Citation: Mingjie Lei, Wenting Hu, Kexin Lin, Xiujuan Sun, Haoshen Zhang, Ye Qian, Tongyue Kang, Xiulin Wu, Hailong Liao, Yuan Pan, Yuwei Zhang, Diye Wei, Ping Gao. Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100083. doi: 10.1016/j.actphy.2025.100083 shu

Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis

  • Corresponding author: Xiujuan Sun, sunxj594@xtu.edu.cn Yuwei Zhang, ywzhang@scnu.edu.cn Diye Wei, weidiye@163.com
  • Received Date: 21 January 2025
    Revised Date: 8 March 2025
    Accepted Date: 23 March 2025

    Fund Project: the Scientific Research Fund of Hunan Provincial Education Department 23B0114the Natural Science Foundation of Hunan Province 2024JJ5368the National Natural Science Foundation of China 22122402the Natural Science Foundation of Guangdong Province 2021B1515020048

  • As a highly promising renewable energy technology, the urea oxidation reaction (UOR) not only enables efficient utilization of urea wastewater but also provides an effective alternative for hydrogen production via water electrolysis, thereby reducing the energy consumption of conventional electrolysis. Therefore, the development of UOR catalysts with high catalytic activity and long-term stability is of great significance for advancing clean energy technologies. In this study, a nickel-based selenide catalyst (NiCoMnMo-Se) with coexisting nanoparticles and nanosheets was synthesized using a NaBH4 reduction and selenization strategy. X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) and in situ bode phase plots, revealed that the synergistic effect of Mn and Mo regulated the electronic structure of Ni/Co, enhancing the conductivity of selenide and accelerating charge transfer kinetics, which facilitates the rapid transformation of Ni2+/Co2+ into active Ni3+/Co3+ and significantly reduces the onset potential of NiCoMnMo-Se. During the UOR process, Mo and Se are oxidized to form molybdate and selenate, which subsequently dissolve into the electrolyte. This transformation results in the partial conversion of the original spherical nanoparticle surfaces into nanosheets, thereby exposing more Ni(Co)OOH active sites and significantly enhancing the UOR reaction. Additionally, the introduction of Mn stabilizes the active sites, thereby improving the overall stability of the catalyst. As anticipated, the synthesized NiCoMnMo-Se catalyst demonstrates outstanding electrocatalytic performance and stability in the UOR process, achieving a current density of 50 mA·cm−2 at a potential of only 1.38 V vs. RHE (reversible hydrogen electrode), with a voltage increase of only 3.0% after 50 h of operation at a 50 mA·cm−2. When NiCoMnMo-Se and commercial Pt/C were assembled into a dual-electrode system for alkaline urea electrolysis, it only requires 1.59 V vs. RHE to achieve a current density of 50 mA·cm−2. This paper designs an efficient and stable Ni-based selenide catalyst, which is expected to promote the further development of selenides in relevant energy technologies.
  • 加载中
    1. [1]

      P. Xie, Y. Wang, P. Yao, D. Zhang, H. Zhang, J. Cao, C. Liu, X. Mei, P. Song, X. Gong, et al., Electroanalysis 35 (2023) 8, https://doi.org/10.1002/elan.202300010.  doi: 10.1002/elan.202300010

    2. [2]

      G.-R. Xu, J. Bai, L. Yao, Q. Xue, J.-X. Jiang, J.-H. Zeng, Y. Chen, J.-M. Lee, ACS Catal. 7 (2016) 1, https://doi.org/10.1021/acscatal.6b03049.  doi: 10.1021/acscatal.6b03049

    3. [3]

      M. Li, X. Wang, K. Liu, H. Sun, D. Sun, K. Huang, Y. Tang, W. Xing, H. Li, G. Fu, Adv. Mater. 35 (2023) 30, https://doi.org/10.1002/adma.202302462.  doi: 10.1002/adma.202302462

    4. [4]

      Y. Hu, B. Liu, L. Xu, Z. Dong, Y. Wu, J. Liu, C. Zhong, W. Hu, Acta Phys. Chim. Sin. 39 (2023) 2209004, https://doi.org/10.3866/PKU.WHXB202209004.  doi: 10.3866/PKU.WHXB202209004

    5. [5]

      Y. Li, F.-M. Li, X.-Y. Meng, S.-N. Li, J.-H. Zeng, Y. Chen, ACS Catal. 8 (2018) 3, https://doi.org/10.1021/acscatal.7b03949.  doi: 10.1021/acscatal.7b03949

    6. [6]

      Y. Huang, M. Li, F. Pan, Z. Zhu, H. Sun, Y. Tang, G. Fu, Carbon Energy 5 (2022) 3, https://doi.org/10.1002/cey2.279.  doi: 10.1002/cey2.279

    7. [7]

      Y. Li, F.-M. Li, X.-Y. Meng, X.-R. Wu, S.-N. Li, Y. Chen, Nano Energy 54 (2018) 238, https://doi.org/10.1016/j.nanoen.2018.10.032.  doi: 10.1016/j.nanoen.2018.10.032

    8. [8]

      X. Yan, Q.-T. Hu, G. Wang, W.-D. Zhang, J. Liu, T. Li, Z.-G. Gu, Int. J. Hydrogen Energy 45 (2020) 38, https://doi.org/10.1016/j.ijhydene.2020.05.052.  doi: 10.1016/j.ijhydene.2020.05.052

    9. [9]

      D. Wang, W. Yan, S.H. Vijapur, G.G. Botte, J. Power Sources 217 (2012) 498, https://doi.org/10.1016/j.jpowsour.2012.06.029.  doi: 10.1016/j.jpowsour.2012.06.029

    10. [10]

      M. Li, X. Wu, K. Liu, Y. Zhang, X. Jiang, D. Sun, Y. Tang, K. Huang, G. Fu, J. Energy Chem. 69 (2022) 506, https://doi.org/10.1016/j.jechem.2022.01.031.  doi: 10.1016/j.jechem.2022.01.031

    11. [11]

      J. Kang, C. Sheng, J. Wang, H. Xu, B. Zhao, S. Chen, Y. Qing, Y. Wu, Int. J. Hydrogen Energy 48 (2023) 21, https://doi.org/10.1016/j.ijhydene.2022.11.210.  doi: 10.1016/j.ijhydene.2022.11.210

    12. [12]

      X. Xu, T. Guo, J. Xia, B. Zhao, G. Su, H. Wang, M. Huang, A. Toghan, Chem. Eng. J. 425 (2021) 130514, https://doi.org/10.1016/j.cej.2021.130514.  doi: 10.1016/j.cej.2021.130514

    13. [13]

      R. Wei, D. Li, H. Yin, X. Wang, C. Li, Acta Phys. Chim. Sin. 39 (2023) 2207035, https://doi.org/10.3866/PKU.WHXB202207035.  doi: 10.3866/PKU.WHXB202207035

    14. [14]

      P. Babar, A. Lokhande, V. Karade, I.J. Lee, D. Lee, S. Pawar, J.H. Kim, J. Colloid Interface Sci. 557 (2019) 10, https://doi.org/10.1016/j.jcis.2019.09.012.  doi: 10.1016/j.jcis.2019.09.012

    15. [15]

      H. Li, Y. Pu, W. Li, Z. Yan, R. Deng, F. Shi, C. Zhao, Y. Zhang, T. Duan, Small 20 (2024) 2403311, https://doi.org/10.1002/smll.202403311.  doi: 10.1002/smll.202403311

    16. [16]

      Y. Li, X. Chen, Y. Yu, K. Zhang, Y. Cheng, W. He, Q. Luo, S. Gao, Appl. Catal. B Environ. Energy 354 (2024) 124150, https://doi.org/10.1016/j.apcatb.2024.124150.  doi: 10.1016/j.apcatb.2024.124150

    17. [17]

      J. Ge, Z. Liu, M. Guan, J. Kuang, Y. Xiao, Y. Yang, C.H. Tsang, X. Lu, C. Yang, J. Colloid Interface Sci. 620 (2022) 442, https://doi.org/10.1016/j.jcis.2022.03.152.  doi: 10.1016/j.jcis.2022.03.152

    18. [18]

      M. Song, X. Tao, Y. Wu, Y. Qing, C. Tian, H. Xu, X. Lu, Chem. Eng. J. 421 (2021) 129751, https://doi.org/10.1016/j.cej.2021.129751.  doi: 10.1016/j.cej.2021.129751

    19. [19]

      K. Zhang, S. Wang, X. Li, H. Li, Y. Ni, Small 19 (2023) 28, https://doi.org/10.1002/smll.202300959.  doi: 10.1002/smll.202300959

    20. [20]

      Q. Liu, F. Zhao, X. Yang, J. Zhu, S. Yang, L. Chen, P. Zhao, Q. Wang, Q. Zhang, J. Mater. Sci. Technol. 203 (2024) 97, https://doi.org/10.1016/j.jmst.2024.01.096.  doi: 10.1016/j.jmst.2024.01.096

    21. [21]

      G. Qian, J. Chen, W. Jiang, T. Yu, K. Tan, S. Yin, Carbon Energy 5 (2023) 12, https://doi.org/10.1002/cey2.368.  doi: 10.1002/cey2.368

    22. [22]

      M. Mathankumar, S.-L. Tu, P. Hasin, C.-K. Hsieh, J.-Y. Lin, Int. J. Hydrogen Energy 77 (2024) 373, https://doi.org/10.1016/j.ijhydene.2024.06.058.  doi: 10.1016/j.ijhydene.2024.06.058

    23. [23]

      S. Ni, H. Qu, Z. Xu, X. Zhu, H. Xing, L. Wang, J. Yu, H. Liu, C. Chen, L. Yang, Appl. Catal. B Environ. 299 (2021) 120638, https://doi.org/10.1016/j.apcatb.2021.120638.  doi: 10.1016/j.apcatb.2021.120638

    24. [24]

      L. Zhu, Y. Cheng, Y. Gong, Int. J. Hydrogen Energy 69 (2024) 549, https://doi.org/10.1016/j.ijhydene.2024.05.001.  doi: 10.1016/j.ijhydene.2024.05.001

    25. [25]

      S. Xu, D. Jiao, X. Ruan, Z. Jin, Y. Qiu, J. Fan, L. Zhang, W. Zheng, X. Cui, J. Colloid Interface Sci. 671 (2024) 46, https://doi.org/10.1016/j.jcis.2024.05.155.  doi: 10.1016/j.jcis.2024.05.155

    26. [26]

      H. Zhao, M. Liu, X. Du, X. Zhang, Int. J. Hydrogen Energy 58 (2024), https://doi.org/10.1016/j.ijhydene.2024.01.186.  doi: 10.1016/j.ijhydene.2024.01.186

    27. [27]

      Z. Jiang, L. Zheng, M. Liu, H. Xu, S. Chen, F. Xiong, Y. Liao, Y. Liao, Y. Qing, Y. Wu, Appl. Surf. Sci. 638 (2023), https://doi.org/10.1016/j.apsusc.2023.158058.  doi: 10.1016/j.apsusc.2023.158058

    28. [28]

      J. Kang, F. Yang, C. Sheng, H. Xu, J. Wang, Y. Qing, Y. Wu, X. Lu, Small 18 (2022) 24, https://doi.org/10.1002/smll.202200950.  doi: 10.1002/smll.202200950

    29. [29]

      X. Xu, P. Du, T. Guo, B. Zhao, H. Wang, M. Huang, ACS Sustain. Chem. Eng. 8 (2020) 19, https://doi.org/10.1021/acssuschemeng.0c01814.  doi: 10.1021/acssuschemeng.0c01814

    30. [30]

      T. Guo, X. Xu, X. Wang, J. Zhou, H. Wang, Z. Shi, M. Huang, Chem. Eng. J. 417 (2021) 128067, https://doi.org/10.1016/j.cej.2020.128067.  doi: 10.1016/j.cej.2020.128067

    31. [31]

      X. Li, P. Babar, K. Patil, S. Kale, E. Jo, X. Chen, Z. Hussain, J.H. Kim, Y.T. Yoo, Mater. Chem. Phys. 287 (2022) 126310, https://doi.org/10.1016/j.matchemphys.2022.126310.  doi: 10.1016/j.matchemphys.2022.126310

    32. [32]

      S. Tao, G. Zhang, B. Qian, J. Yang, S. Chu, C. Sun, D. Wu, W. Chu, L. Song, Appl. Catal. B Environ. 330 (2023) 122600, https://doi.org/10.1016/j.apcatb.2023.122600.  doi: 10.1016/j.apcatb.2023.122600

    33. [33]

      X. Xu, X. Wang, S. Huo, X. Liu, X. Ma, M. Liu, s, J. Adv. Mater. 36 (2023) 8, https://doi.org/10.1002/adma.202306844.  doi: 10.1002/adma.202306844

    34. [34]

      L. Yu, X. Pang, Z. Tian, S. Wang, L. Feng, Electrochim. Acta 440 (2023) 141724, https://doi.org/10.1016/j.electacta.2022.141724.  doi: 10.1016/j.electacta.2022.141724

    35. [35]

      Q. Cao, W. Huang, J. Shou, X. Sun, K. Wang, Y. Zhao, R. Ding, W. Lin, E. Liu, P. Gao, J. Colloid Interface Sci. 629 (2023) 33, https://doi.org/10.1016/j.jcis.2022.08.095.  doi: 10.1016/j.jcis.2022.08.095

    36. [36]

      W. Shi, X. Sun, R. Ding, D. Ying, Y. Huang, Y. Huang, C. Tan, Z. Jia, E. Liu, Chem. Commun. 56 (2020) 48, https://doi.org/10.1039/d0cc02132f.  doi: 10.1039/d0cc02132f

    37. [37]

      S. Xu, X. Ruan, M. Ganesan, J. Wu, S.K. Ravi, X. Cui, Adv. Funct. Mater. 34 (2024) 18, https://doi.org/10.1002/adfm.202313309.  doi: 10.1002/adfm.202313309

    38. [38]

      P. Qiao, G. Li, X. Xu, D. Wang, F. Wang, L. Xu, L. Lu, H. Cong, M. Sun, Adv. Funct. Mater. 35 (2025) 2421136, https://doi.org/10.1002/adfm.202421136.  doi: 10.1002/adfm.202421136

    39. [39]

      H.-M. Zhang, J. Li, Y. Gao, J. Sun, S. Geng, Y. Meng, Fuel 371 (2024) 132111, https://doi.org/10.1016/j.fuel.2024.132111.  doi: 10.1016/j.fuel.2024.132111

    40. [40]

      Y. Gong, Y. Zhi, Y. Lin, T. Zhou, J. Li, F. Jiao, W. Wang, Dalton Trans. 48 (2019) 20, https://doi.org/10.1039/c9dt00957d.  doi: 10.1039/c9dt00957d

    41. [41]

      Z. Chen, R. Zheng, H. Zou, R. Wang, C. Huang, W. Dai, W. Wei, L. Duan, B.-J. Ni, H. Chen, Chem. Eng. J. 465 (2023) 142684, https://doi.org/10.1016/j.cej.2023.142684.  doi: 10.1016/j.cej.2023.142684

    42. [42]

      Y. Zhao, F. Ma, Z. Wang, P. Wang, Y. Liu, H. Cheng, Y. Dai, Z. Zheng, B. Huang, J. Alloys Compd. 903 (2022) 163741, https://doi.org/10.1016/j.jallcom.2022.163741.  doi: 10.1016/j.jallcom.2022.163741

    43. [43]

      J. Jiang, G. Xu, B. Gong, J. Zhu, W. Wang, T. Zhao, Y. Feng, Q. Wu, S. Liu, L. Zhang, Adv. Funct. Mater. 35 (2024) 2, https://doi.org/10.1002/adfm.202412685.  doi: 10.1002/adfm.202412685

    44. [44]

      X. Xu, H. Liao, L. Huang, S. Chen, R. Wang, S. Wu, Y. Wu, Z. Sun, H. Huang, Appl. Catal. B Environ. 341 (2024) 123312, https://doi.org/10.1016/j.apcatb.2023.123312.  doi: 10.1016/j.apcatb.2023.123312

    45. [45]

      Z. Fang, L. Peng, H. Lv, Y. Zhu, C. Yan, S. Wang, P. Kalyani, X. Wu, G. Yu, ACS Nano 11 (2017) 9, https://doi.org/10.1021/acsnano.7b05481.  doi: 10.1021/acsnano.7b05481

    46. [46]

      L.-F. Zhai, Z.-X. Chen, J.-X. Qi, M. Sun, J. Hazard Mater. 428 (2022) 128245, https://doi.org/10.1016/j.jhazmat.2022.128245.  doi: 10.1016/j.jhazmat.2022.128245

    47. [47]

      J. Huang, S. Wang, J. Nie, C. Huang, X. Zhang, B. Wang, J. Tang, C. Du, Z. Liu, J. Chen, Chem. Eng. J. 417 (2021) 128055, https://doi.org/10.1016/j.cej.2020.128055.  doi: 10.1016/j.cej.2020.128055

    48. [48]

      X. Wang, H. Tian, M. Pi, D. Zhang, S. Chen, Int. J. Hydrogen Energy 45 (2020) 22, https://doi.org/10.1016/j.ijhydene.2020.02.173.  doi: 10.1016/j.ijhydene.2020.02.173

    49. [49]

      J. Zhang, H. Ma, J. Ma, M. Hu, Q. Li, S. Chen, T. Ning, C. Ge, X. Liu, L. Xiao, et al., Acta Phys. Chim. Sin. 39 (2023) 2111037, https://doi.org/10.3866/PKU.WHXB202111037.  doi: 10.3866/PKU.WHXB202111037

    50. [50]

      X. Yang, H. Zhang, W. Xu, B. Yu, Y. Liu, Z. Wu, Catal. Sci. Technol. 12 (2022) 14, https://doi.org/10.1039/d2cy00308b.  doi: 10.1039/d2cy00308b

    51. [51]

      D. Ma, Y. Jia, Y. Li, H. Yang, F. Wang, X. Zheng, G. Shao, Q. Xiong, Z. Shen, M. Liu, et al., J. Mater. Sci. Technol. 197 (2024) 207, https://doi.org/10.1016/j.jmst.2024.01.054.  doi: 10.1016/j.jmst.2024.01.054

    52. [52]

      H.-L. Liao, X.-L. Wu, X.-J. Sun, Tungsten 6 (2024) 4, https://doi.org/10.1007/s42864-024-00267-z.  doi: 10.1007/s42864-024-00267-z

    53. [53]

      X. Li, Q. Hu, H. Wang, M. Chen, X. Hao, Y. Ma, J. Liu, K. Tang, A. Abudula, G. Guan, Appl. Catal. B Environ. 292 (2021) 120172, https://doi.org/10.1016/j.apcatb.2021.120172.  doi: 10.1016/j.apcatb.2021.120172

    54. [54]

      S. Sirisomboonchai, X. Li, N. Kitiphatpiboon, R. Channoo, S. Li, Y. Ma, S. Kongparakul, C. Samart, A. Abudula, G. Guan, J. Mater. Chem. A 8 (2020) 32, https://doi.org/10.1039/d0ta04172f.  doi: 10.1039/d0ta04172f

    55. [55]

      L. Chen, Z.-H. Yin, J.-Y. Cui, C.-Q. Li, K. Song, H. Liu, J.-J. Wang, J. Am. Chem. Soc. 146 (2024) 39, https://doi.org/10.1021/jacs.4c09252.  doi: 10.1021/jacs.4c09252

  • 加载中
    1. [1]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    2. [2]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    3. [3]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    4. [4]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    11. [11]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    12. [12]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(56)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return