J. Catal. 52 (2023) 32, https://doi.org/10.1016/S1872-2067(23)64502-4.
doi: 10.1016/S1872-2067(23)64502-4
F. Li, Z. Fang, Z. Xu, Q. Xiang, Energy Environ. Sci. 17 (2024) 497, https://doi.org/10.1039/D3EE03282E.
doi: 10.1039/D3EE03282E
J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.
doi: 10.1016/j.actphy.2025.100084
C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 7 (2017) 675, https://doi.org/10.1021/acscatal.6b03107.
doi: 10.1021/acscatal.6b03107
T. Yang, X. Hu, J. Fan, T. Sun, E. Liu, Surf. Interfaces 42 (2023) 103352, https://doi.org/10.1016/j.surfin.2023.103352.
doi: 10.1016/j.surfin.2023.103352
R. Zhong, Y. Liang, F. Huang, S. Liang, S. Liu, Chin. J. Catal. 53 (2023) 109, https://doi.org/10.1016/S1872-2067(23)64513-9.
doi: 10.1016/S1872-2067(23)64513-9
C. Bie, L. Wang, J. Yu, Chem 8 (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013.
doi: 10.1016/j.chempr.2022.04.013
J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/s1872-2067(24)60011-2.
doi: 10.1016/s1872-2067(24)60011-2
T. Wang, H. Wang, J. Lin, J. Yang, F. Zhang, X. Lin, Y. Zhang, S. Jin, J. Li, Chin. J. Struct. Chem. 42 (2023) 100066, https://doi.org/10.1016/j.cjsc.2023.100066.
doi: 10.1016/j.cjsc.2023.100066
W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.whxb202312014.
doi: 10.3866/pku.whxb202312014
D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6.
doi: 10.1016/S1872-2067(23)64462-6
C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.
doi: 10.1016/j.jmst.2024.12.047
H. Zhang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 49 (2023) 42, https://doi.org/10.1016/S1872-2067(23)64444-4.
doi: 10.1016/S1872-2067(23)64444-4
H. Zhang, X. Yao, W. Shan, Y. Liu, H. Tang, Sci. China Mater. 67 (2024) 532, https://doi.org/10.1007/s40843-023-2769-8.
doi: 10.1007/s40843-023-2769-8
Y. Wang, S. Jiang, C. Sun, S. Song, J. Mater. Sci. Technol. 190 (2024) 210, https://doi.org/10.1016/j.jmst.2023.12.026.
doi: 10.1016/j.jmst.2023.12.026
Y. Yang, C. Zhou, W. Wang, W. Xiong, G. Zeng, D. Huang, C. Zhang, B. Song, W. Xue, X. Li, et al., Chem. Eng. J. 405 (2021) 126547, https://doi.org/10.1016/j.cej.2020.126547.
doi: 10.1016/j.cej.2020.126547
Y. Cao, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Chem. C 12 (2024) 10152, https://doi.org/10.1039/D4TC01076K.
doi: 10.1039/D4TC01076K
Y. Lei, K. H. Ng, Y. Zhu, Y. Zhang, Z. Li, S. Xu, J. Huang, J. Hu, Z. Chen, W. Cai, et al., Chem. Eng. J. 452 (2023) 139325, https://doi.org/10.1016/j.cej.2022.139325.
doi: 10.1016/j.cej.2022.139325
K. R. G. Lim, A. D. Handoko, L. R. Johnson, X. Meng, M. Lin, G. S. Subramanian, B. Anasori, Y. Gogotsi, A. Vojvodic, Z. W. Seh, ACS Nano 14 (2020) 16140, https://doi.org/10.1021/acsnano.0c08671.
doi: 10.1021/acsnano.0c08671
X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal. B: Environ. Energy 365 (2025) 124936, https://doi.org/10.1016/j.apcatb.2024.124936.
doi: 10.1016/j.apcatb.2024.124936
H. -X. Yang, W. Xu, P. -W. Zhong, D. Zhang, Z. Yu, B. Li, H. Wang, Y. Cao, H. -F. Wang, H. Yu, J. Energy Chem. 105 (2025) 121, https://doi.org/10.1016/j.jechem.2025.01.048.
doi: 10.1016/j.jechem.2025.01.048
X. Ke, M. Pan, R. Liu, P. Wang, X. Wang, H. Yu, Sol. RRL 7 (2023) 2300669, https://doi.org/10.1002/solr.202300669.
doi: 10.1002/solr.202300669
X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan, Y. Xie, P. R. C. Kent, W. Zhou, S. J. Pennycook, K. P. Loh, Adv. Mater 31 (2019) 1808343, https://doi.org/10.1002/adma.201808343.
doi: 10.1002/adma.201808343
H. Zou, M. Pan, P. Wang, F. Chen, X. Wang, H. Yu, Catal. Sci. Technol. 14 (2024) 5731, https://doi.org/10.1039/D4CY00882K.
doi: 10.1039/D4CY00882K
J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. -Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi, et al., Adv. Funct. Mater. 26 (2016) 3118, https://doi.org/10.1002/adfm.201505328.
doi: 10.1002/adfm.201505328
X. Tian, M. Xu, Y. Li, H. Liu, B. Cao, R. A. Soomro, P. Zhang, B. Xu, Chem. Eng. J. 489 (2024) 151510, https://doi.org/10.1016/j.cej.2024.151510.
doi: 10.1016/j.cej.2024.151510
Y. Deng, Y. Ge, M. Xu, Q. Yu, D. Xiao, S. Yao, D. Ma, Acc. Chem. Res. 52 (2019) 3372, https://doi.org/10.1021/acs.accounts.9b00182.
doi: 10.1021/acs.accounts.9b00182
S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li, Chem. Eng. J. 430 (2022) 132697, https://doi.org/10.1016/j.cej.2021.132697.
doi: 10.1016/j.cej.2021.132697
Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 54 (2015) 52, https://doi.org/10.1002/anie.201407031.
doi: 10.1002/anie.201407031
S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39 (1972) 163, https://doi.org/10.1016/S0022-0728(72)80485-6.
doi: 10.1016/S0022-0728(72)80485-6
J. Wang, Y. Zhang, S. Jiang, C. Sun, S. Song, Angew. Chem., Int. Ed. 62 (2023) e202307808, https://doi.org/10.1002/anie.202307808.
doi: 10.1002/anie.202307808
H. Long, D. Gao, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal., B 340 (2024) 123270, https://doi.org/10.1016/j.apcatb.2023.123270.
doi: 10.1016/j.apcatb.2023.123270
Y. Wu, L. Wang, T. Bo, Z. Chai, J. K. Gibson, W. Shi, Adv. Funct. Mater. 33 (2023) 2214375, https://doi.org/10.1002/adfm.202214375.
doi: 10.1002/adfm.202214375
G. Qu, Y. Zhou, T. Wu, G. Zhao, F. Li, Y. Kang, C. Xu, ACS Appl. Energy Mater. 1 (2018) 7206, https://doi.org/10.1021/acsaem.8b01642.
doi: 10.1021/acsaem.8b01642
M. Yi, S. Hu, N. Li, H. Wang, J. Zhang, J. Energy Chem. 72 (2022) 453, https://doi.org/10.1016/j.jechem.2022.05.040.
doi: 10.1016/j.jechem.2022.05.040
M. Pan, P. Wang, X. Wang, F. Chen, H. Yu, ACS Sustainable Chem. Eng. 11 (2023) 13222, https://doi.org/10.1021/acssuschemeng.3c04308.
doi: 10.1021/acssuschemeng.3c04308
X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Chem. Eng. J. 495 (2024) 153477, https://doi.org/10.1016/j.cej.2024.153477.
doi: 10.1016/j.cej.2024.153477
X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Small 20 (2024) 2405378, https://doi.org/10.1002/smll.202405378.
doi: 10.1002/smll.202405378
R. Liu, P. Wang, X. Wang, F. Chen, H. Yu, Small 21 (2025) 2408330, https://doi.org/10.1002/smll.202408330.
doi: 10.1002/smll.202408330
J. Xu, B. Zhao, X. Wang, X. Wu, H. Yu, Chem. Eng. J. 506 (2025) 160107, https://doi.org/10.1016/j.cej.2025.160107.
doi: 10.1016/j.cej.2025.160107
J. Xu, X. Zhang, X. Wang, J. Zhang, J. Yu, H. Yu, ACS Catal. 14 (2024) 15444, https://doi.org/10.1021/acscatal.4c03916.
doi: 10.1021/acscatal.4c03916
D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20 (2024) 2309123, https://doi.org/10.1002/smll.202309123.
doi: 10.1002/smll.202309123
C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019.
doi: 10.1016/j.jmst.2023.07.019
M. Chen, C. Song, C. Liang, B. Zhang, Y. Sun, S. Li, L. Lin, P. Xu, Inorg. Chem. Front. 9 (2022) 2575, https://doi.org/10.1039/D2QI00543C.
doi: 10.1039/D2QI00543C
D. Majchrzak, K. Kulinowski, W. Olszewski, R. Kuna, D. Hlushchenko, A. Piejko, M. Grodzicki, D. Hommel, R. Kudrawiec, ACS Appl. Mater. Interfaces 16 (2024) 59567, https://doi.org/10.1021/acsami.4c13225.
doi: 10.1021/acsami.4c13225
S. Jin, Z. Shi, H. Jing, L. Wang, Q. Hu, D. Chen, N. Li, A. Zhou, ACS Appl. Energy Mater. 4 (2021) 12754, https://doi.org/10.1021/acsaem.1c02456.
doi: 10.1021/acsaem.1c02456
S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S. Kim, J. H. Jang, Y. Jung, et al., ACS Nano 14 (2020) 4988, https://doi.org/10.1021/acsnano.0c01285.
doi: 10.1021/acsnano.0c01285
Y. Guo, S. Jin, L. Wang, P. He, Q. Hu, L. Fan, A. Zhou, Ceram. Int. 46 (2020) 19550, https://doi.org/10.1016/j.ceramint.2020.05.008.
doi: 10.1016/j.ceramint.2020.05.008
J. Li, Y. Li, X. Wang, Z. Yang, G. Zhang, Chin. J. Catal. 51 (2023) 145, https://doi.org/10.1016/S1872-2067(23)64484-5.
doi: 10.1016/S1872-2067(23)64484-5
Z. Chen, P. Wang, X. Wang, H. Yu, Surf. Interfaces 51 (2024) 104684, https://doi.org/10.1016/j.surfin.2024.104684.
doi: 10.1016/j.surfin.2024.104684
Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147, https://doi.org/10.1016/j.jmst.2023.06.048.
doi: 10.1016/j.jmst.2023.06.048
B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3.
doi: 10.1016/S1872-2067(23)64466-3
H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.
doi: 10.1038/s41467-025-56306-x
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/pku.Whxb202307016.
doi: 10.3866/pku.Whxb202307016
Z. Yu, C. Guan, X. Yue, Q. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/S1872-2067(23)64448-1.
doi: 10.1016/S1872-2067(23)64448-1
Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, et al., Chin. J. Struct. Chem. 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.
doi: 10.1016/j.cjsc.2023.100194
P. Sun, J. Zhang, Y. Song, Z. Mo, Z. Chen, H. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/PKU.WHXB202311001.
doi: 10.3866/PKU.WHXB202311001
B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.
doi: 10.1016/j.jmst.2025.02.013
K. Huang, B. Feng, X. Wen, L. Hao, D. Xu, G. Liang, R. Shen, X. Li, Chin. J. Struct. Chem. 42 (2023) 100204, https://doi.org/10.1016/j.cjsc.2023.100204.
doi: 10.1016/j.cjsc.2023.100204
F. Yan, Y. Zhang, S. Liu, R. Zou, J. B. Ghasemi, X. Li, Chin. J. Catal. 51 (2023) 124, https://doi.org/10.1016/S1872-2067(23)64475-4.
doi: 10.1016/S1872-2067(23)64475-4
S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.
doi: 10.1038/s41467-024-53951-6
F. Jin, B. Yang, X. Wang, T. Li, N. Tsubaki, Z. Jin, Chin. J. Struct. Chem. 42 (2023) 100198, https://doi.org/10.1016/j.cjsc.2023.100198.
doi: 10.1016/j.cjsc.2023.100198
Z. Zhou, H. Yao, Y. Wu, T. Li, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 40 (2024) 2312010, https://doi.org/10.3866/pku.whxb202312010.
doi: 10.3866/pku.whxb202312010
M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.
doi: 10.1002/adma.202414803
J. Xia, S. Xing, T. Sun, H. Ma, T. Gao, E. Liu, Renew. Energ. 237 (2024) 121773, https://doi.org/10.1016/j.renene.2024.121773.
doi: 10.1016/j.renene.2024.121773
J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102
doi: 10.1016/j.jmst.2024.12.102
Jiaqi Yang , Xuqiang Hao , Jiejie Jing , Yuqiang Hao , Zhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131
Jiawei Hu , Kai Xia , Ao Yang , Zhihao Zhang , Wen Xiao , Chao Liu , Qinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043
Jinhui Jiang , Jiaqi Sun , Yongyi Chen , Lei Zhang , Pengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Min WANG , Dehua XIN , Wei ZHANG , Haiying YANG , Yuchun WANG , Zhaorong LIU , Meng SHI , Le SHI . Preparation and full-spectrum catalytic degradation performance of nitrogen vacancy g-C3N4/Bi/BiOBr/BiOI heterojunction material. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2283-2298. doi: 10.11862/CJIC.20250109
Jingjing Liu , Aoqi Wei , Hao Zhang , Shuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185
Mian Wei , Chang Cheng , Bowen He , Bei Cheng , Kezhen Qi , Chuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Yukai SHEN , Zhaochao YAN , Yangjun ZHOU , Mei HUANG . Nickel foam-supported NiFeP/NiFcDCA heterojunction electrocatalyst for efficient urea oxidation reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 237-246. doi: 10.11862/CJIC.20250257
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
Tong WANG , Qinyue ZHONG , Qiong HUANG , Weimin GUO , Xinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-0. doi: 10.3866/PKU.WHXB202402016
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016
Zhiwen HU , Huiying ZHANG , Jiayan ZHOU , Yulong YANG , Ping LI , Zelong CHEN , Weixia DONG , Qifu BAO . Time evolution of in-situ synthesized Bi12TiO20/BaTiO3 heterojunctions and catalytic mechanisms. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 65-77. doi: 10.11862/CJIC.20250172
Jiali Lei , Juan Wang , Wenhui Zhang , Guohong Wang , Zihui Liang , Jinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030