Valorization strategies for electrodegradation of nitrogenous wastes in sewage
- Corresponding author: Zhong-Yong Yuan, zyyuan@nankai.edu.cn
Citation:
Minglei Sun, Zhong-Yong Yuan. Valorization strategies for electrodegradation of nitrogenous wastes in sewage[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100108.
doi:
10.1016/j.actphy.2025.100108
N. Gruber, J.N. Galloway, Nature 451 (2008) 293, https://doi.org/10.1038/nature06592.
doi: 10.1038/nature06592
N. Lehnert, B.W. Musselman, L.C. Seefeldt, Chem. Soc. Rev. 50 (2021) 3640, https://doi.org/10.1039/D0CS00923G.
doi: 10.1039/D0CS00923G
H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Chem. Soc. Rev. 51 (2022) 2710, https://doi.org/10.1039/D1CS00857A.
doi: 10.1039/D1CS00857A
N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Nat. Rev. Chem. 2 (2018) 278, https://doi.org/10.1038/s41570-018-0041-7.
doi: 10.1038/s41570-018-0041-7
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611, https://doi.org/10.1126/science.aar6611.
doi: 10.1126/science.aar6611
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327 (2010) 812, https://doi.org/10.1126/science.1185383.
doi: 10.1126/science.1185383
S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, J. Environ. Chem. Eng. 10 (2022) 107387, https://doi.org/10.1016/j.jece.2022.107387.
doi: 10.1016/j.jece.2022.107387
W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658, https://doi.org/10.1039/C9CS00159J.
doi: 10.1039/C9CS00159J
W.P.F. Barber, Water Res. 104 (2016) 53, https://doi.org/10.1016/j.watres.2016.07.069.
doi: 10.1016/j.watres.2016.07.069
A. Matei, G. Racoviteanu, IOP Conf. Ser.: Earth Environ. Sci. 664 (2021) 012024, https://doi.org/10.1088/1755-1315/664/1/012024.
doi: 10.1088/1755-1315/664/1/012024
Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 50 (2021) 6720, https://doi.org/10.1039/d1cs00116g.
doi: 10.1039/d1cs00116g
J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589, https://doi.org/10.1021/cr60316a001.
doi: 10.1021/cr60316a001
H.Y. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56 (2021) 470, https://doi.org/10.1016/j.jechem.2020.08.030.
doi: 10.1016/j.jechem.2020.08.030
H.Y. Wang, J.T. Ren, M.L. Sun, W.W. Tian, Y. Feng, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2302515, https://doi.org/10.1002/aenm.202302515.
doi: 10.1002/aenm.202302515
R. Lan, S.W. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438, https://doi.org/10.1039/b924786f.
doi: 10.1039/b924786f
T.Z. Wang, X.J. Cao, L.F. Jiao, Angew. Chem. Int. Ed. 61 (2022) e202213328, https://doi.org/10.1002/anie.202213328.
doi: 10.1002/anie.202213328
X. Zhang, Y.T. Wang, Y.B. Wang, Y.M. Guo, X.Y. Xie, Y.F. Yu, B. Zhang, Chem. Commun. 58 (2022) 2777, https://doi.org/10.1039/D1CC06690K.
doi: 10.1039/D1CC06690K
S.S. Liu, M.F. Wang, Q.Y. Cheng, Y.Z. He, J.J. Ni, J. Liu, C.L. Yan, T. Qian, ACS Nano 16 (2022) 17911, https://doi.org/10.1021/acsnano.2c09168.
doi: 10.1021/acsnano.2c09168
X.Y. Peng, L.B. Zeng, D.S. Wang, Z.B. Liu, Y. Li, Z.J. Li, B. Yang, L.C. Lei, L.M. Dai, Y. Hou, Chem. Soc. Rev. 52 (2023) 2193, https://doi.org/10.1039/D2CS00381C.
doi: 10.1039/D2CS00381C
Y. Feng, J.T. Ren, M.L. Sun, Z.Y. Yuan, Chem. Sci. 16 (4) (2025) 1528, https://doi.org/10.1039/D4SC05936K.
doi: 10.1039/D4SC05936K
J.W. Liu, Z.Y. Li, C.D. Lv, X.Y. Tan, C. Lee, X.J. Loh, M.H. Chua, Z.B. Li, H.G. Pan, J. Chen, Q. Zhu, J.W. Xu, Q.Y. Yan, Mater. Today 73 (2024) 208, https://doi.org/10.1016/j.mattod.2024.01.009.
doi: 10.1016/j.mattod.2024.01.009
Y.Y. Zhang, Q. Yu, X. Wang, W. Guo, Chem. Eng. J. 474 (2023) 145899, https://doi.org/10.1016/j.cej.2023.145899.
doi: 10.1016/j.cej.2023.145899
M.L. Sun, H.Y. Wang, Y. Feng, J.T. Ren, L. Wang, Z.Y. Yuan, Chem. Soc. Rev. 53 (2024) 11908, https://doi.org/10.1039/D4CS00517A.
doi: 10.1039/D4CS00517A
Z.J. Yan, Q.H. Yang, C.P. Yang, J. Mater. Chem. A 12 (2024) 24746, https://doi.org/10.1039/D4TA05108D.
doi: 10.1039/D4TA05108D
F.X. Yan, H.Y. Wang, Y. Feng, H. Wang, Z.Y. Yuan, J. Energy Chem. 98 (2024) 541, https://doi.org/10.1016/j.jechem.2024.06.054.
doi: 10.1016/j.jechem.2024.06.054
R. Hao, J.T. Ren, X.W. Lv, W. Li, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 49 (2020) 14, https://doi.org/10.1016/j.jechem.2020.01.007.
doi: 10.1016/j.jechem.2020.01.007
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang, Y. Liu, D.H. Kim, Y. Liu, Z. Lin, Chem. Soc. Rev. 53 (2024) 4877, https://doi.org/10.1039/d3cs00295k.
doi: 10.1039/d3cs00295k
X.W. Lv, Y.P. Liu, W.W. Tian, L.J. Gao, Z.Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055.
doi: 10.1016/j.jechem.2020.02.055
J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Adv. Sci. 5 (2018) 1700691, https://doi.org/10.1002/advs.201700691.
doi: 10.1002/advs.201700691
Y. Guo, R. Zhang, S.C. Zhang, Y.W. Zhao, Q. Yang, Z.D. Huang, B.B. Dong, C.Y. Zhi, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d.
doi: 10.1039/d1ee00806d
R. Zhang, S.C. Zhang, Y. Guo, C. Li, J.H. Liu, Z.D. Huang, Y.W. Zhao, Y.Y. Li, C.Y. Zhi, Energy Environ. Sci. 15 (2022) 3024, https://doi.org/10.1039/d2ee00686c.
doi: 10.1039/d2ee00686c
Y. Feng, J.T. Ren, Y.X. Song, W.W. Tian, H.Y. Wang, L. Wang, M.L. Sun, Z.Y. Yuan, CCS Chem. 7 (2024) 1344, https://doi.org/10.31635/ccschem.024.202404299.
doi: 10.31635/ccschem.024.202404299
S.L. Zhou, Y. Dai, Q. Song, L. Lu, X. Yu, ACS Appl. Mater. Inter. 16 (2024) 20551, https://doi.org/10.1021/acsami.4c01739.
doi: 10.1021/acsami.4c01739
C. Peng, M.Y. Wang, S. Li, X.Z. Zeng, J.Y. Wang, W.H. Wang, Z.R. Zhang, M.F. Ye, X.W. Wei, K.L. Wu, K. Zhang, J. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202408771, https://doi.org/10.1002/anie.202408771.
doi: 10.1002/anie.202408771
D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56, https://doi.org/10.1002/ceat.200401832.
doi: 10.1002/ceat.200401832
W.Q. Yu, J.Y. Yu, M. Huang, Y.J. Wang, Y.J. Wang, J.W. Li, H. Liu, W.J. Zhou, Energy Environ. Sci. 2991‒3001 (2023) 2991, https://doi.org/10.1039/d3ee01301d.
doi: 10.1039/d3ee01301d
F. Gong, S.H. Hong, J.M. Song, C.Z. Liu, S.L. Liu, J.J. Feng, Q.W. Wu, Y.L. Xiong, L. Medic-Pejic, Y. Cheng, Z.Q. Zhang, J. Mater. Chem. A 13 (2025) 3435, https://doi.org/10.1039/d4ta07666d.
doi: 10.1039/d4ta07666d
S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu, W. Liu, Nanoscale 15 (2023) 19577, https://doi.org/10.1039/d3nr05254k.
doi: 10.1039/d3nr05254k
Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Int. J. Hydrog. Energy 71 (2024) 820, https://doi.org/10.1016/j.ijhydene.2024.05.299.
doi: 10.1016/j.ijhydene.2024.05.299
Y.L. Fu, Y.L. Li, F.Q. Fan, B.B. Chen, X.J. Hou, Y.H. Li, H. Li, Y. Fu, W. Qi, ACS Catal. 15 (2025) 6918, https://doi.org/10.1021/acscatal.4c07320.
doi: 10.1021/acscatal.4c07320
J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Liu, J. Luo, X.J. Liu, Inorg. Chem. Commun. 151 (2023) 110621, https://doi.org/10.1016/j.inoche.2023.110621.
doi: 10.1016/j.inoche.2023.110621
Y.N. Zheng, Y. Tan, X. Yu, H. Yao, S.J. Hu, J. Hu, Z. Chen, X.H. Guo, Small 20 (2024) 2312136, https://doi.org/10.1002/smll.202312136.
doi: 10.1002/smll.202312136
Z.J. Cui, P.W. Zhao, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Adv. Funct. Mater. 34 (2024) 2410941, https://doi.org/10.1002/adfm.202410941.
doi: 10.1002/adfm.202410941
J.F. Liu, S.W. Du, W.J. Fan, Q.L. Li, Q. Yang, L. Luo, J.N. Li, F.X. Zhang, Energy Environ. Sci. 17 (2024) 9093, https://doi.org/10.1039/D4EE03987D.
doi: 10.1039/D4EE03987D
W.J. Zhu, F. Yao, Q.F. Wu, Q. Jiang, J.X. Wang, Z.C. Wang, H.F. Liang, Energy Environ. Sci. 16 (2023) 2483, https://doi.org/10.1039/d3ee00371j.
doi: 10.1039/d3ee00371j
Y.L. Liu, J. Zhang, R. Bai, Y. Zhao, Y.T. Zhou, X. Zhao, J. Colloid Interface Sci. 675 (2024) 526, https://doi.org/10.1016/j.jcis.2024.06.213.
doi: 10.1016/j.jcis.2024.06.213
L.M. Zhou, X.Q. Chen, S.J. Zhu, K. You, Z.J. Wang, R. Fan, J. Li, Y.F. Yuan, X. Wang, J.C. Wang, Y.H. Chen, H.L. Jin, S. Wang, J.J. Lv, Angew. Chem. Int. Ed. 63 (2024) e202401924, https://doi.org/10.1002/anie.202401924.
doi: 10.1002/anie.202401924
N. Shang, K.L. Wang, M.H. Wei, Y.Y. Zuo, P.F. Zhang, H.W. Wang, Z. Chen, P. Pei, J. Mater. Chem. A 10 (2022) 16369, https://doi.org/10.1039/D2TA04294K.
doi: 10.1039/D2TA04294K
Y. Feng, L. Chen, Z. Yuan, Inorg. Chem. Front. 10 (2023) 5225, https://doi.org/10.1039/D3QI01113E.
doi: 10.1039/D3QI01113E
Z. Bi, J. Hu, M. Xu, H. Zhang, Y. Zhou, G. Hu, Angew. Chem. Int. Ed. 63 (2024) e202313434, https://doi.org/10.1002/anie.202313434.
doi: 10.1002/anie.202313434
W.Q. Yu, Y.J. Wang, H. Tan, M. Huang, J.Y. Yu, L.L. Chen, J.G. Wang, H. Liu, W.J. Zhou, Adv. Energy Mater. 14 (2024) 2402970, https://doi.org/10.1002/aenm.202402970.
doi: 10.1002/aenm.202402970
R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z.D. Huang, C. Peng, C.Y. Zhi, Nat. Commun. 14 (2023) 8036, https://doi.org/10.1038/s41467-023-43897-6.
doi: 10.1038/s41467-023-43897-6
P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Joule 5 (2021) 290, https://doi.org/10.1016/j.joule.2020.12.025.
doi: 10.1016/j.joule.2020.12.025
I. Katsounaros, M. Dortsiou, G. Kyriacou, J. Hazard. Mater. 171 (2009) 323, https://doi.org/10.1016/j.jhazmat.2009.06.005.
doi: 10.1016/j.jhazmat.2009.06.005
R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065, https://doi.org/10.1016/j.cej.2019.122065.
doi: 10.1016/j.cej.2019.122065
L.H. Su, K. Li, H.B. Zhang, M.H. Fan, D.W. Ying, T.H. Sun, Y.L. Wang, J.P. Jia, Water Res. 120 (2017) 1, https://doi.org/10.1016/j.watres.2017.04.069.
doi: 10.1016/j.watres.2017.04.069
Y.Y. Wei, J.J. Huang, H. Chen, S.J. Zheng, R.W. Huang, X.Y. Dong, L.K. Li, A. Cao, J.M. Cai, S.Q. Zang, Adv. Mater. 36 (2024) 2404774, https://doi.org/10.1002/adma.202404774.
doi: 10.1002/adma.202404774
R. Huo, M. Li, W.B. Zheng, P.W. Ming, B. Li, C.M. Zhang, Z.L. Li, Energy Convers. Manag. 317 (2024) 118819, https://doi.org/10.1016/j.enconman.2024.118819.
doi: 10.1016/j.enconman.2024.118819
Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178, https://doi.org/10.1016/j.mattod.2019.06.005.
doi: 10.1016/j.mattod.2019.06.005
S.J. Yao, S.K. Wolfson, B.K. Ahn, C.C. Liu, Nature 241 (1973) 471, https://doi.org/10.1038/241471a0.
doi: 10.1038/241471a0
C. Hong, D. Park, Y. Gu, S. Park, D. Lim, D. Seo, J. Han, K. Park, Int. J. Hydrog. Energy 87 (2024) 1367, https://doi.org/10.1016/j.ijhydene.2024.09.128.
doi: 10.1016/j.ijhydene.2024.09.128
S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 208 (2012) 257, https://doi.org/10.1016/j.jpowsour.2012.02.043.
doi: 10.1016/j.jpowsour.2012.02.043
D.K. Bora, A. Faik, Curr. Opin. Green Sustain. Chem. 48 (2024) 100944, https://doi.org/10.1016/j.cogsc.2024.100944.
doi: 10.1016/j.cogsc.2024.100944
T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki, S. Arai, D. Matsumura, Y. Nishihata, P. Atanassov, H. Tanaka, J. Power Sources 234 (2013) 252, https://doi.org/10.1016/j.jpowsour.2013.01.181.
doi: 10.1016/j.jpowsour.2013.01.181
S. Behera, C. Chauhan, B. Mondal, Small 20 (2024) 2311946, https://doi.org/10.1002/smll.202311946.
doi: 10.1002/smll.202311946
T.Y. Burshtein, Y. Yasman, L. Muñoz-Moene, J.H. Zagal, D. Eisenberg, ACS Catal. 14 (2024) 2264, https://doi.org/10.1021/acscatal.3c05657.
doi: 10.1021/acscatal.3c05657
A.S. Meke, I. Dincer, Int. J. Hydrog. Energy 88 (2024) 1123, https://doi.org/10.1016/j.ijhydene.2024.09.240.
doi: 10.1016/j.ijhydene.2024.09.240
I. Amin, S.A. Bhat, M.M. Bhat, F.A. Sofi, A.Y. Bhat, P.P. Ingole, R. Mondal, M.O. Thotiyl, M.A. Bhat, New J. Chem. 47 (2023) 22146, https://doi.org/10.1039/D3NJ04229D.
doi: 10.1039/D3NJ04229D
K. Yang, L.J. Hao, Y.W. Hou, J. Zhang, J.H. Yang, Int. J. Hydrog. Energy 51 (2024) 966, https://doi.org/10.1016/j.ijhydene.2023.10.279.
doi: 10.1016/j.ijhydene.2023.10.279
J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C 119 (2015) 14692, https://doi.org/10.1021/jp512981f.
doi: 10.1021/jp512981f
Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261, https://doi.org/10.1016/j.electacta.2018.01.045.
doi: 10.1016/j.electacta.2018.01.045
D.N. Stephens, M.T. Mock, Eur. J. Inorg. Chem. 27 (2024) e202400039, https://doi.org/10.1002/ejic.202400039.
doi: 10.1002/ejic.202400039
V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199, https://doi.org/10.1016/j.electacta.2008.02.054.
doi: 10.1016/j.electacta.2008.02.054
L. Zhang, W.X. Niu, W.Y. Gao, L.M. Qi, J.M. Zhao, M. Xu, G.B. Xu, Electrochem. Commun. 37 (2013) 57, https://doi.org/10.1016/j.elecom.2013.10.006.
doi: 10.1016/j.elecom.2013.10.006
D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Math. Phys. Eng. Sci. 471 (2015) 20140792, https://doi.org/10.1098/rspa.2014.0792.
doi: 10.1098/rspa.2014.0792
C.J. Huang, H.M. Xu, T.Y. Shuai, Q.N. Zhan, Z.J. Zhang, G.R. Li, Small 19 (2023) e2301130, https://doi.org/10.1002/smll.202301130.
doi: 10.1002/smll.202301130
V. Vedharathinam, G.G. Botte, J. Phys. Chem. C 118 (2014) 21806, https://doi.org/10.1021/jp5052529.
doi: 10.1021/jp5052529
S. Barik, G.P. Kharabe, P.P. Samal, R.R. Urkude, S. Kumar, A. Yoyakki, C.P. Vinod, S. Krishnamurty, S. Kurungot, Small 20 (2024) 2406589, https://doi.org/10.1002/smll.202406589.
doi: 10.1002/smll.202406589
L.Y. Gao, H.R. Sun, H. Sun, Y.S. Wang, Y.Z. Li, Y. Lu, D.J. Zhou, X.M. Sun, W. Liu, Appl. Catal. B 358 (2024) 124287, https://doi.org/10.1016/j.apcatb.2024.124287.
doi: 10.1016/j.apcatb.2024.124287
P. Basumatary, D. Konwar, Y.S. Yoon, Electrochim. Acta 261 (2018) 78, https://doi.org/10.1016/j.electacta.2017.12.123.
doi: 10.1016/j.electacta.2017.12.123
E.T. Sayed, T. Eisa, H.O. Mohamed, M.A. Abdelkareem, A. Allagui, H. Alawadhi, K.J. Chae, J. Power Sources 417 (2019) 159, https://doi.org/10.1016/j.jpowsour.2018.12.024.
doi: 10.1016/j.jpowsour.2018.12.024
G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 4 (2017) 1600179, https://doi.org/10.1002/advs.201600179.
doi: 10.1002/advs.201600179
F. Guo, D.X. Cao, M.M. Du, K. Ye, G.L. Wang, W.P. Zhang, Y.Y. Gao, K. Cheng, J. Power Sources 307 (2016) 697, https://doi.org/10.1016/j.jpowsour.2016.01.042.
doi: 10.1016/j.jpowsour.2016.01.042
H.M. Zhang, W.Y. Chen, H.L. Wang, X. Tong, Y.F. Wang, X. Yang, Z.C. Wu, Z.M. Liu, Int. J. Hydrog. Energy 47 (2022) 16080, https://doi.org/10.1016/j.ijhydene.2022.03.139.
doi: 10.1016/j.ijhydene.2022.03.139
Y.M.T.A. Putri, T.W. Chamberlain, V. Degirmenci, J. Gunlazuardi, Y.K. Krisnandi, R.I. Walton, T.A. Ivandini, ACS Appl. Energy Mater. 6 (2023) 2497, https://doi.org/10.1021/acsaem.2c03938.
doi: 10.1021/acsaem.2c03938
X. Yin, K. Zhu, K. Ye, J. Yan, D. Cao, D. Zhang, J. Yao, G. Wang, J. Colloid Interf. Sci. 654 (2024) 36, https://doi.org/10.1016/j.jcis.2023.10.011.
doi: 10.1016/j.jcis.2023.10.011
Y.J. Cao, Y. Guo, Z.J. Hu, F.K. Gui, Y.K. Lei, J. Ni, C.M. Zhang, Q.F. Xiao, Energy Fuels 38 (2024) 14645, https://doi.org/10.1021/acs.energyfuels.4c02183.
doi: 10.1021/acs.energyfuels.4c02183
X. Li, H.M. Zheng, Y.J. Liao, K.M. Huang, Y.B. Ye, H.R. Xin, H.P. Luo, G.L. Liu, ACS Sustain. Chem. Eng. 12 (2024) 3621, https://doi.org/10.1021/acssuschemeng.3c06691.
doi: 10.1021/acssuschemeng.3c06691
S. Nangan, Y. Ding, A.Z. Alhakemy, Y. Liu, Z. Wen, Appl. Catal. B 286 (2021) 119892, https://doi.org/10.1016/j.apcatb.2021.119892.
doi: 10.1016/j.apcatb.2021.119892
W. Xu, H.M. Zhang, G. Li, Z.C. Wu, J. Electroanal. Chem. 764 (2016) 38, https://doi.org/10.1016/j.jelechem.2016.01.013.
doi: 10.1016/j.jelechem.2016.01.013
W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen, C. Chen, J. Fei, Y. Chen, Z. Wang, H. Liang, Angew. Chem. Int. Ed. 62 (2023) e202300390, https://doi.org/10.1002/anie.202300390.
doi: 10.1002/anie.202300390
Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Nano Energy 78 (2020) 105270, https://doi.org/doi.org/10.1016/j.nanoen.2020.105270.
doi: 10.1016/j.nanoen.2020.105270
H.Y. Wang, J.T. Ren, L. Wang, M.L. Sun, H.M. Yang, X.W. Lv, Z.Y. Yuan, J. Energy Chem. 75 (2022) 66, https://doi.org/10.1016/j.jechem.2022.08.019.
doi: 10.1016/j.jechem.2022.08.019
H.M. Yang, H.Y. Wang, S.X. Zhai, J.T. Ren, Z.Y. Yuan, Chem. Eng. J. 489 (2024) 151236, https://doi.org/10.1016/j.cej.2024.151236.
doi: 10.1016/j.cej.2024.151236
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 12 (2021) 4182, https://doi.org/10.1038/s41467-021-24529-3.
doi: 10.1038/s41467-021-24529-3
H.Y. Wang, L. Wang, J.T. Ren, W. Tian, M.L. Sun, Y. Feng, Z.Y. Yuan, ACS Nano 17 (2023) 10965, https://doi.org/10.1021/acsnano.3c03095.
doi: 10.1021/acsnano.3c03095
X.W. Lv, W.W. Tian, Z.Y. Yuan, Electro. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1.
doi: 10.1007/s41918-022-00159-1
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842, https://doi.org/10.1002/anie.201608899.
doi: 10.1002/anie.201608899
X.Y. Zhang, G. Ma, L.L. Shui, G.F. Zhou, X. Wang, J. Energy Chem. 72 (2022) 88, https://doi.org/10.1016/j.jechem.2022.04.045.
doi: 10.1016/j.jechem.2022.04.045
H.Y. Wang, M.L. Sun, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2022) 2203568, https://doi.org/10.1002/aenm.202203568.
doi: 10.1002/aenm.202203568
L. Chen, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2023) 2203720, https://doi.org/10.1002/aenm.202203720.
doi: 10.1002/aenm.202203720
H.M. Yang, H.Y. Wang, M.L. Sun, Z.Y. Yuan, Chem. Eng. J. 475 (2023) 146134, https://doi.org/10.1016/j.cej.2023.146134.
doi: 10.1016/j.cej.2023.146134
R.Q. Xu, R.B. Sun, H.Q. Xu, G. Xie, J.J. Ge, J. Mater. Chem. A 12 (2024) 26316, https://doi.org/10.1039/D4TA03382E.
doi: 10.1039/D4TA03382E
H.Y. Wang, F.X. Yan, H. Wang, S.X. Zhai, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2402611, https://doi.org/10.1002/aenm.202402611.
doi: 10.1002/aenm.202402611
X.L. Sun, J. Liu, Y.M. Du, Y.R. Liu, W.N. Wang, D.H. Chen, R.Y. Zhang, L. Wang, ACS Catal. 14 (2024) 17421, https://doi.org/10.1021/acscatal.4c05825.
doi: 10.1021/acscatal.4c05825
S. Ajmal, A. Rasheed, W.X. Sheng, G. Dastgeer, Q.A.T. Nguyen, P.H. Wang, P. Chen, S.J. Liu, V.Q. Bui, M.Z. Zhu, P. Li, D.S. Wang, Adv. Mater. 37 (2024) 2412173, https://doi.org/10.1002/adma.202412173.
doi: 10.1002/adma.202412173
Z.J. Zhao, H. Zhao, X.Q. Du, X.S. Zhang, Int. J. Hydrog. Energy 88 (2024) 313, https://doi.org/10.1016/j.ijhydene.2024.09.193.
doi: 10.1016/j.ijhydene.2024.09.193
S.Y. Tang, Z.P. Zhang, Q.J. Lv, X.Q. Pan, J.L. Dong, L.Y. Liu, Y.Y. Wan, J. Han, F.Z. Song, ACS Appl. Mater. Inter. 16 (2024) 66008, https://doi.org/10.1021/acsami.4c11228.
doi: 10.1021/acsami.4c11228
Q.H. Quan, X.L. Li, C. Song, Q.S. Jia, H.S. Lu, X.J. Cui, G.B. Liu, X. Chen, L.H. Jiang, Chem. Eng. J. 488 (2024) 150897, https://doi.org/10.1016/j.cej.2024.150897.
doi: 10.1016/j.cej.2024.150897
Y.X. Qin, Y.Y. Wang, G.Q. Jin, X.L. Tong, N.J. Yang, Adv. Energy Mater. 14 (2024) 2402429, https://doi.org/10.1002/aenm.202402429.
doi: 10.1002/aenm.202402429
Y.P. Huang, X. Zhang, L.F. Li, M. Humayun, H.M. Zhang, X.F. Xu, S.P. Anthony, Z.H. Chen, J.R. Zeng, D.V. Shtansky, K.F. Huo, H.S. Song, C.D. Wang, W.J. Zhang, Adv. Funct. Mater. (2024) 2401011, https://doi.org/10.1002/adfm.202401011.
doi: 10.1002/adfm.202401011
Y.F. Yang, X.Y. Li, G.L. Liu, H.X. Liu, Y.H. Shi, C.M. Ye, Z. Fang, M.X. Ye, J.F. Shen, Adv. Mater. 36 (2024) 2307979, https://doi.org/10.1002/adma.202307979.
doi: 10.1002/adma.202307979
M.X. Du, Y.J. Ji, Y.Y. Li, S.X. Liu, J.Q. Yan, Adv. Funct. Mater. 34 (2024) 2402776, https://doi.org/10.1002/adfm.202402776.
doi: 10.1002/adfm.202402776
Z.G. Yuan, X. Sun, B. Gao, Z.g. Fan, P.x. Yang, Z.B. Feng, Chem. Eng. J. 499 (2024) 156647, https://doi.org/10.1016/j.cej.2024.156647.
doi: 10.1016/j.cej.2024.156647
N. Vadivel, A.P. Murthy, Small 20 (2024) 2407845, https://doi.org/10.1002/smll.202407845.
doi: 10.1002/smll.202407845
Y. Tong, P.Z. Chen, Inorg. Chem. Front. 11 (2024) 6218, https://doi.org/10.1039/D4QI01789G.
doi: 10.1039/D4QI01789G
G. Feng, Y. Pan, D. Su, D.G. Xia, Adv. Mater. 36 (2024) 2309715, https://doi.org/10.1002/adma.202309715.
doi: 10.1002/adma.202309715
Z.K. Shi, Y. Zhang, W. Guo, Z.H. Niu, Y. Chen, J.L. Huang, Adv. Funct. Mater. (2024) 2414935, https://doi.org/10.1002/adfm.202414935.
doi: 10.1002/adfm.202414935
M.A. Ahsan, T. He, J.C. Noveron, K. Reuter, A.R. Puente-Santiago, R. Luque, Chem. Soc. Rev. 51 (2022) 812, https://doi.org/10.1039/D1CS00498K.
doi: 10.1039/D1CS00498K
Y. Feng, J.T. Ren, H.Y. Wang, L. Wang, Z.Y. Yuan, Inorg. Chem. Front. 10 (2023) 4510, https://doi.org/10.1039/D3QI00795B.
doi: 10.1039/D3QI00795B
J.T. Ren, Y.D. Ying, Y.P. Liu, W. Li, Z.Y. Yuan, J. Energy Chem. 71 (2022) 619, https://doi.org/10.1016/j.jechem.2022.03.048.
doi: 10.1016/j.jechem.2022.03.048
H.Y. Wang, S.X. Zhai, H. Wang, F.X. Yan, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, ACS Nano 18 (2024) 19682, https://doi.org/10.1021/acsnano.4c04831.
doi: 10.1021/acsnano.4c04831
W.X. Wang, J.J. Zhang, J.S. Rong, L.L. Chen, S.Q. Cui, J. Colloid Interface Sci. 680 (2025) 214, https://doi.org/10.1016/j.jcis.2024.11.098.
doi: 10.1016/j.jcis.2024.11.098
H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Nanomicro Lett. 15 (2023) 155, https://doi.org/10.1007/s40820-023-01128-z.
doi: 10.1007/s40820-023-01128-z
F.X. Yan, H.Y. Wang, L. Wang, H. Wang, Z.Y. Yuan, Inorg. Chem. Front. 11 (2024) 6376, https://doi.org/10.1039/D4QI01740D.
doi: 10.1039/D4QI01740D
J.Q. Xu, M.X. Zhong, S. Yan, X.J. Chen, W.M. Li, M.J. Xu, C. Wang, X.F. Lu, J. Colloid Interface Sci. 679 (2025) 171, https://doi.org/10.1016/j.jcis.2024.09.227.
doi: 10.1016/j.jcis.2024.09.227
Y.Y. Feng, Q.M. Shi, J. Lin, E. Chai, X. Zhang, Z.L. Liu, L. Jiao, Y.B. Wang, Adv. Mater. 34 (2022) 2207747, https://doi.org/10.1002/adma.202207747.
doi: 10.1002/adma.202207747
C.J. Moon, V. Maheskumar, A. Min, A. Kumar, S. Lee, R.A. Senthil, M. Ubaidullah, M.Y. Choi, Small (2024) 2408569, https://doi.org/10.1002/smll.202408569.
doi: 10.1002/smll.202408569
G.Q. Ma, L.C. Miao, Y. Dong, W.T. Yuan, X.Y. Nie, S.L. Di, Y.Y. Wang, L.B. Wang, N. Zhang, Energy Stor. Mater. 47 (2022) 203, https://doi.org/10.1016/j.ensm.2022.02.019.
doi: 10.1016/j.ensm.2022.02.019
P. Thakur, K. Alam, A. Roy, C. Downing, V. Nicolosi, P. Sen, T.N. Narayanan, ACS Appl. Mater. Inter. 13 (2021) 33112, https://doi.org/10.1021/acsami.1c08300.
doi: 10.1021/acsami.1c08300
F.Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y.G. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S.Y. Hao, P. Zhu, H.T. Wang, Nat. Catal. 7 (2024) 1032, https://doi.org/10.1038/s41929-024-01200-w.
doi: 10.1038/s41929-024-01200-w
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 442 (1998) 67, https://doi.org/10.1016/S0022-0728(97)00504-4.
doi: 10.1016/S0022-0728(97)00504-4
M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 2348, https://doi.org/10.1149/1.1838641.
doi: 10.1149/1.1838641
X.R. Zhu, M. Ge, X.L. Yuan, Y.J. Wang, Y.F. Tang, Appl. Catal. B 363 (2025) 124826, https://doi.org/10.1016/j.apcatb.2024.124826.
doi: 10.1016/j.apcatb.2024.124826
Y. Zhong, H.L. Xiong, J.X. Low, R. Long, Y.J. Xiong, eScience 3 (2023) 100086, https://doi.org/10.1016/j.esci.2022.11.002.
doi: 10.1016/j.esci.2022.11.002
Z.X. Tao, C.L. Rooney, Y.Y. Liang, H.L. Wang, J. Am. Chem. Soc. 143 (2021) 19630, https://doi.org/10.1021/jacs.1c10714.
doi: 10.1021/jacs.1c10714
M. Jouny, J.J. Lv, T. Cheng, B.H. Ko, J.J. Zhu, W.A. Goddard, F. Jiao, Nat. Chem. 11 (2019) 846, https://doi.org/10.1038/s41557-019-0312-z.
doi: 10.1038/s41557-019-0312-z
Z.X. Tao, Y.S. Wu, Z.S. Wu, B. Shang, C. Rooney, H.L. Wang, J. Energy Chem. 65 (2022) 367, https://doi.org/10.1016/j.jechem.2021.06.007.
doi: 10.1016/j.jechem.2021.06.007
Y.S. Wu, Z. Jiang, Z.C. Lin, Y.Y. Liang, H.L. Wang, Nat. Sustain. 4 (2021) 725, https://doi.org/10.1038/s41893-021-00705-7.
doi: 10.1038/s41893-021-00705-7
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143, https://doi.org/10.1016/0022-0728(95)03992-P.
doi: 10.1016/0022-0728(95)03992-P
N.N. Meng, Y.M. Huang, Y. Liu, Y.F. Yu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100378, https://doi.org/10.1016/j.xcrp.2021.100378.
doi: 10.1016/j.xcrp.2021.100378
P. Guo, X.D. Wang, Y.F. Wang, Y.W. Luo, K. Chu, Chem. Commun. 60 (2024) 14649, https://doi.org/10.1039/D4CC05002A.
doi: 10.1039/D4CC05002A
C. Chen, X.R. Zhu, X.J. Wen, Y.Y. Zhou, L. Zhou, H. Li, L. Tao, Q.L. Li, S.Q. Du, T.T. Liu, D.F. Yan, C. Xie, Y.Q. Zou, Y.Y. Wang, R. Chen, J. Huo, Y.F. Li, J. Cheng, H. Su, X. Zhao, W.R. Cheng, Q.H. Liu, H.Z. Lin, J. Luo, J. Chen, M.D. Dong, K. Cheng, C.G. Li, S.Y. Wang, Nat. Chem. 12 (2020) 717, https://doi.org/10.1038/s41557-020-0481-9.
doi: 10.1038/s41557-020-0481-9
H. Wang, Y. Jiang, S.J. Li, F.L. Gou, X.R. Liu, Y.M. Jiang, W. Luo, W. Shen, R.X. He, M. Li, Appl. Catal. B 318 (2022) 121819, https://doi.org/10.1016/j.apcatb.2022.121819.
doi: 10.1016/j.apcatb.2022.121819
Y. Feng, X.W. Lv, H.Y. Wang, H. Wang, F.X. Yan, L. Wang, H.Y. Wang, J.T. Ren, Z.Y. Yuan, Adv. Funct. Mater. 35 (2025) 2425687, https://doi.org/10.1002/adfm.202425687.
doi: 10.1002/adfm.202425687
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Ke Qiu , Fengmei Wang , Mochou Liao , Kerun Zhu , Jiawei Chen , Wei Zhang , Yongyao Xia , Xiaoli Dong , Fei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036
Sen Lin , Rong Jiang , Xuefeng Lu , Guohui Jiang , Kaining Ding , Jinshui Zhang , Xinchen Wang . Promoting the Integration of Science and Education through Digital Intelligence Technology: Data-Driven Development of Efficient Water Electrolysis Catalysts in Comprehensive Chemical Experiment Teaching. University Chemistry, 2026, 41(1): 188-203. doi: 10.12461/PKU.DXHX202505090
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Dong Xiang , Kunzhen Li , Kanghua Miao , Ran Long , Yujie Xiong , Xiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027
Xuechen Hu , Qiuying Xia , Fan Yue , Xinyi He , Zhenghao Mei , Jinshi Wang , Hui Xia , Xiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . In Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040
Vanita Vanita , Roland Schoch , Pascal Puphal , Hasan Yilmaz , Matthias Bauer , Oliver Clemens . Structural and electrochemical behaviour of bilayer manganite LaSr2Mn2O6.96 cathode for all-solid-state fluoride ion batteries. Acta Physico-Chimica Sinica, 2026, 42(3): 100181-0. doi: 10.1016/j.actphy.2025.100181