Citation: Ruizhi Duan, Xiaomei Wang, Panwang Zhou, Yang Liu, Can Li. The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100111. doi: 10.1016/j.actphy.2025.100111 shu

The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces

  • Corresponding author: Can Li, canli@dicp.ac.cn
  • Received Date: 26 March 2025
    Revised Date: 16 May 2025
    Accepted Date: 2 June 2025

    Fund Project: the Fundamental Research Centre of Artificial Photosynthesis FReCAPthe National Key Research and Development Program of China 2021YFB4000300the National Natural Science Foundation of China 22102065the National Natural Science Foundation of China 22088102the National Natural Science Foundation of China 22372162the Natural Science Foundation of Gansu Province for Youth project, China 24JRRA281

  • Understanding the activity-determining factors governing the alkaline hydrogen evolution reaction (HER) on transition metal catalysts is indispensable for water electrolysis with renewable energy. However, it remains a critical challenge. Although hydroxyl adsorption has been proposed to influence alkaline HER performance, its exact mechanistic role and quantitative correlations remain elusive. Here, we systematically investigate the alkaline HER on ten transition metal surfaces using density functional theory (DFT), revealing that hydroxyl adsorption critically modulates both pathway selection and reaction energy barrier. However, hydroxyl adsorption energy alone cannot fully explain the anomalous activity of certain catalysts, especially Pt. To address this, we introduce a multi-parameter coupled descriptor (ECS) that integrates electron occupancy (E), adsorption configuration (C), and surface crystallographic (S), enabling a qualitative evaluation of catalytic activity. This descriptor successfully elucidates previously unexplained activity trends and demonstrates a good correlation with over 10 experimental datasets, including those involving single-atom alloy (SAA) catalysts, indicating its robustness beyond pure metals. Our findings provide a descriptor based on the key species of hydroxyl for rational catalyst design and screening, and offer a fundamental framework for advancing the development of high-performance alkaline HER catalysts.
  • 加载中
    1. [1]

      S. E. Hosseini, M. A. Wahid, Renew. Sustain. Energy Rev. 57 (2016) 850, https://doi.org/10.1016/j.rser.2015.12.112.  doi: 10.1016/j.rser.2015.12.112

    2. [2]

      M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Sch fer, Chem. Soc. Rev. 51 (2022) 4583, https://doi.org/10.1039/D0CS01079K.  doi: 10.1039/D0CS01079K

    3. [3]

      R. T. Liu, Z. L. Xu, F. M. Li, F. Y. Chen, J. Y. Yu, Y. Yan, Y. Chen, B. Y. Xia, Chem. Soc. Rev. 52 (2023) 5652, https://doi.org/10.1039/D2CS00681B.  doi: 10.1039/D2CS00681B

    4. [4]

      J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. J. Stimming, Electrochem. Soc. 152 (2005) J23, https://doi.org/10.1149/1.1856988.  doi: 10.1149/1.1856988

    5. [5]

      I. T. McCrum, Nat. Catal. 5 (2022) 846, https://doi.org/10.1038/s41929-022-00858-4.  doi: 10.1038/s41929-022-00858-4

    6. [6]

      A. H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong, C. Wan, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Catal. 5 (2022) 923, https://doi.org/10.1038/s41929-022-00851-x.  doi: 10.1038/s41929-022-00851-x

    7. [7]

      M. C. O. Monteiro, A. Goyal, P. Moerland, M. T. M. Koper, ACS Catal. 11(2021) 14328, https://doi.org/10.1021/acscatal.1c04268.  doi: 10.1021/acscatal.1c04268

    8. [8]

      Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 51 (2022) 9620, https://doi.org/10.1039/D2CS00038E.  doi: 10.1039/D2CS00038E

    9. [9]

      A. Lasia, A. J. Rami, Electroanal. Chem. Interfacial Electrochem. 294 (1990) 123, https://doi.org/10.1016/0022-0728(90)87140-F.  doi: 10.1016/0022-0728(90)87140-F

    10. [10]

      S. A. S. Machado, L. A. Avaca, Electrochim. Acta 39 (1994) 1385, https://doi.org/10.1016/0013-4686(94)E0003-I.  doi: 10.1016/0013-4686(94)E0003-I

    11. [11]

      W. G. Cui, F. Gao, G. Na, X. Wang, Z. Li, Y. Yang, Z. Niu, Y. Qu, D. Wang, H. Pan, Chem. Soc. Rev. 53 (2024) 10253, https://doi.org/10.1039/D4CS00370E.  doi: 10.1039/D4CS00370E

    12. [12]

      N. Govindarajan, A. Xu, K. Chan, Science. 375 (2022) 379, https://doi.org/10.1126/science.abj2421.  doi: 10.1126/science.abj2421

    13. [13]

      C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec, Y. Zheng, S. Z. Qiao, Chem. Soc. Rev. 53 (2024) 2022, https://doi.org/10.1039/D3CS00669G.  doi: 10.1039/D3CS00669G

    14. [14]

      V. J. Ovalle, M. M. J. Waegele, Phys. Chem. C 125 (2021) 18567, https://doi.org/10.1021/acs.jpcc.1c05921.  doi: 10.1021/acs.jpcc.1c05921

    15. [15]

      R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934.  doi: 10.1126/science.1211934

    16. [16]

      N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed. 51 (2012) 12495, https://doi.org/10.1002/anie.201204842.  doi: 10.1002/anie.201204842

    17. [17]

      Z. Zeng, K. C. Chang, J. Kubal, N. M. Markovic, J. Greeley, Nat. Energy 2 (2017) 17070, https://doi.org/10.1038/nenergy.2017.70.  doi: 10.1038/nenergy.2017.70

    18. [18]

      R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 11 (2012) 550, https://doi.org/10.1038/nmat3313.  doi: 10.1038/nmat3313

    19. [19]

      J. Staszak-Jirkovsk , C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 15 (2016) 197, https://doi.org/10.1038/nmat4481.  doi: 10.1038/nmat4481

    20. [20]

      I. T. McCrum, M. T. M. Koper, Nat. Energy 5 (2020) 891, https://doi.org/10.1038/s41560-020-00710-8.  doi: 10.1038/s41560-020-00710-8

    21. [21]

      X. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem. Int. Ed. 56 (2017) 15025, https://doi.org/10.1002/anie.201709455.  doi: 10.1002/anie.201709455

    22. [22]

      M. J. Janik, I. T. McCrum, M. T. M. Koper, J. Catal. 367 (2018) 332, https://doi.org/10.1016/j.jcat.2018.09.031.  doi: 10.1016/j.jcat.2018.09.031

    23. [23]

      I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2 (2017) 17031, https://doi.org/10.1038/nenergy.2017.31.  doi: 10.1038/nenergy.2017.31

    24. [24]

      C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu, D. Baumann, Z. Lin, S. Wang, J. Huang, A. H. Shah, X. Pan, T. Hu, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Mater. 22 (2023) 1022, https://doi.org/10.1038/s41563-023-01584-3.  doi: 10.1038/s41563-023-01584-3

    25. [25]

      A. H. Shah, Z. Zhang, C. Wan, S. Wang, A. Zhang, L. Wang, A. N. Alexandrova, Y. Huang, X. Duan, J. Am. Chem. Soc. 146 (2024) 9623, https://doi.org/10.1021/jacs.3c12934.  doi: 10.1021/jacs.3c12934

    26. [26]

      X. Wang, G. Long, B. Liu, Z. Li, W. Gao, P. Zhang, H. Zhang, X. Zhou, R. Duan, W. Hu, C. Li, Angew. Chem. Int. Ed. 135 (2023) e202301562, https://doi.org/10.1002/ange.202301562.  doi: 10.1002/ange.202301562

    27. [27]

      G. Kresse, J. Furthmüller, Phys. Rev. B. 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.  doi: 10.1103/PhysRevB.54.11169

    28. [28]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0.  doi: 10.1016/0927-0256(96)00008-0

    29. [29]

      P. E. Bl chl, Phys. Rev. B. 50 (1994) 17953, https://doi.org/10.1103/physrevb.50.17953.  doi: 10.1103/PhysRevB.50.17953

    30. [30]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.

    31. [31]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104, https://doi.org/10.1063/1.3382344.  doi: 10.1063/1.3382344

    32. [32]

      G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672.  doi: 10.1063/1.1329672

    33. [33]

      K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 140 (2014) 084106, https://doi.org/10.1063/1.4865107.  doi: 10.1063/1.4865107

    34. [34]

      R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 97 (1993) 8617, https://doi.org/10.1021/j100135a014.  doi: 10.1021/j100135a014

    35. [35]

      S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030, https://doi.org/10.1002/jcc.24300.  doi: 10.1002/jcc.24300

    36. [36]

      W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 6 (2013) 1509, https://doi.org/10.1039/c3ee00045a.  doi: 10.1039/c3ee00045a

    37. [37]

      J. K. N rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886, https://doi.org/10.1021/jp047349j.  doi: 10.1021/jp047349j

    38. [38]

      X. An, T. Yao, Y. Liu, G. Long, A. Wang, Z. Feng, M. Dupuis, C. Li, J. Phys. Chem. Lett. 14 (2023) 8121, https://doi.org/10.1021/acs.jpclett.3c02142.  doi: 10.1021/acs.jpclett.3c02142

    39. [39]

      S. Ghoshal, A. Ghosh, P. Roy, B. Ball, A. Pramanik, P. Sarkar, ACS Catal. 12 (2022) 15541, https://doi.org/10.1021/acscatal.2c04527.

    40. [40]

      J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Angew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518.  doi: 10.1002/anie.202202518

    41. [41]

      M. T. M. Koper, R. A. Van Santen, J. Electroanal. Chem. 472 (1999) 126, https://doi.org/10.1016/S0022-0728(99)00291-0.  doi: 10.1016/S0022-0728(99)00291-0

    42. [42]

      I. C. Man, H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. N rskov, J. Rossmeisl, ChemCatChem. 3 (2011) 1159, https://doi.org/10.1002/cctc.201000397.  doi: 10.1002/cctc.201000397

    43. [43]

      A. Michaelides, Z. P. Liu, C. J. Zhang, A. Alavi, D A. King, P. Hu, J. Am. Chem. Soc. 125 (2003) 3704, https://doi.org/10.1021/ja027366r.  doi: 10.1021/ja027366r

    44. [44]

      S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolb k, G. Jones, A. Toftelund, H. Falsig, M. Bj rketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. N rskov, T. Bligaard, Phys. Chem. Chem. Phys. 13 (2011) 20760, https://doi.org/10.1039/c1cp20547a.  doi: 10.1039/c1cp20547a

    45. [45]

      S. Wang, V. Vorotnikov, J. E. Sutton, D G. Vlachos, ACS Catal. 4 (2014) 604, https://doi.org/10.1021/cs400942u.  doi: 10.1021/cs400942u

    46. [46]

      S. J. Kurdziel, J. L. Lansford, D. G. Vlachos, J. Phys. Chem. C 125 (2021) 19780, https://doi.org/10.1021/acs.jpcc.1c05425.  doi: 10.1021/acs.jpcc.1c05425

    47. [47]

      S. A. Akhade, R. M. Nidzyn, G. Rostamikia, M. J. Janik, Catal. Today 312 (2018) 82, https://doi.org/10.1016/j.cattod.2018.03.048.  doi: 10.1016/j.cattod.2018.03.048

    48. [48]

      Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947.  doi: 10.1002/adma.202105947

    49. [49]

      X. Lin, X. Du, S. Wu, S. Zhen, W. Liu, C. Pei, P. Zhang, Z. J. Zhao, J. Gong, Nat. Commun. 15 (2024) 8169, https://doi.org/10.1038/s41467-024-52519-8.  doi: 10.1038/s41467-024-52519-8

    50. [50]

      C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 9 (2019) 1803913, https://doi.org/10.1002/aenm.201803913.  doi: 10.1002/aenm.201803913

    51. [51]

      J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 9 (2018) 4958, https://doi.org/10.1038/s41467-018-07288-6.  doi: 10.1038/s41467-018-07288-6

    52. [52]

      R. Wan, M. Luo, J. Wen, S. Liu, X. Kang, Y. Tian, J. Energy Chem. 69 (2022) 44, https://doi.org/10.1016/j.jechem.2021.12.045.  doi: 10.1016/j.jechem.2021.12.045

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    9. [9]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    10. [10]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    11. [11]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    13. [13]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    14. [14]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    15. [15]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    16. [16]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    19. [19]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(0)
  • Abstract views(72)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return