Citation: Ruiyun Liu, Ping Wang, Xuefei Wang, Feng Chen, Huogen Yu. Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution[J]. Acta Physico-Chimica Sinica, ;2025, 41(11): 100137. doi: 10.1016/j.actphy.2025.100137 shu

Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution

  • Corresponding author: Ping Wang, wangping0904@whut.edu.cn Huogen Yu, yuhuogen@cug.edu.cn
  • Received Date: 29 June 2025
    Revised Date: 22 July 2025
    Accepted Date: 24 July 2025

    Fund Project: the National Natural Science Foundation of China 22472127the National Natural Science Foundation of China 22178275the National Natural Science Foundation of China U22A20147the Natural Science Foundation of Hubei Province of China 2022CFA001

  • Mo2C MXene (Mo2CTx) exhibits exceptional hydrogen-evolution potential in photocatalysis due to the Pt-like electronic structure of surface Mo active sites. However, the Mo sites in Mo2CTx usually show excessively strong H-adsorption during HER, significantly limiting the intrinsic catalytic activity of Mo2CTx. To weaken the H-adsorption capacity of Mo active sites, a strategy of modulating d-orbital electron is implemented via in-situ constructing MoC-Mo2C MXene heterojunction by a work-function-induced effect. The MoC-Mo2CTx heterojunction was synthesized by in situ conversion of Mo2C MXene into MoC via a Co-induced molten salt method, followed by coupling with TiO2 through a simple ultrasonication-assisted method to prepare the MoC-Mo2CTx/TiO2 photocatalyst. Photocatalytic tests showed that the optimal MoC-Mo2CTx/TiO2 sample achieves an excellent hydrogen production rate of 1886 μmol∙h−1∙g−1, representing 117.9 and 3.9 fold enhancements over TiO2 and Mo2CFX/TiO2 (Mo2CF2 prepared by a conventional etchant NH4F+HCl), respectively. Experimental and theoretical calculations substantiate that the work-function gradient between MoC and Mo2C MXene induces electron transfer from MoC to Mo2C MXene to weaken the H-adsorption of Mo active sites in Mo2CTx cocatalyst, thereby enhancing its HER activity. This research provides a new strategy of in situ constructing Mo2C MXene-based heterojunction for adjusting the H-adsorption capacity of Mo active sites.
  • 加载中
    1. [1]

      S. Parwaiz, M. M. Khan, J. Environ. Chem. Eng. 12 (2024) 113175, https://doi.org/10.1016/j.jece.2024.113175.  doi: 10.1016/j.jece.2024.113175

    2. [2]

      H. Xie, K. Wang, S. Li, Z. Jin, Surf. Interfaces 42 (2023) 103353, https://doi.org/10.1016/j.surfin.2023.103353.  doi: 10.1016/j.surfin.2023.103353

    3. [3]

      Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chin. J. Catal. 52 (2023) 32, https://doi.org/10.1016/S1872-2067(23)64502-4.  doi: 10.1016/S1872-2067(23)64502-4

    4. [4]

      F. Li, Z. Fang, Z. Xu, Q. Xiang, Energy Environ. Sci. 17 (2024) 497, https://doi.org/10.1039/D3EE03282E.  doi: 10.1039/D3EE03282E

    5. [5]

      J. Cai, C. Cheng, B. Liu, J. Zhang, C. Jiang, B. Cheng, Acta Phys. -Chim. Sin. 41 (2025) 100084, https://doi.org/10.1016/j.actphy.2025.100084.  doi: 10.1016/j.actphy.2025.100084

    6. [6]

      C. Ding, J. Shi, Z. Wang, C. Li, ACS Catal. 7 (2017) 675, https://doi.org/10.1021/acscatal.6b03107.  doi: 10.1021/acscatal.6b03107

    7. [7]

      T. Yang, X. Hu, J. Fan, T. Sun, E. Liu, Surf. Interfaces 42 (2023) 103352, https://doi.org/10.1016/j.surfin.2023.103352.  doi: 10.1016/j.surfin.2023.103352

    8. [8]

      R. Zhong, Y. Liang, F. Huang, S. Liang, S. Liu, Chin. J. Catal. 53 (2023) 109, https://doi.org/10.1016/S1872-2067(23)64513-9.  doi: 10.1016/S1872-2067(23)64513-9

    9. [9]

      C. Bie, L. Wang, J. Yu, Chem 8 (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013.  doi: 10.1016/j.chempr.2022.04.013

    10. [10]

      J. Zhu, S. Zhang, R. He, Chin. J. Catal. 59 (2024) 4, https://doi.org/10.1016/s1872-2067(24)60011-2.  doi: 10.1016/s1872-2067(24)60011-2

    11. [11]

      T. Wang, H. Wang, J. Lin, J. Yang, F. Zhang, X. Lin, Y. Zhang, S. Jin, J. Li, Chin. J. Struct. Chem. 42 (2023) 100066, https://doi.org/10.1016/j.cjsc.2023.100066.  doi: 10.1016/j.cjsc.2023.100066

    12. [12]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.whxb202312014.  doi: 10.3866/pku.whxb202312014

    13. [13]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50 (2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6.  doi: 10.1016/S1872-2067(23)64462-6

    14. [14]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047.  doi: 10.1016/j.jmst.2024.12.047

    15. [15]

      H. Zhang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 49 (2023) 42, https://doi.org/10.1016/S1872-2067(23)64444-4.  doi: 10.1016/S1872-2067(23)64444-4

    16. [16]

      H. Zhang, X. Yao, W. Shan, Y. Liu, H. Tang, Sci. China Mater. 67 (2024) 532, https://doi.org/10.1007/s40843-023-2769-8.  doi: 10.1007/s40843-023-2769-8

    17. [17]

      Y. Wang, S. Jiang, C. Sun, S. Song, J. Mater. Sci. Technol. 190 (2024) 210, https://doi.org/10.1016/j.jmst.2023.12.026.  doi: 10.1016/j.jmst.2023.12.026

    18. [18]

      Y. Yang, C. Zhou, W. Wang, W. Xiong, G. Zeng, D. Huang, C. Zhang, B. Song, W. Xue, X. Li, et al., Chem. Eng. J. 405 (2021) 126547, https://doi.org/10.1016/j.cej.2020.126547.  doi: 10.1016/j.cej.2020.126547

    19. [19]

      Y. Cao, P. Wang, X. Wang, F. Chen, H. Yu, J. Mater. Chem. C 12 (2024) 10152, https://doi.org/10.1039/D4TC01076K.  doi: 10.1039/D4TC01076K

    20. [20]

      Y. Lei, K. H. Ng, Y. Zhu, Y. Zhang, Z. Li, S. Xu, J. Huang, J. Hu, Z. Chen, W. Cai, et al., Chem. Eng. J. 452 (2023) 139325, https://doi.org/10.1016/j.cej.2022.139325.  doi: 10.1016/j.cej.2022.139325

    21. [21]

      K. R. G. Lim, A. D. Handoko, L. R. Johnson, X. Meng, M. Lin, G. S. Subramanian, B. Anasori, Y. Gogotsi, A. Vojvodic, Z. W. Seh, ACS Nano 14 (2020) 16140, https://doi.org/10.1021/acsnano.0c08671.  doi: 10.1021/acsnano.0c08671

    22. [22]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal. B: Environ. Energy 365 (2025) 124936, https://doi.org/10.1016/j.apcatb.2024.124936.  doi: 10.1016/j.apcatb.2024.124936

    23. [23]

      H. -X. Yang, W. Xu, P. -W. Zhong, D. Zhang, Z. Yu, B. Li, H. Wang, Y. Cao, H. -F. Wang, H. Yu, J. Energy Chem. 105 (2025) 121, https://doi.org/10.1016/j.jechem.2025.01.048.  doi: 10.1016/j.jechem.2025.01.048

    24. [24]

      X. Ke, M. Pan, R. Liu, P. Wang, X. Wang, H. Yu, Sol. RRL 7 (2023) 2300669, https://doi.org/10.1002/solr.202300669.  doi: 10.1002/solr.202300669

    25. [25]

      X. Zhao, W. Sun, D. Geng, W. Fu, J. Dan, Y. Xie, P. R. C. Kent, W. Zhou, S. J. Pennycook, K. P. Loh, Adv. Mater 31 (2019) 1808343, https://doi.org/10.1002/adma.201808343.  doi: 10.1002/adma.201808343

    26. [26]

      H. Zou, M. Pan, P. Wang, F. Chen, X. Wang, H. Yu, Catal. Sci. Technol. 14 (2024) 5731, https://doi.org/10.1039/D4CY00882K.  doi: 10.1039/D4CY00882K

    27. [27]

      J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. -Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May, Y. Gogotsi, et al., Adv. Funct. Mater. 26 (2016) 3118, https://doi.org/10.1002/adfm.201505328.  doi: 10.1002/adfm.201505328

    28. [28]

      X. Tian, M. Xu, Y. Li, H. Liu, B. Cao, R. A. Soomro, P. Zhang, B. Xu, Chem. Eng. J. 489 (2024) 151510, https://doi.org/10.1016/j.cej.2024.151510.  doi: 10.1016/j.cej.2024.151510

    29. [29]

      Y. Deng, Y. Ge, M. Xu, Q. Yu, D. Xiao, S. Yao, D. Ma, Acc. Chem. Res. 52 (2019) 3372, https://doi.org/10.1021/acs.accounts.9b00182.  doi: 10.1021/acs.accounts.9b00182

    30. [30]

      S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li, Chem. Eng. J. 430 (2022) 132697, https://doi.org/10.1016/j.cej.2021.132697.  doi: 10.1016/j.cej.2021.132697

    31. [31]

      Y. Zheng, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem., Int. Ed. 54 (2015) 52, https://doi.org/10.1002/anie.201407031.  doi: 10.1002/anie.201407031

    32. [32]

      S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 39 (1972) 163, https://doi.org/10.1016/S0022-0728(72)80485-6.  doi: 10.1016/S0022-0728(72)80485-6

    33. [33]

      J. Wang, Y. Zhang, S. Jiang, C. Sun, S. Song, Angew. Chem., Int. Ed. 62 (2023) e202307808, https://doi.org/10.1002/anie.202307808.  doi: 10.1002/anie.202307808

    34. [34]

      H. Long, D. Gao, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Catal., B 340 (2024) 123270, https://doi.org/10.1016/j.apcatb.2023.123270.  doi: 10.1016/j.apcatb.2023.123270

    35. [35]

      Y. Wu, L. Wang, T. Bo, Z. Chai, J. K. Gibson, W. Shi, Adv. Funct. Mater. 33 (2023) 2214375, https://doi.org/10.1002/adfm.202214375.  doi: 10.1002/adfm.202214375

    36. [36]

      G. Qu, Y. Zhou, T. Wu, G. Zhao, F. Li, Y. Kang, C. Xu, ACS Appl. Energy Mater. 1 (2018) 7206, https://doi.org/10.1021/acsaem.8b01642.  doi: 10.1021/acsaem.8b01642

    37. [37]

      M. Yi, S. Hu, N. Li, H. Wang, J. Zhang, J. Energy Chem. 72 (2022) 453, https://doi.org/10.1016/j.jechem.2022.05.040.  doi: 10.1016/j.jechem.2022.05.040

    38. [38]

      M. Pan, P. Wang, X. Wang, F. Chen, H. Yu, ACS Sustainable Chem. Eng. 11 (2023) 13222, https://doi.org/10.1021/acssuschemeng.3c04308.  doi: 10.1021/acssuschemeng.3c04308

    39. [39]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Chem. Eng. J. 495 (2024) 153477, https://doi.org/10.1016/j.cej.2024.153477.  doi: 10.1016/j.cej.2024.153477

    40. [40]

      X. Ke, P. Wang, X. Wang, F. Chen, H. Yu, Small 20 (2024) 2405378, https://doi.org/10.1002/smll.202405378.  doi: 10.1002/smll.202405378

    41. [41]

      R. Liu, P. Wang, X. Wang, F. Chen, H. Yu, Small 21 (2025) 2408330, https://doi.org/10.1002/smll.202408330.  doi: 10.1002/smll.202408330

    42. [42]

      J. Xu, B. Zhao, X. Wang, X. Wu, H. Yu, Chem. Eng. J. 506 (2025) 160107, https://doi.org/10.1016/j.cej.2025.160107.  doi: 10.1016/j.cej.2025.160107

    43. [43]

      J. Xu, X. Zhang, X. Wang, J. Zhang, J. Yu, H. Yu, ACS Catal. 14 (2024) 15444, https://doi.org/10.1021/acscatal.4c03916.  doi: 10.1021/acscatal.4c03916

    44. [44]

      D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20 (2024) 2309123, https://doi.org/10.1002/smll.202309123.  doi: 10.1002/smll.202309123

    45. [45]

      C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019.  doi: 10.1016/j.jmst.2023.07.019

    46. [46]

      M. Chen, C. Song, C. Liang, B. Zhang, Y. Sun, S. Li, L. Lin, P. Xu, Inorg. Chem. Front. 9 (2022) 2575, https://doi.org/10.1039/D2QI00543C.  doi: 10.1039/D2QI00543C

    47. [47]

      D. Majchrzak, K. Kulinowski, W. Olszewski, R. Kuna, D. Hlushchenko, A. Piejko, M. Grodzicki, D. Hommel, R. Kudrawiec, ACS Appl. Mater. Interfaces 16 (2024) 59567, https://doi.org/10.1021/acsami.4c13225.  doi: 10.1021/acsami.4c13225

    48. [48]

      S. Jin, Z. Shi, H. Jing, L. Wang, Q. Hu, D. Chen, N. Li, A. Zhou, ACS Appl. Energy Mater. 4 (2021) 12754, https://doi.org/10.1021/acsaem.1c02456.  doi: 10.1021/acsaem.1c02456

    49. [49]

      S. Kim, C. Choi, J. Hwang, J. Park, J. Jeong, H. Jun, S. Lee, S. Kim, J. H. Jang, Y. Jung, et al., ACS Nano 14 (2020) 4988, https://doi.org/10.1021/acsnano.0c01285.  doi: 10.1021/acsnano.0c01285

    50. [50]

      Y. Guo, S. Jin, L. Wang, P. He, Q. Hu, L. Fan, A. Zhou, Ceram. Int. 46 (2020) 19550, https://doi.org/10.1016/j.ceramint.2020.05.008.  doi: 10.1016/j.ceramint.2020.05.008

    51. [51]

      J. Li, Y. Li, X. Wang, Z. Yang, G. Zhang, Chin. J. Catal. 51 (2023) 145, https://doi.org/10.1016/S1872-2067(23)64484-5.  doi: 10.1016/S1872-2067(23)64484-5

    52. [52]

      Z. Chen, P. Wang, X. Wang, H. Yu, Surf. Interfaces 51 (2024) 104684, https://doi.org/10.1016/j.surfin.2024.104684.  doi: 10.1016/j.surfin.2024.104684

    53. [53]

      Y. Zhang, Z. Zhang, J. Mater. Sci. Technol. 171 (2024) 147, https://doi.org/10.1016/j.jmst.2023.06.048.  doi: 10.1016/j.jmst.2023.06.048

    54. [54]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3.  doi: 10.1016/S1872-2067(23)64466-3

    55. [55]

      H. Long, X. Zhang, Z. Zhang, J. Zhang, J. Yu, H. Yu, Nat. Commun. 16 (2025) 946, https://doi.org/10.1038/s41467-025-56306-x.  doi: 10.1038/s41467-025-56306-x

    56. [56]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/pku.Whxb202307016.  doi: 10.3866/pku.Whxb202307016

    57. [57]

      Z. Yu, C. Guan, X. Yue, Q. Xiang, Chin. J. Catal. 50 (2023) 361, https://doi.org/10.1016/S1872-2067(23)64448-1.  doi: 10.1016/S1872-2067(23)64448-1

    58. [58]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, et al., Chin. J. Struct. Chem. 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.  doi: 10.1016/j.cjsc.2023.100194

    59. [59]

      P. Sun, J. Zhang, Y. Song, Z. Mo, Z. Chen, H. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2311001, https://doi.org/10.3866/PKU.WHXB202311001.  doi: 10.3866/PKU.WHXB202311001

    60. [60]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013.  doi: 10.1016/j.jmst.2025.02.013

    61. [61]

      K. Huang, B. Feng, X. Wen, L. Hao, D. Xu, G. Liang, R. Shen, X. Li, Chin. J. Struct. Chem. 42 (2023) 100204, https://doi.org/10.1016/j.cjsc.2023.100204.  doi: 10.1016/j.cjsc.2023.100204

    62. [62]

      F. Yan, Y. Zhang, S. Liu, R. Zou, J. B. Ghasemi, X. Li, Chin. J. Catal. 51 (2023) 124, https://doi.org/10.1016/S1872-2067(23)64475-4.  doi: 10.1016/S1872-2067(23)64475-4

    63. [63]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    64. [64]

      F. Jin, B. Yang, X. Wang, T. Li, N. Tsubaki, Z. Jin, Chin. J. Struct. Chem. 42 (2023) 100198, https://doi.org/10.1016/j.cjsc.2023.100198.  doi: 10.1016/j.cjsc.2023.100198

    65. [65]

      Z. Zhou, H. Yao, Y. Wu, T. Li, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 40 (2024) 2312010, https://doi.org/10.3866/pku.whxb202312010.  doi: 10.3866/pku.whxb202312010

    66. [66]

      M. Gu, J. Zhang, I. V. Kurganskii, A. S. Poryvaev, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    67. [67]

      J. Xia, S. Xing, T. Sun, H. Ma, T. Gao, E. Liu, Renew. Energ. 237 (2024) 121773, https://doi.org/10.1016/j.renene.2024.121773.  doi: 10.1016/j.renene.2024.121773

    68. [68]

      J. Tian, C. Guan, Q. Zhang, T. Sun, H. Hu, E. Liu, J. Mater. Sci. Technol. 231 (2025) 308, https://doi.org/10.1016/j.jmst.2024.12.102  doi: 10.1016/j.jmst.2024.12.102

  • 加载中
    1. [1]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    2. [2]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    3. [3]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    4. [4]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    5. [5]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    9. [9]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    11. [11]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    12. [12]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    14. [14]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    16. [16]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    17. [17]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    20. [20]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(0)
  • Abstract views(23)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return