The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces
- Corresponding author: Can Li, canli@dicp.ac.cn
Citation:
Ruizhi Duan, Xiaomei Wang, Panwang Zhou, Yang Liu, Can Li. The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100111.
doi:
10.1016/j.actphy.2025.100111
S. E. Hosseini, M. A. Wahid, Renew. Sustain. Energy Rev. 57 (2016) 850, https://doi.org/10.1016/j.rser.2015.12.112.
doi: 10.1016/j.rser.2015.12.112
M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Sch fer, Chem. Soc. Rev. 51 (2022) 4583, https://doi.org/10.1039/D0CS01079K.
doi: 10.1039/D0CS01079K
R. T. Liu, Z. L. Xu, F. M. Li, F. Y. Chen, J. Y. Yu, Y. Yan, Y. Chen, B. Y. Xia, Chem. Soc. Rev. 52 (2023) 5652, https://doi.org/10.1039/D2CS00681B.
doi: 10.1039/D2CS00681B
J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. J. Stimming, Electrochem. Soc. 152 (2005) J23, https://doi.org/10.1149/1.1856988.
doi: 10.1149/1.1856988
I. T. McCrum, Nat. Catal. 5 (2022) 846, https://doi.org/10.1038/s41929-022-00858-4.
doi: 10.1038/s41929-022-00858-4
A. H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong, C. Wan, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Catal. 5 (2022) 923, https://doi.org/10.1038/s41929-022-00851-x.
doi: 10.1038/s41929-022-00851-x
M. C. O. Monteiro, A. Goyal, P. Moerland, M. T. M. Koper, ACS Catal. 11(2021) 14328, https://doi.org/10.1021/acscatal.1c04268.
doi: 10.1021/acscatal.1c04268
Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 51 (2022) 9620, https://doi.org/10.1039/D2CS00038E.
doi: 10.1039/D2CS00038E
A. Lasia, A. J. Rami, Electroanal. Chem. Interfacial Electrochem. 294 (1990) 123, https://doi.org/10.1016/0022-0728(90)87140-F.
doi: 10.1016/0022-0728(90)87140-F
S. A. S. Machado, L. A. Avaca, Electrochim. Acta 39 (1994) 1385, https://doi.org/10.1016/0013-4686(94)E0003-I.
doi: 10.1016/0013-4686(94)E0003-I
W. G. Cui, F. Gao, G. Na, X. Wang, Z. Li, Y. Yang, Z. Niu, Y. Qu, D. Wang, H. Pan, Chem. Soc. Rev. 53 (2024) 10253, https://doi.org/10.1039/D4CS00370E.
doi: 10.1039/D4CS00370E
N. Govindarajan, A. Xu, K. Chan, Science. 375 (2022) 379, https://doi.org/10.1126/science.abj2421.
doi: 10.1126/science.abj2421
C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec, Y. Zheng, S. Z. Qiao, Chem. Soc. Rev. 53 (2024) 2022, https://doi.org/10.1039/D3CS00669G.
doi: 10.1039/D3CS00669G
V. J. Ovalle, M. M. J. Waegele, Phys. Chem. C 125 (2021) 18567, https://doi.org/10.1021/acs.jpcc.1c05921.
doi: 10.1021/acs.jpcc.1c05921
R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934.
doi: 10.1126/science.1211934
N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed. 51 (2012) 12495, https://doi.org/10.1002/anie.201204842.
doi: 10.1002/anie.201204842
Z. Zeng, K. C. Chang, J. Kubal, N. M. Markovic, J. Greeley, Nat. Energy 2 (2017) 17070, https://doi.org/10.1038/nenergy.2017.70.
doi: 10.1038/nenergy.2017.70
R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 11 (2012) 550, https://doi.org/10.1038/nmat3313.
doi: 10.1038/nmat3313
J. Staszak-Jirkovsk , C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 15 (2016) 197, https://doi.org/10.1038/nmat4481.
doi: 10.1038/nmat4481
I. T. McCrum, M. T. M. Koper, Nat. Energy 5 (2020) 891, https://doi.org/10.1038/s41560-020-00710-8.
doi: 10.1038/s41560-020-00710-8
X. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem. Int. Ed. 56 (2017) 15025, https://doi.org/10.1002/anie.201709455.
doi: 10.1002/anie.201709455
M. J. Janik, I. T. McCrum, M. T. M. Koper, J. Catal. 367 (2018) 332, https://doi.org/10.1016/j.jcat.2018.09.031.
doi: 10.1016/j.jcat.2018.09.031
I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2 (2017) 17031, https://doi.org/10.1038/nenergy.2017.31.
doi: 10.1038/nenergy.2017.31
C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu, D. Baumann, Z. Lin, S. Wang, J. Huang, A. H. Shah, X. Pan, T. Hu, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Mater. 22 (2023) 1022, https://doi.org/10.1038/s41563-023-01584-3.
doi: 10.1038/s41563-023-01584-3
A. H. Shah, Z. Zhang, C. Wan, S. Wang, A. Zhang, L. Wang, A. N. Alexandrova, Y. Huang, X. Duan, J. Am. Chem. Soc. 146 (2024) 9623, https://doi.org/10.1021/jacs.3c12934.
doi: 10.1021/jacs.3c12934
X. Wang, G. Long, B. Liu, Z. Li, W. Gao, P. Zhang, H. Zhang, X. Zhou, R. Duan, W. Hu, C. Li, Angew. Chem. Int. Ed. 135 (2023) e202301562, https://doi.org/10.1002/ange.202301562.
doi: 10.1002/ange.202301562
G. Kresse, J. Furthmüller, Phys. Rev. B. 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.
doi: 10.1103/PhysRevB.54.11169
G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0.
doi: 10.1016/0927-0256(96)00008-0
P. E. Bl chl, Phys. Rev. B. 50 (1994) 17953, https://doi.org/10.1103/physrevb.50.17953.
doi: 10.1103/PhysRevB.50.17953
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104, https://doi.org/10.1063/1.3382344.
doi: 10.1063/1.3382344
G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672.
doi: 10.1063/1.1329672
K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 140 (2014) 084106, https://doi.org/10.1063/1.4865107.
doi: 10.1063/1.4865107
R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 97 (1993) 8617, https://doi.org/10.1021/j100135a014.
doi: 10.1021/j100135a014
S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030, https://doi.org/10.1002/jcc.24300.
doi: 10.1002/jcc.24300
W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 6 (2013) 1509, https://doi.org/10.1039/c3ee00045a.
doi: 10.1039/c3ee00045a
J. K. N rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886, https://doi.org/10.1021/jp047349j.
doi: 10.1021/jp047349j
X. An, T. Yao, Y. Liu, G. Long, A. Wang, Z. Feng, M. Dupuis, C. Li, J. Phys. Chem. Lett. 14 (2023) 8121, https://doi.org/10.1021/acs.jpclett.3c02142.
doi: 10.1021/acs.jpclett.3c02142
S. Ghoshal, A. Ghosh, P. Roy, B. Ball, A. Pramanik, P. Sarkar, ACS Catal. 12 (2022) 15541, https://doi.org/10.1021/acscatal.2c04527.
J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Angew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518.
doi: 10.1002/anie.202202518
M. T. M. Koper, R. A. Van Santen, J. Electroanal. Chem. 472 (1999) 126, https://doi.org/10.1016/S0022-0728(99)00291-0.
doi: 10.1016/S0022-0728(99)00291-0
I. C. Man, H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. N rskov, J. Rossmeisl, ChemCatChem. 3 (2011) 1159, https://doi.org/10.1002/cctc.201000397.
doi: 10.1002/cctc.201000397
A. Michaelides, Z. P. Liu, C. J. Zhang, A. Alavi, D A. King, P. Hu, J. Am. Chem. Soc. 125 (2003) 3704, https://doi.org/10.1021/ja027366r.
doi: 10.1021/ja027366r
S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolb k, G. Jones, A. Toftelund, H. Falsig, M. Bj rketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. N rskov, T. Bligaard, Phys. Chem. Chem. Phys. 13 (2011) 20760, https://doi.org/10.1039/c1cp20547a.
doi: 10.1039/c1cp20547a
S. Wang, V. Vorotnikov, J. E. Sutton, D G. Vlachos, ACS Catal. 4 (2014) 604, https://doi.org/10.1021/cs400942u.
doi: 10.1021/cs400942u
S. J. Kurdziel, J. L. Lansford, D. G. Vlachos, J. Phys. Chem. C 125 (2021) 19780, https://doi.org/10.1021/acs.jpcc.1c05425.
doi: 10.1021/acs.jpcc.1c05425
S. A. Akhade, R. M. Nidzyn, G. Rostamikia, M. J. Janik, Catal. Today 312 (2018) 82, https://doi.org/10.1016/j.cattod.2018.03.048.
doi: 10.1016/j.cattod.2018.03.048
Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947.
doi: 10.1002/adma.202105947
X. Lin, X. Du, S. Wu, S. Zhen, W. Liu, C. Pei, P. Zhang, Z. J. Zhao, J. Gong, Nat. Commun. 15 (2024) 8169, https://doi.org/10.1038/s41467-024-52519-8.
doi: 10.1038/s41467-024-52519-8
C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 9 (2019) 1803913, https://doi.org/10.1002/aenm.201803913.
doi: 10.1002/aenm.201803913
J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 9 (2018) 4958, https://doi.org/10.1038/s41467-018-07288-6.
doi: 10.1038/s41467-018-07288-6
R. Wan, M. Luo, J. Wen, S. Liu, X. Kang, Y. Tian, J. Energy Chem. 69 (2022) 44, https://doi.org/10.1016/j.jechem.2021.12.045.
doi: 10.1016/j.jechem.2021.12.045
Lu Zhuoran , Li Shengkai , Lu Yuxuan , Wang Shuangyin , Zou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Tao Wang , Qin Dong , Cunpu Li , Zidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xiting Zhou , Zhipeng Han , Xinlei Zhang , Shixuan Zhu , Cheng Che , Liang Xu , Zhenyu Sun , Leiduan Hao , Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Yanhui Guo , Li Wei , Zhonglin Wen , Chaorong Qi , Huanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004
Zhao Lu , Hu Lv , Qinzhuang Liu , Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
Huasen Lu , Shixu Song , Qisen Jia , Guangbo Liu , Luhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Mingjie Lei , Wenting Hu , Kexin Lin , Xiujuan Sun , Haoshen Zhang , Ye Qian , Tongyue Kang , Xiulin Wu , Hailong Liao , Yuan Pan , Yuwei Zhang , Diye Wei , Ping Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409