Citation: Liangliang Song, Haoyan Liang, Shunqing Li, Bao Qiu, Zhaoping Liu. Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100085. doi: 10.1016/j.actphy.2025.100085 shu

Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries

  • Corresponding author: Bao Qiu, qiubao@nimte.ac.cn Zhaoping Liu, liuzp@nimte.ac.cn
  • Received Date: 17 February 2025
    Revised Date: 17 March 2025
    Accepted Date: 27 March 2025

    Fund Project: the External Cooperation Program of Chinese Academy of Sciences 181GJHZ2024126MIthe Low Cost Cathode Material TC220H06Pthe Zhongke Hangzhou Bay Institute (Ningbo) New Materials Co. Ltd. NIMTE-61-2024-2the Natural Science Foundation of Ningbo 2024QL041the Youth Innovation Promotion Association of Chinese Academy of Sciences 2022299

  • Benefiting from the synergistic participation of transition metals (TMs) and lattice oxygen in redox reactions, Li-rich layered oxides (LLOs) exhibit a capacity exceeding 250 mAh·g−1, positioning them as promising cathode candidates for next-generation high-energy-density lithium-ion batteries. To further enhance capacity and reduce reliance on environmentally hazardous Co and Ni elements, the development of high-Mn LLOs (HM-LLOs) with ultrahigh capacities surpassing 350 mAh·g−1 has emerged as a viable strategy. Elevated Mn content introduces additional Li–O–Li configurations, facilitating greater lattice oxygen involvement in redox reactions, thereby increasing theoretical capacity. However, practical studies reveal that the achievable capacity of HM-LLOs remains significantly lower than theoretical predictions, severely hindering their application. The discrepancy primarily stems from two factors: activation difficulty and irreversible oxygen loss. Despite the higher initial charge capacity, the lattice oxygen utilization efficiency is still limited by incomplete activation. Meanwhile, irreversible oxygen loss leads to low initial coulombic efficiency (ICE). Given these challenges in HM-LLOs, a systematic review is necessary to unravel the origin of these issues and seek valid strategies to promote their application in power batteries. Herein, we elucidate the relationship between high Mn content and theoretical capacity through compositional, structural, and stoichiometric perspectives. Next, we analyze the roles of elemental components in HM-LLOs at the atomic level, followed by an in-depth investigation of unique structural evolution, particularly the formation of large Li2MnO3 domains. These factors collectively restrict practical capacity utilization. Low Co content combined with large Li2MnO3 domains exacerbate activation issues, while low Ni content and these domains promote irreversible oxygen loss. Building on this mechanistic understanding, we comprehensively categorize various strategies, from precursor synthesis to active material modifications. The mechanisms of precursor synthesis and structural transformations during the sintering process have been detailed. Optimization methods employed during the synthesis process have been thoroughly reviewed. Furthermore, effective modification methods have been elaborated, from the fundamental principles to practical applications. The advantages and disadvantages of these modification methods, as well as potential future optimization directions, have been outlined. Additionally, novel explorations, such as the construction of O2-type structures, innovative activation methods, and the development of sulfur-based host, are discussed. Finally, we propose future directions to bridge the gap between theoretical and practical capacities, including advanced characterization of oxygen redox dynamics and machine learning-guided evaluation of modifications. This review provides critical insights into advancing high-capacity cathode materials, thus accelerating the commercialization of HM-LLOs.
  • 加载中
    1. [1]

      J.M. Tarascon, M. Armand, Nature 414 (2001) 359, https://doi.org/10.1038/35104644.  doi: 10.1038/35104644

    2. [2]

      Y.M. Chiang, Science 330 (2010) 1485, https://doi.org/10.1126/science.1198591.  doi: 10.1126/science.1198591

    3. [3]

      S. Jiao, J. Wang, Y.-S. Hu, X. Yu, H. Li, ACS Energy Lett. 8 (2023) 3025, https://doi.org/10.1021/acsenergylett.3c00563.  doi: 10.1021/acsenergylett.3c00563

    4. [4]

      Y. Zhang, X. Wen, Z. Shi, B. Qiu, G. Chen, Z. Liu, J. Energy Chem. 82 (2023) 259, https://doi.org/10.1016/j.jechem.2023.03.005.  doi: 10.1016/j.jechem.2023.03.005

    5. [5]

      C. Yin, L. Wan, B. Qiu, F. Wang, W. Jiang, H. Cui, J. Bai, S. Ehrlich, Z. Wei, Z. Liu, Energy Storage Mater. 35 (2021) 388, https://doi.org/10.1016/j.ensm.2020.11.034.  doi: 10.1016/j.ensm.2020.11.034

    6. [6]

      B. Qiu, M. Zhang, S.-Y. Lee, H. Liu, T.A. Wynn, L. Wu, Y. Zhu, W. Wen, C.M. Brown, D. Zhou, et al., Cell Rep. Phys. Sci. 1 (2020) 100028, https://doi.org/10.1016/j.xcrp.2020.100028.  doi: 10.1016/j.xcrp.2020.100028

    7. [7]

      J. Xu, S. Zhu, Z. Xu, H. Zhu, Comput. Mater. Sci. 229 (2023) 112426, https://doi.org/10.1016/j.commatsci.2023.112426.  doi: 10.1016/j.commatsci.2023.112426

    8. [8]

      J. Hwang, S. Myeong, W. Jin, H. Jang, G. Nam, M. Yoon, S.H. Kim, S.H. Joo, S.K. Kwak, M.G. Kim, et al., Adv. Mater. 32 (2020) 2001944, https://doi.org/10.1002/adma.202001944.  doi: 10.1002/adma.202001944

    9. [9]

      X. Wen, C. Yin, B. Qiu, L. Wan, Y. Zhou, Z. Wei, Z. Shi, X. Huang, Q. Gu, Z. Liu, J. Power Sources 523 (2022) 231022, https://doi.org/10.1016/j.jpowsour.2022.231022.  doi: 10.1016/j.jpowsour.2022.231022

    10. [10]

      Y.T. Ma, P.F. Liu, Q.S. Xie, G.B. Zhang, H.F. Zheng, Y.X. Cai, Z. Li, L.S. Wang, Z.Z. Zhu, L.Q. Mai, et al., Nano Energy 59 (2019) 184, https://doi.org/10.1016/j.nanoen.2019.02.040.  doi: 10.1016/j.nanoen.2019.02.040

    11. [11]

      X. Guo, J. Li, Y. Zhang, X. Zhang, J. Liu, W. Li, L. Lu, G. Jia, S. An, X. Qiu, Nano Energy 123 (2024) 109390, https://doi.org/10.1016/j.nanoen.2024.109390.  doi: 10.1016/j.nanoen.2024.109390

    12. [12]

      X. Li, Q. Gu, B. Qiu, C. Yin, Z. Wei, W. Wen, Y. Zhang, Y. Zhou, H. Gao, H. Liang, et al., Mater. Today 61 (2022) 91, https://doi.org/10.1016/j.mattod.2022.09.013.  doi: 10.1016/j.mattod.2022.09.013

    13. [13]

      H. Hafiz, K. Suzuki, B. Barbiellini, N. Tsuji, N. Yabuuchi, K. Yamamoto, Y. Orikasa, Y. Uchimoto, Y. Sakurai, H. Sakurai, et al., Nature 594 (2021) 213, https://doi.org/10.1038/s41586-021-03509-z.  doi: 10.1038/s41586-021-03509-z

    14. [14]

      B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Chem. Mater. 29 (2017) 908, https://doi.org/10.1021/acs.chemmater.6b04815.  doi: 10.1021/acs.chemmater.6b04815

    15. [15]

      D.H. Seo, J. Lee, A. Urban, R. Malik, S. Kang, G. Ceder, Nat. Chem. 8 (2016) 692, https://doi.org/10.1038/nchem.2524.  doi: 10.1038/nchem.2524

    16. [16]

      M. Okubo, A. Yamada, ACS Appl. Mater. Interfaces 9 (2017) 36463, https://doi.org/10.1021/acsami.7b09835.  doi: 10.1021/acsami.7b09835

    17. [17]

      L. Pauling, J. Am. Chem. Soc. 51 (1929) 1010, https://doi.org/10.1021/ja01379a006.  doi: 10.1021/ja01379a006

    18. [18]

      J. Rana, J.K. Papp, Z. Lebens-Higgins, M. Zuba, L.A. Kaufman, A. Goel, R. Schmuch, M. Winter, M.S. Whittingham, W. Yang, et al., ACS Energy Lett. 5 (2020) 634, https://doi.org/10.1021/acsenergylett.9b02799.  doi: 10.1021/acsenergylett.9b02799

    19. [19]

      L. Chen, S. Chen, D.Z. Hu, Y.F. Su, W.K. Li, Z. Wang, L.Y. Bao, F. Wu, Acta Phys. Chim. Sin. 30 (2014) 467, https://doi.org/10.3866/PKU.WHXB201312252.  doi: 10.3866/PKU.WHXB201312252

    20. [20]

      C. Yin, Z. Wei, M. Zhang, B. Qiu, Y. Zhou, Y. Xiao, D. Zhou, L. Yun, C. Li, Q. Gu, et al., Mater. Today 51 (2021) 15, https://doi.org/10.1016/j.mattod.2021.10.020.  doi: 10.1016/j.mattod.2021.10.020

    21. [21]

      B. Li, Z. Zhuo, L. Zhang, A. Iadecola, X. Gao, J. Guo, W. Yang, A.V. Morozov, A.M. Abakumov, J.-M. Tarascon, Nat. Mater. 22 (2023) 1370, https://doi.org/10.1038/s41563-023-01679-x.  doi: 10.1038/s41563-023-01679-x

    22. [22]

      X. Wu, Y. Jiang, X. Lou, Y. Liu, J. Li, J. Li, B. Hu, C. Li, ACS Nano 18 (2024) 20716, https://doi.org/10.1021/acsnano.4c06932.  doi: 10.1021/acsnano.4c06932

    23. [23]

      B. Li, M.T. Sougrati, G. Rousse, A. Morozov, R. Dedryvère, A. Iadecola, A. Senyshyn, L.T. Zhang, A.M. Abakumov, M.L. Doublet, Nat. Chem. 13 (2021) 1070, https://doi.org/10.1038/s41557-021-00775-2.  doi: 10.1038/s41557-021-00775-2

    24. [24]

      B. Li, K. Kumar, I. Roy, A.V. Morozov, O.V. Emelyanova, L. Zhang, T. Koç, S. Belin, J. Cabana, R. Dedryvère, et al., Nat. Mater. 21 (2022) 1165, https://doi.org/10.1038/s41563-022-01278-2.  doi: 10.1038/s41563-022-01278-2

    25. [25]

      X. Wen, B. Qiu, H. Gao, X. Li, Z. Shi, Z. Liu, ACS Appl. Energy Mater. 5 (2022) 9079, https://doi.org/10.1021/acsaem.2c01556.  doi: 10.1021/acsaem.2c01556

    26. [26]

      Devaraj, M. Gu, R. Colby, P. Yan, C.M. Wang, J.M. Zheng, J. Xiao, A. Genc, J.G. Zhang, I. Belharouak, et al., Nat. Commun. 6 (2015) 8014, https://doi.org/10.1038/ncomms9014.  doi: 10.1038/ncomms9014

    27. [27]

      J. Xiong, Z. Huang, S. Chen, S. Zhong, J. Electrochem. Soc. 171 (2024) 080522, https://doi.org/10.1149/1945-7111/ad6d99.  doi: 10.1149/1945-7111/ad6d99

    28. [28]

      H. Peng, H. Zhuo, F. Xia, W. Zeng, C. Sun, J. Wu, Adv. Funct. Mater. 33 (2023) 2306804, https://doi.org/10.1002/adfm.202306804.  doi: 10.1002/adfm.202306804

    29. [29]

      Y. Shin, H. Ding, K.A. Persson, Chem. Mater. 28 (2016) 2081, https://doi.org/10.1021/acs.chemmater.5b04862.  doi: 10.1021/acs.chemmater.5b04862

    30. [30]

      W.-J. Kong, C.-Z. Zhao, L. Shen, S. Sun, X.-Y. Huang, P. Xu, Y. Lu, W.-Z. Huang, J.- L. Li, J.-Q. Huang, et al., Chem. Soc. 146 (2024) 28190, https://doi.org/10.1021/jacs.4c08115.  doi: 10.1021/jacs.4c08115

    31. [31]

      X. Li, Y. Zhang, B. Qiu, G. Chen, Y. Zhou, Q. Gu, Z. Liu, Energy Environ. Mater. 7 (2024) e12722, https://doi.org/10.1002/eem2.12722.  doi: 10.1002/eem2.12722

    32. [32]

      H. Liu, Y. Chen, S. Hy, K. An, S. Venkatachalam, D. Qian, M. Zhang, Y.S. Meng, Adv. Energy Mater. 6 (2016) 1502143, https://doi.org/10.1002/aenm.201502143.  doi: 10.1002/aenm.201502143

    33. [33]

      H. Liu, W. Hua, S. Kunz, M. Bianchini, H. Li, J. Peng, J. Lin, O. Dolotko, T. Bergfeldt, K. Wang, et al., Nat. Commun. 15 (2024) 9981, https://doi.org/10.1038/s41467-024-54312-z.  doi: 10.1038/s41467-024-54312-z

    34. [34]

      D. Ye, B. Wang, Y. Chen, G. Han, Z. Zhang, D. Hulicova-Jurcakova, J. Zou, L. Wang, J. Mater. Chem. A 2 (2014) 18767, https://doi.org/10.1039/c4ta03692a.  doi: 10.1039/c4ta03692a

    35. [35]

      L. Zhang, D. Liu, J. Huang, J. Peng, H. Xie, B. Huang, Y. Li, Y. Sun, S. Xiao, R. Wang, J. Energy Storage 78 (2024) 110073, https://doi.org/10.1016/j.est.2023.110073.  doi: 10.1016/j.est.2023.110073

    36. [36]

      Y. Zhou, H. Cui, B. Qiu, Y. Xia, C. Yin, L. Wan, Z. Shi, Z. Liu, ACS Mater. Lett. 3 (2021) 433, https://doi.org/10.1021/acsmaterialslett.1c00088.  doi: 10.1021/acsmaterialslett.1c00088

    37. [37]

      W. Huang, C. Lin, M. Zhang, S. Li, Z. Chen, W. Zhao, C. Zhu, Q. Zhao, H. Chen, F. Pan, Adv. Energy Mater. 11 (2021) 2102646, https://doi.org/10.1002/aenm.202102646.  doi: 10.1002/aenm.202102646

    38. [38]

      J. Hwang, S. Myeong, E. Lee, H. Jang, M. Yoon, H. Cha, J. Sung, M.G. Kim, D.H. Seo, J. Cho, Adv. Mater. 33 (2021) 2100352, https://doi.org/10.1002/adma.202100352.  doi: 10.1002/adma.202100352

    39. [39]

      Q. Chen, Y. Pei, H. Chen, Y. Song, L. Zhen, C.-Y. Xu, P. Xiao, G. Henkelman, Nat. Commun. 11 (2020) 3411, https://doi.org/10.1038/s41467-020-17126-3.  doi: 10.1038/s41467-020-17126-3

    40. [40]

      M. Saubanère, E. McCalla, J.-M. Tarascon, M.-L. Doublet, Energy Environ. Sci. 9 (2016) 984, https://doi.org/10.1039/c5ee03048j.  doi: 10.1039/c5ee03048j

    41. [41]

      E. McCalla, A.M. Abakumov, M. Saubanère, D. Foix, E.J. Berg, G. Rousse, M.L. Doublet, D. Gonbeau, P. Novak, G. Van Tendeloo, Science 350 (2015) 1516, https://doi.org/10.1126/science.aac8260.  doi: 10.1126/science.aac8260

    42. [42]

      Grimaud, W. Hong, Y. Shao-Horn, J.M. Tarascon, Nat. Mater. 15 (2016) 121, https://doi.org/10.1038/nmat4551.  doi: 10.1038/nmat4551

    43. [43]

      Y. Xie, M. Saubanère, M.L. Doublet, Energy Environ. Sci. 10 (2017) 266, https://doi.org/10.1039/c6ee02328b.  doi: 10.1039/c6ee02328b

    44. [44]

      J.-J. Marie, R.A. House, G.J. Rees, A.W. Robertson, M. Jenkins, J. Chen, S. Agrestini, M. Garcia-Fernandez, K.-J. Zhou, P.G. Bruce, Nat. Mater. 23 (2024) 818, https://doi.org/10.1038/s41563-024-01833-z.  doi: 10.1038/s41563-024-01833-z

    45. [45]

      R.A. House, J.J. Marie, M.A. Perez-Osorio, G.J. Rees, E. Boivin, P.G. Bruce, Nat. Energy 6 (2021) 781, https://doi.org/10.1038/s41560-021-00780-2.  doi: 10.1038/s41560-021-00780-2

    46. [46]

      Z. Chen, W. Zhang, J. Liu, M. Zhang, S. Li, F. Pan, Adv. Mater. 36 (2024) 2403307, https://doi.org/10.1002/adma.202403307.  doi: 10.1002/adma.202403307

    47. [47]

      K. McColl, S.W. Coles, P. Zarabadi-Poor, B.J. Morgan, M.S. Islam, Nat. Mater. 23 (2024) 826, https://doi.org/10.1038/s41563-024-01873-5.  doi: 10.1038/s41563-024-01873-5

    48. [48]

      Singer, M. Zhang, S. Hy, D. Cela, C. Fang, T.A. Wynn, B. Qiu, Y. Xia, Z. Liu, A. Ulvestad, et al., Nat. Energy 3 (2018) 641, https://doi.org/10.1038/s41560-018-0184-2.  doi: 10.1038/s41560-018-0184-2

    49. [49]

      W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, et al., Nat. Commun. 10 (2019) 5365, https://doi.org/10.1038/s41467-019-13240-z.  doi: 10.1038/s41467-019-13240-z

    50. [50]

      Y. Shin, W.H. Kan, M. Aykol, J.K. Papp, B.D. McCloskey, G. Chen, K.A. Persson, Nat. Commun. 9 (2018) 4597, https://doi.org/10.1038/s41467-018-07080-6.  doi: 10.1038/s41467-018-07080-6

    51. [51]

      K. Ku, B. Kim, S.-K. Jung, Y. Gong, D. Eum, G. Yoon, K.-Y. Park, J. Hong, S.-P. Cho, D.-H. Kim, et al., Energy Environ. Sci. 13 (2020) 1269, https://doi.org/10.1039/c9ee04123k.  doi: 10.1039/c9ee04123k

    52. [52]

      W. Liang, Y. Zhao, L. Shi, Z. Wang, S. Yuan, Angew. Chem. Int. Ed. 63 (2024) e12722, https://doi.org/10.1002/anie.202407477.  doi: 10.1002/anie.202407477

    53. [53]

      J.X. Zuo, K. Zhang, J. Wang, X.F. Li, Acta Phys. Chim. Sin. 41 (2025) 100009, https://doi.org/10.3866/PKU.WHXB202404042.  doi: 10.3866/PKU.WHXB202404042

    54. [54]

      X.X. Shi, S.X. Liao, B. Yuan, Y.J. Zhong, B.H. Zhong, H. Liu, X.D. Guo, Acta Phys. Chim. Sin. 31 (2015) 1527, https://doi.org/10.3866/PKU.WHXB201506151.  doi: 10.3866/PKU.WHXB201506151

    55. [55]

      P. Barai, Z. Feng, H. Kondo, V. Srinivasan, J. Phys. Chem. B 123 (2019) 3291, https://doi.org/10.1021/acs.jpcb.8b12004.  doi: 10.1021/acs.jpcb.8b12004

    56. [56]

      F. Cheng, Y. Xin, J. Chen, L. Lu, X. Zhang, H. Zhou, J. Mater. Chem. A 1 (2013) 5301, https://doi.org/10.1039/c3ta00153a.  doi: 10.1039/c3ta00153a

    57. [57]

      P.M. Csernica, S.S. Kalirai, W.E. Gent, K. Lim, Y.-S. Yu, Y. Liu, S.-J. Ahn, E. Kaeli, X. Xu, K.H. Stone, et al., Nat. Energy 6 (2021) 642, https://doi.org/10.1038/s41560-021-00832-7.  doi: 10.1038/s41560-021-00832-7

    58. [58]

      Y. Zhang, C. Yin, B. Qiu, G. Chen, Y. Shang, Z. Liu, Energy Storage Mater. 53 (2022) 763, https://doi.org/10.1016/j.ensm.2022.10.008.  doi: 10.1016/j.ensm.2022.10.008

    59. [59]

      L. Chen, Y. Su, S. Chen, N. Li, L. Bao, W. Li, Z. Wang, M. Wang, F. Wu, Adv. Mater. 26 (2014) 6756, https://doi.org/10.1002/adma.201402541.  doi: 10.1002/adma.201402541

    60. [60]

      D. Wang, Y. Wu, C. Wu, Z. Ye, L. Yang, Y. Li, R. Dong, Z. Wu, Y. Sun, Y. Song, et al., Interfaces 14 (2022) 2711, https://doi.org/10.1021/acsami.1c18651.  doi: 10.1021/acsami.1c18651

    61. [61]

      H. Choi, A.R. Schuer, H. Moon, M. Kuenzel, S. Passerini, Electrochim. Acta 430 (2022) 141047, https://doi.org/10.1016/j.electacta.2022.141047.  doi: 10.1016/j.electacta.2022.141047

    62. [62]

      S. Xu, Z. Chen, W. Zhao, W. Ren, C. Hou, J. Liu, W. Wang, C. Yin, X. Tan, X. Lou, et al., Energy Environ. Sci. 17 (2024) 4327, https://doi.org/10.1039/d4ee90043j.  doi: 10.1039/d4ee90043j

    63. [63]

      Gutierrez, J.T. Kirner, M.T. Saray, M. Avdeev, L.X. Geng, R.S. Yassar, W.Q. Lu, J. Croy, J. Electrochem. Soc. 169 (2022) 020574, https://doi.org/10.1149/1945-7111/ac5545.  doi: 10.1149/1945-7111/ac5545

    64. [64]

      N.H. Vu, P. Arunkumar, J.C. Im, D.T. Ngo, H.T.T. Le, C.-J. Park, W.B. Im, J. Mater. Chem. A 5 (2017) 15730, https://doi.org/10.1039/c7ta04002d.  doi: 10.1039/c7ta04002d

    65. [65]

      J. Sun, X. Cao, W. Yang, E. Yoo, H. Zhou, J. Mater. Chem. A 11 (2023) 13956, https://doi.org/10.1039/d3ta01624b.  doi: 10.1039/d3ta01624b

    66. [66]

      L. Nie, C. Liang, S. Chen, Y. He, W. Liu, H. Zhao, T. Gao, Z. Sun, Q. Hu, Y. Zhang, et al., ACS Appl. Mater. Interfaces 13 (2021) 13281, https://doi.org/10.1021/acsami.1c00723.  doi: 10.1021/acsami.1c00723

    67. [67]

      Z. Cai, S. Wang, H. Zhu, X. Tang, Y. Ma, D.Y.W. Yu, S. Zhang, G. Song, W. Yang, Y. Xu, et al., Colloid Interface Sci. 630 (2023) 281, https://doi.org/10.1016/j.jcis.2022.10.105.  doi: 10.1016/j.jcis.2022.10.105

    68. [68]

      K. Gu, Z. Shi, X. Li, B. Qiu, Z. Liu, J. Mater. Chem. A 12 (2024) 24727, https://doi.org/10.1039/d4ta03917c.  doi: 10.1039/d4ta03917c

    69. [69]

      G. Choi, U. Chang, J. Lee, K. Park, H. Kwon, H. Lee, Y.-I. Kim, J.H. Seo, Y.-C. Park, I. Park, et al., Energy Environ. Sci. 17 (2024) 4634, https://doi.org/10.1039/d4ee00487f.  doi: 10.1039/d4ee00487f

    70. [70]

      T. Li, Z. Shi, L. Li, Y. Zhang, Y. Li, J. Zhao, Q. Gu, W. Wen, B. Qiu, Z. Liu, Chem. Eng. J. 474 (2023) 145728, https://doi.org/10.1016/j.cej.2023.145728.  doi: 10.1016/j.cej.2023.145728

    71. [71]

      Z. Wei, Z. Shi, X. Wen, X. Li, B. Qiu, Q. Gu, J. Sun, Y. Han, H. Luo, H. Guo, et al., Mater. Today Energy 27 (2022) 101039, https://doi.org/10.1016/j.mtener.2022.101039.  doi: 10.1016/j.mtener.2022.101039

    72. [72]

      L. Wang, S. Zhao, B. Wang, H. Yu, J. Energy Chem. 81 (2023) 110, https://doi.org/10.1016/j.jechem.2023.02.034.  doi: 10.1016/j.jechem.2023.02.034

    73. [73]

      M. Tabuchi, M. Kitta, K. Yazawa, K. Kubota, J. Electrochem. Soc. 168 (2021) 110525, https://doi.org/10.1149/1945-7111/ac3526.  doi: 10.1149/1945-7111/ac3526

    74. [74]

      J. Li, W. Li, C. Zhang, C. Han, X. Chen, H. Zhao, H. Xu, G. Jia, Z. Li, J. Li, et al., ACS Nano 17 (2023) 16827, https://doi.org/10.1021/acsnano.3c03666.  doi: 10.1021/acsnano.3c03666

    75. [75]

      J. Meng, H. Xu, Q. Ma, Z. Li, L. Xu, Z. Chen, B. Cheng, S. Zhong, Electrochim. Acta 309 (2019) 326, https://doi.org/10.1016/j.electacta.2019.04.040.  doi: 10.1016/j.electacta.2019.04.040

    76. [76]

      L. Zeng, H. Liang, Y. Wang, X. Ying, B. Qiu, J. Pan, Y. Zhang, W. Wen, X. Wang, Q. Gu, et al., Energy Environ. Sci. 18 (2025) 284, https://doi.org/10.1039/d4ee02511c.  doi: 10.1039/d4ee02511c

    77. [77]

      F. Wu, G.T. Kim, M. Kuenzel, H. Zhang, J. Asenbauer, D. Geiger, U. Kaiser, S. Passerini, Adv. Energy Mater. 9 (2019) 1902445, https://doi.org/10.1002/aenm.201902445.  doi: 10.1002/aenm.201902445

    78. [78]

      X.Z. Ren, T. Liu, L.N. Sun, P.X. Zhang, Acta Phys. Chim. Sin. 30 (2014) 1641, https://doi.org/10.3866/PKU.WHXB201406172.  doi: 10.3866/PKU.WHXB201406172

    79. [79]

      B. Zhang, Y. Zhang, X. Wang, H. Liu, Y. Yan, S. Zhou, Y. Tang, G. Zeng, X. Wu, H.- G. Liao, et al., J. Am. Chem. Soc. 145 (2023) 8700, https://doi.org/10.1021/jacs.3c01999.  doi: 10.1021/jacs.3c01999

    80. [80]

      C.-C. Wang, A. Manthiram, J. Mater. Chem. A 1 (2013) 10209, https://doi.org/10.1039/c3ta11703k.  doi: 10.1039/c3ta11703k

    81. [81]

      T. Sudayama, K. Uehara, T. Mukai, D. Asakura, X.M. Shi, A. Tsuchimoto, B.M. de Boisse, T. Shimada, E. Watanabe, Y. Harada, et al., Energy Environ. Sci. 13 (2020) 1492, https://doi.org/10.1039/c9ee04197d.  doi: 10.1039/c9ee04197d

    82. [82]

      X. Sun, C. Qin, B. Zhao, S. Jia, Z. Wang, T. Yang, X. Liu, L. Pan, L. Zheng, D. Luo, et al., Energy Storage Mater 70 (2024) 103559, https://doi.org/10.1016/j.ensm.2024.103559.  doi: 10.1016/j.ensm.2024.103559

    83. [83]

      D. Liu, X. Fan, Z. Li, T. Liu, M. Sun, C. Qian, M. Ling, Y. Liu, C. Liang, Nano Energy 58 (2019) 786, https://doi.org/10.1016/j.nanoen.2019.01.080.  doi: 10.1016/j.nanoen.2019.01.080

    84. [84]

      H. Liu, B. He, W. Xiang, Y.-C. Li, C. Bai, Y.-P. Liu, W. Zhou, X. Chen, Y. Liu, S. Gao, et al., Nanotechnology 31 (2020) 455704, https://doi.org/10.1088/1361-6528/ab9579.  doi: 10.1088/1361-6528/ab9579

    85. [85]

      U. Maitra, R.A. House, J.W. Somerville, N. Tapia-Ruiz, J.G. Lozano, N. Guerrini, R. Hao, K. Luo, L. Jin, M.A. Perez-Osorio, et al., Nat. Chem. 10 (2018) 288, https://doi.org/10.1038/nchem.2923.  doi: 10.1038/nchem.2923

    86. [86]

      X. Bai, M. Sathiya, B. Mendoza-Sanchez, A. Iadecola, J. Vergnet, R. Dedryvère, M. Saubanèere, A.M. Abakumov, P. Rozier, J.M. Tarascon, Adv. Energy Mater. 8 (2018) 1802379, https://doi.org/10.1002/aenm.201802379.  doi: 10.1002/aenm.201802379

    87. [87]

      Y. Liu, D. Liu, H.-H. Wu, X. Fan, A. Dou, Q. Zhang, M. Su, ACS Sustain. Chem. Eng. 6 (2018) 13045, https://doi.org/10.1021/acssuschemeng.8b02552.  doi: 10.1021/acssuschemeng.8b02552

    88. [88]

      Y. Cheng, Z. Wu, X. Dai, J. Hu, Z. Tai, J. Sun, Y. Liu, Q. Tan, Y. Liu, J. Colloid Interface Sci. 605 (2022) 718, https://doi.org/10.1016/j.jcis.2021.07.141.  doi: 10.1016/j.jcis.2021.07.141

    89. [89]

      Y. Liu, X. Fan, Z. Zhang, H.-H. Wu, D. Liu, A. Dou, M. Su, Q. Zhang, D. Chu, ACS Sustain. Chem. Eng. 7 (2018) 2225, https://doi.org/10.1021/acssuschemeng.8b04905.  doi: 10.1021/acssuschemeng.8b04905

    90. [90]

      G. Singh, R. Thomas, A. Kumar, R.S. Katiyar, J. Electrochem. Soc. 159 (2012) A410, https://doi.org/10.1149/2.059204jes.  doi: 10.1149/2.059204jes

    91. [91]

      S.D. Zhang, Y. Liu, M.Y. Qi, A.M. Cao, Acta Phys. Chim. Sin. 37 (2021) 2011007, https://doi.org/10.3866/PKU.WHXB202011007.  doi: 10.3866/PKU.WHXB202011007

    92. [92]

      M. Yang, B. Hu, F. Geng, C. Li, X. Lou, B. Hu, Electrochim. Acta 291 (2018) 278, https://doi.org/10.1016/j.electacta.2018.09.134.  doi: 10.1016/j.electacta.2018.09.134

    93. [93]

      Y.-S. Jiang, G. Sun, F.-D. Yu, L.-F. Que, L. Deng, X.-H. Meng, Z.-B. Wang, Ionics 26 (2019) 151, https://doi.org/10.1007/s11581-019-03202-2.  doi: 10.1007/s11581-019-03202-2

    94. [94]

      Z. Sun, L. Xu, C. Dong, H. Zhang, M. Zhang, Y. Ma, Y. Liu, Z. Li, Y. Zhou, Y. Han, et al., Nano Energy 63 (2019) 103887, https://doi.org/10.1016/j.nanoen.2019.103887.  doi: 10.1016/j.nanoen.2019.103887

    95. [95]

      R.A. House, J.-J. Marie, J. Park, G.J. Rees, S. Agrestini, A. Nag, M. GarciaFernandez, K.-J. Zhou, P.G. Bruce, Nat. Commun. 12 (2021) 2975, https://doi.org/10.1038/s41467-021-23154-4.  doi: 10.1038/s41467-021-23154-4

    96. [96]

      K.N. Zhao, X. Li, D. Su, Acta Phys. Chim. Sin. 37 (2021) 2009077, https://doi.org/10.3866/PKU.WHXB202009077.  doi: 10.3866/PKU.WHXB202009077

    97. [97]

      S. Sun, C.Z. Zhao, H. Yuan, Z.H. Fu, X. Chen, Y. Lu, Y.F. Li, J.K. Hu, J.C. Dong, J.Q. Huang, et al., Sci. Adv. 8 (2022) eadd5189, https://doi.org/10.1126/sciadv.add5189.  doi: 10.1126/sciadv.add5189

    98. [98]

      Z. Zhu, R. Gao, I. Waluyo, Y. Dong, A. Hunt, J. Lee, J. Li, Adv. Energy Mater. 10 (2020) 2001120, https://doi.org/10.1002/aenm.202001120.  doi: 10.1002/aenm.202001120

    99. [99]

      L. He, J.M. Xu, Y.J. Wang, C.J. Zhang, Acta Phys. Chim. Sin. 33 (2017) 1605, https://doi.org/10.3866/PKU.WHXB201704145.  doi: 10.3866/PKU.WHXB201704145

    100. [100]

      S. Chong, Y. Chen, W. Yan, S. Guo, Q. Tan, Y. Wu, T. Jiang, Y. Liu, J. Power Sources 332 (2016) 230, https://doi.org/10.1016/j.jpowsour.2016.09.028.  doi: 10.1016/j.jpowsour.2016.09.028

    101. [101]

      H. Liu, D. Qian, M.G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K.J. Carroll, D. Lau, M. Chi, et al., ACS Appl. Mater. Interfaces 7 (2015) 19189, https://doi.org/10.1021/acsami.5b04932.  doi: 10.1021/acsami.5b04932

    102. [102]

      Q.R. Xue, J.L. Li, G.F. Xu, P.F. Hou, G. Yan, Y. Dai, X.D. Wang, F. Gao, Acta Phys. Chim. Sin. 30 (2014) 1667, https://doi.org/10.3866/PKU.WHXB201406251.  doi: 10.3866/PKU.WHXB201406251

    103. [103]

      Y. Liu, X. Fan, X. Huang, D. Liu, A. Dou, M. Su, D. Chu, J. Power Sources 403 (2018) 27, https://doi.org/10.1016/j.jpowsour.2018.09.082.  doi: 10.1016/j.jpowsour.2018.09.082

    104. [104]

      Y. Liu, Q. Wang, X. Wang, T. Wang, Y. Gao, M. Su, A. Dou, Ionics 21 (2015) 2725, https://doi.org/10.1007/s11581-015-1484-1.  doi: 10.1007/s11581-015-1484-1

    105. [105]

      Y. Li, Z. Shi, B. Qiu, J. Zhao, X. Li, Y. Zhang, T. Li, Q. Gu, J. Gao, Z. Liu, Adv. Funct. Mater. 33 (2023) 2302236, https://doi.org/10.1002/adfm.202302236.  doi: 10.1002/adfm.202302236

    106. [106]

      C.-C. Wang, J.-W. Lin, Y.-H. Yu, K.-H. Lai, K.-F. Chiu, C.-C. Kei, ACS Sustain. Chem. Eng. 6 (2018) 16941, https://doi.org/10.1021/acssuschemeng.8b04285.  doi: 10.1021/acssuschemeng.8b04285

    107. [107]

      K. Zhang, J. Qi, J. Song, Y. Zuo, Y. Yang, T. Yang, T. Chen, X. Liu, L. Chen, D. Xia, Adv. Mater. 34 (2022), https://doi.org/10.1002/adma.202109564.  doi: 10.1002/adma.202109564

    108. [108]

      Z. Xu, X. Guo, W. Song, J. Wang, T. Qin, Y. Yuan, J. Lu, Adv. Mater. 36 (2023) 2303612, https://doi.org/10.1002/adma.202303612.  doi: 10.1002/adma.202303612

    109. [109]

      L. Zeng, H. Liang, B. Qiu, Z. Shi, S. Cheng, K. Shi, Q. Liu, Z. Liu, Adv. Funct. Mater. 33 (2023) 2213260, https://doi.org/10.1002/adfm.202213260.  doi: 10.1002/adfm.202213260

    110. [110]

      D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood, C. Daniel, Chem. Mater. 26 (2014) 6272, https://doi.org/10.1021/cm5031415.  doi: 10.1021/cm5031415

    111. [111]

      H. Dong, D. Jiang, S. Xing, L. Zhao, L. Hu, J. Mao, H. Zhang, Small 20 (2023) 2307156, https://doi.org/10.1002/smll.202307156.  doi: 10.1002/smll.202307156

    112. [112]

      Y. Zhang, X. Shi, S. Zheng, Y. Ouyang, M. Li, C. Meng, Y. Yu, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 5043, https://doi.org/10.1039/d3ee01318a.  doi: 10.1039/d3ee01318a

    113. [113]

      X.D. Zhang, J.L. Shi, J.Y. Liang, Y.X. Yin, J.N. Zhang, X.Q. Yu, Y.G. Guo, Adv. Mater. 30 (2018) 1801751, https://doi.org/10.1002/adma.201801751.  doi: 10.1002/adma.201801751

    114. [114]

      W. Guo, C. Zhang, Y. Zhang, L. Lin, W. He, Q. Xie, B. Sa, L. Wang, D.L. Peng, Adv. Mater. 33 (2021), https://doi.org/10.1002/adma.202103173.  doi: 10.1002/adma.202103173

    115. [115]

      Y. Ouyang, Y. Zhang, G. Wang, X. Wei, A. Zhang, J. Sun, S. Wei, L. Song, F. Dai, Z.S. Wu, Adv. Funct. Mater. 34 (2024) 2401249, https://doi.org/10.1002/adfm.202401249.  doi: 10.1002/adfm.202401249

    116. [116]

      F. Klein, C. Pfeifer, J. Bansmann, Z. Jusys, R.J. Behm, M. Wohlfahrt-Mehrens, M. Linden, P. Axmann, J. Electrochem. Soc. 169 (2022) 120533, https://doi.org/10.1149/1945-7111/acaa5c.  doi: 10.1149/1945-7111/acaa5c

    117. [117]

      H. Xie, L. Tan, Z. Yao, J. Cui, X. Ding, Z. Zhang, D. Luo, Z. Lin, ACS Appl. Mater. Interfaces 15 (2023) 2881, https://doi.org/10.1021/acsami.2c17534.  doi: 10.1021/acsami.2c17534

    118. [118]

      Z. Yang, H. Zhou, Z. Bao, J. Li, C. Yin, J. Mater. Sci. Mater. Electron. 30 (2019) 19493, https://doi.org/10.1007/s10854-019-02315-8.  doi: 10.1007/s10854-019-02315-8

    119. [119]

      B. Wu, X. Yang, X. Jiang, Y. Zhang, H. Shu, P. Gao, L. Liu, X. Wang, Adv. Funct. Mater. 28 (2018) 1803392, https://doi.org/10.1002/adfm.201803392.  doi: 10.1002/adfm.201803392

    120. [120]

      Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, et al., Nat. Energy 4 (2019) 1049, https://doi.org/10.1038/s41560-019-0508-x.  doi: 10.1038/s41560-019-0508-x

    121. [121]

      Y. Pei, Q. Chen, M. Wang, B. Li, P. Wang, G. Henkelman, L. Zhen, G. Cao, C.-Y. Xu, Nano Energy 71 (2020) 104644, https://doi.org/10.1016/j.nanoen.2020.104644.  doi: 10.1016/j.nanoen.2020.104644

    122. [122]

      B. Qiu, M. Zhang, L. Wu, J. Wang, Y. Xia, D. Qian, H. Liu, S. Hy, Y. Chen, K. An, et al., Nat. Commun. 7 (2016) 12108, https://doi.org/10.1038/ncomms12108.  doi: 10.1038/ncomms12108

    123. [123]

      K. Wang, J. Qiu, F. Hou, M. Yang, K. Nie, J. Wang, Y. Hou, W. Huang, W. Zhao, P. Zhang, et al., Adv. Energy Mater. 13 (2023) 2301216, https://doi.org/10.1002/aenm.202301216.  doi: 10.1002/aenm.202301216

    124. [124]

      L. Bao, L. Wei, N. Fu, J. Dong, L. Chen, Y. Su, N. Li, Y. Lu, Y. Li, S. Chen, et al., Energy Chem. 66 (2022) 123, https://doi.org/10.1016/j.jechem.2021.07.023.  doi: 10.1016/j.jechem.2021.07.023

    125. [125]

      Y. Fang, Y. Su, J. Dong, J. Zhao, H. Wang, Y. Lu, B. Zhang, H. Yan, F. Wu, L. Chen, J. Energy Chem. 92 (2024) 250, https://doi.org/10.1016/j.jechem.2023.12.050.  doi: 10.1016/j.jechem.2023.12.050

    126. [126]

      X. Tan, R. Liu, C.X. Xie, Q. Shen, J. Power Sources 374 (2018) 134, https://doi.org/10.1016/j.jpowsour.2017.11.004.  doi: 10.1016/j.jpowsour.2017.11.004

    127. [127]

      T. Nakamura, K. Ohta, Y. Kimura, K. Tsuruta, Y. Tamenori, R. Aso, H. Yoshida, K. Amezawa, ACS Appl. Energy Mater. 3 (2020) 9703, https://doi.org/10.1021/acsaem.0c01303.  doi: 10.1021/acsaem.0c01303

    128. [128]

      Zhu, J. Wu, B. Wang, J. Zhou, Y. Zhang, Y. Guo, K. Wu, H. Wu, Q. Wang, Y. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 61248, https://doi.org/10.1021/acsami.1c19399.  doi: 10.1021/acsami.1c19399

    129. [129]

      S. Kim, W. Cho, X. Zhang, Y. Oshima, J.W. Choi, Nat. Commun. 7 (2016) 13598, https://doi.org/10.1038/ncomms13598.  doi: 10.1038/ncomms13598

    130. [130]

      Z.K. Hao, H.X. Sun, Y.X. Ni, G.J. Yang, Z. Yang, Z.M. Hao, R.H. Wang, P.K. Yang, Y. Lu, Q. Zhao, et al., Adv. Mater. 36 (2023) 2307617, https://doi.org/10.1002/adma.202307617.  doi: 10.1002/adma.202307617

    131. [131]

      Y. Li, C. Wu, Y. Bai, L. Liu, H. Wang, F. Wu, N. Zhang, Y. Zou, ACS Appl. Mater. Interfaces 8 (2016) 18832, https://doi.org/10.1021/acsami.6b04687.  doi: 10.1021/acsami.6b04687

    132. [132]

      L. Wang, Y. Chen, X. Wen, J. Li, P. Meng, S. Tao, Sustain. Energy Technol. Assessments 52 (2022) 102006, https://doi.org/10.1016/j.seta.2022.102006.  doi: 10.1016/j.seta.2022.102006

    133. [133]

      L. Li, L. Wang, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Appl. Mater. Interfaces 9 (2017) 1516, https://doi.org/10.1021/acsami.6b13229.  doi: 10.1021/acsami.6b13229

    134. [134]

      C. Huang, Z.-Q. Fang, Z.-J. Wang, J.-W. Zhao, S.-X. Zhao, L.-J. Ci, Nanoscale 13 (2021) 4921, https://doi.org/10.1039/d0nr08980j.  doi: 10.1039/d0nr08980j

    135. [135]

      Y. Liu, J. Lv, S. Liu, L. Chen, X. Chen, Powder Technol. 239 (2013) 461, https://doi.org/10.1016/j.powtec.2013.02.039.  doi: 10.1016/j.powtec.2013.02.039

    136. [136]

      J. Xu, L. Kaufman, F.C. Robles Hernandez, A. Pramanik, G. Babu, J. Nanda, B.D. McCloskey, P.M. Ajayan, ACS Appl. Energy Mater. 6 (2023) 5026, https://doi.org/10.1021/acsaem.3c00630.  doi: 10.1021/acsaem.3c00630

    137. [137]

      Z. Qi, J. Tang, J. Huang, D. Zemlyanov, V.G. Pol, H. Wang, ACS Appl. Energy Mater. 2 (2019) 3461, https://doi.org/10.1021/acsaem.9b00259.  doi: 10.1021/acsaem.9b00259

    138. [138]

      X. Ju, H. Huang, W. He, H. Zheng, P. Deng, S. Li, B. Qu, T. Wang, ACS Sustain. Chem. Eng. 6 (2018) 6312, https://doi.org/10.1021/acssuschemeng.8b00126.  doi: 10.1021/acssuschemeng.8b00126

    139. [139]

      Y. Sun, H. Cong, L. Zan, Y. Zhang, ACS Appl. Mater. Interfaces 9 (2017) 38545, https://doi.org/10.1021/acsami.7b12080.  doi: 10.1021/acsami.7b12080

    140. [140]

      F. Wang, S. Xiao, M. Li, X. Wang, Y. Zhu, Y. Wu, A. Shirakawa, J.J. Peng, Power Sources 287 (2015) 416, https://doi.org/10.1016/j.jpowsour.2015.04.034.  doi: 10.1016/j.jpowsour.2015.04.034

    141. [141]

      M. Abe, F. Matsumoto, M. Saito, H. Yamamura, G. Kobayashi, A. Ito, T. Sanada, M. Hatano, Y. Ohsawa, Y. Sato, Chem. Lett. 41 (2012) 418, https://doi.org/10.1246/cl.2012.418.  doi: 10.1246/cl.2012.418

    142. [142]

      M. Wang, C. Ke, H. Zhang, C. Hou, J. Chen, S. Liu, J. Wang, Nano Lett. 24 (2024) 12343, https://doi.org/10.1021/acs.nanolett.4c01532.  doi: 10.1021/acs.nanolett.4c01532

    143. [143]

      E. Yin, A. Grimaud, G. Rousse, A. Abakumov, A. Senyshyn, L. Zhang, S. Trabesinger, A. Iadecola, D. Foix, D. Giaume, et al., Nat. Commun. 11 (2020) 1252, https://doi.org/10.1038/s41467-020-14927-4.  doi: 10.1038/s41467-020-14927-4

    144. [144]

      J.-C. Li, J. Tang, J. Tian, C. Cheng, Y. Liao, B. Hu, T. Yu, H. Li, Z. Liu, Y. Rao, et al., J. Am. Chem. Soc. 146 (2024) 7274, https://doi.org/10.1021/jacs.3c11569.  doi: 10.1021/jacs.3c11569

    145. [145]

      S. Myeong, W. Cho, W. Jin, J. Hwang, M. Yoon, Y. Yoo, G. Nam, H. Jang, J.- G. Han, N.-S. Choi, et al., Nat. Commun. 9 (2018) 3285, https://doi.org/10.1038/s41467-018-05802-4.  doi: 10.1038/s41467-018-05802-4

    146. [146]

      J. Zhang, F. Cheng, S. Chou, J. Wang, L. Gu, H. Wang, H. Yoshikawa, Y. Lu, J. Chen, Adv. Mater. 31 (2019) 1901808, https://doi.org/10.1002/adma.201901808.  doi: 10.1002/adma.201901808

    147. [147]

      J. Song, B. Li, Y. Chen, Y. Zuo, F. Ning, H. Shang, G. Feng, N. Liu, C. Shen, X. Ai, et al., Adv. Mater. 32 (2020) 2000190, https://doi.org/10.1002/adma.202000190.  doi: 10.1002/adma.202000190

    148. [148]

      Q. Li, D. Ning, D. Wong, K. An, Y. Tang, D. Zhou, G. Schuck, Z. Chen, N. Zhang, X. Liu, Nat. Commun. 13 (2022) 1123, https://doi.org/10.1038/s41467-022-8793-9.  doi: 10.1038/s41467-022-8793-9

    149. [149]

      T. Cui, J. Xu, X. Wang, L. Liu, Y. Xiang, H. Zhu, X. Li, Y. Fu, Nat. Commun. 15 (2024) 4742, https://doi.org/10.1038/s41467-024-48890-1.  doi: 10.1038/s41467-024-48890-1

    150. [150]

      C. Cui, X. Fan, X. Zhou, J. Chen, Q. Wang, L. Ma, C. Yang, E. Hu, X.-Q. Yang, C. Wang, J. Am. Chem. Soc. 142 (2020) 8918, https://doi.org/10.1021/jacs.0c02302.  doi: 10.1021/jacs.0c02302

    151. [151]

      X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, et al., Nat. Commun. 12 (2021) 3136, https://doi.org/10.1038/s41467-021-23430-3.  doi: 10.1038/s41467-021-23430-3

    152. [152]

      W. Huang, C. Lin, J. Qiu, S. Li, Z. Chen, H. Chen, W. Zhao, G. Ren, X. Li, M. Zhang, et al., Chem 8 (2022) 2163, https://doi.org/10.1016/j.chempr.2022.04.012.  doi: 10.1016/j.chempr.2022.04.012

  • 加载中
    1. [1]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    2. [2]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    5. [5]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    6. [6]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    11. [11]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    12. [12]

      Lingbang QiuJiangmin JiangLibo WangLang BaiFei ZhouGaoyu ZhouQuanchao ZhuangYanhua CuiIn Situ Electrochemical Impedance Spectroscopy Monitoring of the High-Temperature Double-Discharge Mechanism of Nb12WO33 Cathode Material for Long-Life Thermal Batteries. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-0. doi: 10.1016/j.actphy.2024.100040

    13. [13]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(1)
  • Abstract views(76)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return