Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation
- Corresponding author: Na Li, lina20201130@163.com Tingjiang Yan, tingjiangn@163.com
Citation:
Qinhui Guan, Yuhao Guo, Na Li, Jing Li, Tingjiang Yan. Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation[J]. Acta Physico-Chimica Sinica,
;2025, 41(11): 100133.
doi:
10.1016/j.actphy.2025.100133
Q. H. Guan, W. G. Ran, D. P. Zhang, W. J. Li, N. Li, B. B. Huang, T. J. Yan, Adv. Sci. 11 (2024) 2401990, https://doi.org/10.1002/advs.202401990.
doi: 10.1002/advs.202401990
T. T. Kong, Y. W. Jiang, Y. J. Xiong, Chem. Soc. Rev. 49 (2020) 6579, https://doi.org/10.1039/c9cs00920e.
doi: 10.1039/c9cs00920e
H. Y. Xu, Z. L. Wang, H. H. Liao, D. M. Li, J. N. Shen, J. L. Long, W. X. Dai, X. X. Wang, Z. Z. Zhang, Appl. Catal. B 336 (2023) 122935, https://doi.org/10.1016/j.apcatb.2023.122935.
doi: 10.1016/j.apcatb.2023.122935
L. O. Paulista, A. F. P. Ferreira, A. E. Rodrigues, R. J. E. Martins, R. A. R. Boaventura, V. J. P. Vilar, T. F. C. V. Silva, J. Environ. Chem. Eng. 12 (2024) 112418, https://doi.org/10.1016/j.jece.2024.112418.
doi: 10.1016/j.jece.2024.112418
Y. J. An, W. X. Liu, Y. F. Zhang, J. J. Zhang, Z. S. Lu, Acta Phys. -Chim. Sin. 40 (2024) 2407021, https://doi.org/10.3866/pku.whxb202407021.
doi: 10.3866/pku.whxb202407021
J. Y. Qin, Y. J. An, Y. F. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2408002, https://doi.org/10.3866/pku.Whxb202408002.
doi: 10.3866/pku.Whxb202408002
X. Y. Miao, H. Yang, J. He, J. Wang, Z. L. Jin, Acta Phys. -Chim. Sin. 41 (2025) 100051, https://doi.org/10.1016/j.actphy.2025.100051.
doi: 10.1016/j.actphy.2025.100051
H. X. Mai, T. C. Le, D. H. Chen, D. A. Winkler, R. A. Caruso, Chem. Rev. 122 (2022) 13478, https://doi.org/10.1021/acs.chemrev.2c00061.
doi: 10.1021/acs.chemrev.2c00061
P. Wang, H. T. Li, Y. J. Cao, H. G. Yu, Acta Phys. -Chim. Sin. 37 (2020) 2008047, https://doi.org/10.3866/pku.whxb202008047.
doi: 10.3866/pku.whxb202008047
Q. L. Xu, Z. H. Xia, J. M. Zhang, Z. Y. Wei, Q. Guo, H. L. Jin, H. Tang, S. Z. Li, X. C. Pan, Z. Su, et al., Carbon Energy 5 (2022) e205, https://doi.org/10.1002/cey2.205.
doi: 10.1002/cey2.205
H. L. Ran, X. Liu, L. H. Ye, J. J. Fan, B. C. Zhu, Q. L. Xu, Y. C. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089.
doi: 10.1016/j.jmst.2024.12.089
G. R. Yu, N. Li, X. Li, Y. H. Guo, T. J. Yan, J. Mater. Chem. A (2025)https://doi.org/10.1039/d5ta01792k.
doi: 10.1039/d5ta01792k
X. Y. Meng, C. Peng, J. P. Jia, P. Liu, Y. L. Men, Y. X. Pan, J. CO2 Util. 55 (2022) 101844, https://doi.org/10.1016/j.jcou.2021.101844.
doi: 10.1016/j.jcou.2021.101844
X. D. Li, Y. F. Sun, J. Q. Xu, Y. J. Shao, J. Wu, X. L. Xu, Y. Pan, H. X. Ju, J. F. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1.
doi: 10.1038/s41560-019-0431-1
K. C. Wang, Y. M. Zhu, M. Gu, Z. W. Hu, Y. C. Chang, C. W. Pao, Y. Xu, X. Q. Huang, Adv. Funct. Mater. 33 (2023) 2215148, https://doi.org/10.1002/adfm.202215148.
doi: 10.1002/adfm.202215148
W. J. Li, Y. P. Zhang, Y. H. Wang, W. G. Ran, Q. H. Guan, W. C. Yi, L. L. Zhang, D. P. Zhang, N. Li, T. J. Yan, Appl. Catal. B 340 (2024) 123267, https://doi.org/10.1016/j.apcatb.2023.123267.
doi: 10.1016/j.apcatb.2023.123267
Y. P. Zhang, W. J. Li, F. Tian, N. Cai, Q. H. Guan, D. P. Zhang, W. G. Ran, N. Li, T. J. Yan, Chem. Eng. J. 477 (2023) 147129, https://doi.org/10.1016/j.cej.2023.147129.
doi: 10.1016/j.cej.2023.147129
J. D. Li, Y. Qu, Y. D. Liu, L. Q. Jiang, Sep. Purif. Technol. 354 (2025) 128761, https://doi.org/10.1016/j.seppur.2024.128761.
doi: 10.1016/j.seppur.2024.128761
B. W. Deng, H. Song, Q. Wang, J. N. Hong, S. Song, Y. W. Zhang, K. Peng, H. W. Zhang, T. Kako, J. H. Ye, Appl. Catal. B 327 (2023) 122471, https://doi.org/10.1016/j.apcatb.2023.122471.
doi: 10.1016/j.apcatb.2023.122471
Y. H. Guo, Q. H. Guan, X. J. Li, M. J. Zhao, N. Li, Z. Z. Zhang, G. Q. Fei, T. J. Yan, Energy Environ. Sci. (2025) 5539, https://doi.org/10.1039/d5ee00605h.
doi: 10.1039/d5ee00605h
X. J. Li, Y. H. Guo, Q. H. Guan, X. Li, L. L Zhang, W. G. Ran, N. Li, T. J. Yan, Chinese J. Catal. 69 (2025) 303, https://doi.org/10.1016/s1872-2067(24)60205-6.
doi: 10.1016/s1872-2067(24)60205-6
S. Tang, Z. D. Feng, Z. Han, F. Sha, C. Z. Tang, Y. Zhang, J. J. Wang, C. Li, J. Catal. 417 (2023) 462, https://doi.org/10.1016/j.jcat.2022.12.026.
doi: 10.1016/j.jcat.2022.12.026
Y. X. Yang, C. Y. Shen, K. H. Sun, D. H. Mei, C. J. Liu, ACS Catal. 13 (2023) 6154, https://doi.org/10.1021/acscatal.2c06299.
doi: 10.1021/acscatal.2c06299
T. J. Yan, N. Li, L. L. Wang, W. G. Ran, P. N. Duchesne, L. L. Wan, N. T. Nguyen, L. Wang, M. K. Xia, G. A. Ozin, Nat. Commun. 11 (2020) 6095, https://doi.org/10.1038/s41467-020-19997-y.
doi: 10.1038/s41467-020-19997-y
T. J. Yan, N. Li, L. L. Wang, Q. Liu, F. M. Ali, L. Wang, Y. F. Xu, Y. Liang, Y. Dai, B. B. Huang, et al., Energy Environ. Sci. 13 (2020) 3054, https://doi.org/10.1039/d0ee01124j.
doi: 10.1039/d0ee01124j
Y. C. Shi, W. G. Su, X. Y. Wei, X. D. Song, Y. H. Bai, J. F. Wang, P. Lv, G. S. Yu, Fuel 334 (2023) 126811, https://doi.org/10.1016/j.fuel.2022.126811.
doi: 10.1016/j.fuel.2022.126811
R. P. Ye, J. Ding, T. R. Reina, M. S. Duyar, H. T. Li, W. H. Luo, R. B. Zhang, M. H. Fan, G. Feng, J. Sun, et al., Nat. Synth. 4 (2025) 288, https://doi.org/10.1038/s44160-025-00747-1.
doi: 10.1038/s44160-025-00747-1
Y. R. Wang, R. T. Yang, ACS Sustain. Chem. Eng. 7 (2019) 3301, https://doi.org/10.1021/acssuschemeng.8b05339.
doi: 10.1021/acssuschemeng.8b05339
T. Boonamnuay, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Int. J. Hydrogen Energy 46 (2021) 30948, https://doi.org/10.1016/j.ijhydene.2021.04.161.
doi: 10.1016/j.ijhydene.2021.04.161
D. G. Boer, J. Langerak, P. P. Pescarmona, ACS Appl. Energy Mater. 6 (2023) 2634, https://doi.org/10.1021/acsaem.2c03605.
doi: 10.1021/acsaem.2c03605
Y. S. González, C. Costa, M. C. Márquez, P. Ramos, J. Hazard. Mater. 187 (2011) 101, https://doi.org/10.1016/j.jhazmat.2010.12.121.
doi: 10.1016/j.jhazmat.2010.12.121
Z. H. Cui, P. Wang, Y. Q. Wu, X. L. Liu, G. Q. Chen, P. Gao, Q. Q. Zhang, Z. Y. Wang, Z. K. Zheng, H. F. Cheng, et al., Appl. Catal. B 310 (2022) 121375, https://doi.org/10.1016/j.apcatb.2022.121375.
doi: 10.1016/j.apcatb.2022.121375
X. H. Yang, X. B. Bian, P. X. Wang, H. Y. Wang, Q. J. Qi, J. Environ. Chem. Eng. 13 (2025) 115004, https://doi.org/10.1016/j.jece.2024.115004.
doi: 10.1016/j.jece.2024.115004
W. L. Yu, X. You, Y. C. Wu, C. P. Li, Q. Y. Wang, X. H. Yang, X. B. Bian, Y. Lu, J. Environ. Chem. Eng. 13 (2025) 116271, https://doi.org/10.1016/j.jece.2025.116271.
doi: 10.1016/j.jece.2025.116271
J. A. D. Dobladez, V. I. Á. Maté, S. Á. Torrellas, M. Larriba, G. P. Muñoz, R. A. Sánchez, Sep. Purif. Technol. 262 (2021) 118292, https://doi.org/10.1016/j.seppur.2020.118292.
doi: 10.1016/j.seppur.2020.118292
B. Srinivas, B. Shubhamangala, K. Lalitha, P. A. K. Reddy, V. D. Kumari, M. Subrahmanyam, B. R. De, Photochem. Photobiol. 87 (2011) 995, https://doi.org/10.1111/j.1751-1097.2011.00946.x.
doi: 10.1111/j.1751-1097.2011.00946.x
R. Ahlawat, N. Rani, B. Goswami, N. Jangra, G. Rani, J. Alloys Compd. 995 (2024) 174858, https://doi.org/10.1016/j.jallcom.2024.174858.
doi: 10.1016/j.jallcom.2024.174858
X. P. Liu, R. Wang, J. Hazard. Mater. 362 (2017) 157, https://doi.org/10.1016/j.jhazmat.2016.12.030.
doi: 10.1016/j.jhazmat.2016.12.030
Q. H. Guan, Y. H. Guo, S. T. Li, X. J. Li, X. Li, X. Liu, N. Li, T. J. Yan, Sci. China Chem. (2025)https://doi.org/10.1007/s11426-025-2860-7.
doi: 10.1007/s11426-025-2860-7
Z. Lu, Y. F. Xu, Z. S. Zhang, J. C. Sun, X. Ding, W. Sun, W. G. Tu, Y. Zhou, Y. F. Yao, G. A. Ozin, et al., J. Am. Chem. Soc. 145 (2023) 26052, https://doi.org/10.1021/jacs.3c07349.
doi: 10.1021/jacs.3c07349
A. Desgagnés, M. C. Iliuta, Chem. Eng. J. 454 (2023) 140214, https://doi.org/10.1016/j.cej.2022.140214.
doi: 10.1016/j.cej.2022.140214
X. Chen, Q. Geng, J. F. Liu, Z. X. Ding, W. X. Dai, X. X. Wang, Acta Phys. -Chim. Sin. 25 (2009) 2237, https://doi.org/10.3866/pku.Whxb20091036.
doi: 10.3866/pku.Whxb20091036
L. Wang, M. Ghoussoub, H. Wang, Y. Shao, W. Sun, A. A. Tountas, T. E. Wood, H. Li, J. Y. Y. Loh, Y. C. Dong, et al., Joule 2 (2018) 1369, https://doi.org/10.1016/j.joule.2018.03.007.
doi: 10.1016/j.joule.2018.03.007
K. K. Ghuman, L. B. Hoch, P. Szymanski, J. Y. Y. Loh, N. P. Kherani, M. A. El-Sayed, G. A. Ozin, C. V. Singh, J. Am. Chem. Soc. 138 (2016) 1206, https://doi.org/10.1021/jacs.5b10179.
doi: 10.1021/jacs.5b10179
K. K. Ghuman, L. B. Hoch, T. E. Wood, C. Mims, C. V. Singh, G. A. Ozin. ACS Catal. 6 (2016) 5764, https://doi.org/10.1021/acscatal.6b01015.
doi: 10.1021/acscatal.6b01015
Q. H. Guan, C. Z. Ni, T. J. Yan, N. Li, L. Wang, Z. Lu, W. G. Ran, Y. P. Zhang, W. J. Li, L. L. Zhang, et al., EES Catal. 2 (2024) 573, https://doi.org/10.1039/d3ey00261f.
doi: 10.1039/d3ey00261f
W. X. Yang, J. F. Zhang, Q. L. Xu, Y. Yang, L. J. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/pku.Whxb202312014.
doi: 10.3866/pku.Whxb202312014
X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031.
doi: 10.3866/pku.Whxb202309031
J. X. Cai, W. D. Xu, H. Q. Chi, Q. Liu, W. Gao, L. Shi, J. X. Low, Z. G. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40 (2024) 2407002, https://doi.org/10.3866/pku.Whxb202407002.
doi: 10.3866/pku.Whxb202407002
W. J. Li, Y. J. Wang, Y. P. Zhang, Y. N. Pan, M. L. Xu, Y. Song, N. Li, T. J. Yan, Langmuir 39 (2023) 4140, https://doi.org/10.1021/acs.langmuir.3c00042.
doi: 10.1021/acs.langmuir.3c00042
L. Y. Zhang, J. J Zhang, J. G. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
doi: 10.1038/s41570-025-00698-3
J. T. Yan, J. J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, https://doi.org/10.1016/j.jmst.2023.12.054.
doi: 10.1016/j.jmst.2023.12.054
Y. Wu, C. Cheng, K. Z. Qi, B. Cheng, J. J. Zhang, J. G. Yu, L. Y. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/pku.Whxb202406027.
doi: 10.3866/pku.Whxb202406027
J. Tang, X. H. Li, Y. F. Ma, K. Q. Wang, Z. L. Liu, Q. T. Zhang, Appl. Catal. B 327 (2023) 122417, https://doi.org/10.1016/j.apcatb.2023.122417.
doi: 10.1016/j.apcatb.2023.122417
Feifei Yang , Wei Zhou , Chaoran Yang , Tianyu Zhang , Yanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054
Yongqing Xu , Yuyao Yang , Mengna Wu , Xiaoxiao Yang , Xuan Bie , Shiyu Zhang , Qinghai Li , Yanguo Zhang , Chenwei Zhang , Robert E. Przekop , Bogna Sztorch , Dariusz Brzakalski , Hui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Xiaorui Chen , Xuan Luo , Tongming Su , Xinling Xie , Liuyun Chen , Yuejing Bin , Zuzeng Qin , Hongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Xinyu Xu , Jiale Lu , Bo Su , Jiayi Chen , Xiong Chen , Sibo Wang . Steering charge dynamics and surface reactivity for photocatalytic selective methane oxidation to ethane over Au/Ti-CeO2. Acta Physico-Chimica Sinica, 2025, 41(11): 100153-0. doi: 10.1016/j.actphy.2025.100153
Linfeng Xiao , Wanlu Ren , Shishi Shen , Mengshan Chen , Runhua Liao , Yingtang Zhou , Xibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021
Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440