Citation: Yingtong Shi,  Guotong Xu,  Guizeng Liang,  Di Lan,  Siyuan Zhang,  Yanru Wang,  Daohao Li,  Guanglei Wu. PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100082. doi: 10.1016/j.actphy.2025.100082 shu

PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries

  • Received Date: 17 January 2025
    Revised Date: 14 March 2025
    Accepted Date: 18 March 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (52302272, 52377026), Taishan Scholars and Young Experts Program of Shandong Province (tsqn202211124, tsqn202103057), the Natural Science Foundation of Shandong Province (ZR2022QB023, ZR2024ME046), the Qingchuang Talents Induction Program of Shandong Higher Education Institution (Research and Innovation Team of Marine Polysaccharides Fibers-based Energy Materials), the State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University (ZKT10, GZRC202006).

  • Lithium-sulfur (Li-S) batteries are regarded as one of the most promising candidates for next generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is limited by the low lithium ion (Li+) transport efficiency and the rapid capacity decay caused by the shuttle effect. Herein, we report a composite comprising Polyethylene glycol (PEG) and vanadium nitride (VN) nanosheets coated onto a commercial polypropylene (PP) separator, called PEG-VN@PP separator. The supercatalytic effect and adsorption properties exhibited by the VN nanosheets significantly enhance the conversion of polysulfides, thereby improving both the capacity and stability of Li-S batteries. Due to the coating of PEG, lithium ions are attracted to the polar functional groups, enabling selective transport, which improves the transport efficiency of Li+ and the rate capability of Li-S batteries. The Li-S battery assembled with PEG-VN@PP exhibits a high specific capacity of 782.0 mAh·g-1 and an average capacity decay of 0.048% per cycle at 1C (1675 mA·g-1) for 700 cycles, using the carbon nanotubes/sulfur cathode with a sulfur mass loading of 1.2 mg·cm-2.
  • 加载中
    1. [1]

      W. Jing, J. Zu, K. Zou, X. Dai, Y. Song, J. Sun, Y. Chen, Q. Tan, Y. Liu, J. Colloid Interface Sci. 635(2023) 32, https://doi.org/10.1016/j.jcis.2022.12.089.

    2. [2]

      H. Jia, J. Fan, P. Su, T. Guo, M.C. Liu, Small 20(2024) 202311343, https://doi.org/10.1002/smll.202311343.

    3. [3]

      W. Yao, J. Xu, L. Ma, X. Lu, D. Luo, J. Qian, L. Zhan, I. Manke, C. Yang, P. Adelhelm, R. Chen, Adv. Mater. 35(2023) 2212116, https://doi.org/10.1002/adma.202212116.

    4. [4]

      S. Xu, Z. Jia, D. Lan, Z. Gao, S. Zhang, G. Wu, Adv. Funct. Mater. 35(2025) 2500304, https://doi.org/10.1002/adfm.202500304.

    5. [5]

      X. Liu, J.Q. Huang, Q. Zhang, L. Mai, Adv. Mater. 29(2017) 1601759, https://doi.org/10.1002/adma.201601759.

    6. [6]

      H. Cheng, S. Zhang, S. Li, C. Gao, S. Zhao, Y. Lu, M. Wang, Small 18(2022) 2202557, https://doi.org/10.1002/smll.202202557.

    7. [7]

      A. Feng, L. Yu, D. Lan, C. Lv, S. Zhang, Z. Gao, Z. Guo, G. Wu, J. Mater. Sci. Technol. 228(2025) 225, https://doi.org/10.1016/j.jmst.2025.02.001.

    8. [8]

      G. Zhu, Q. Wu, X. Zhang, Y. Bao, X. Zhang, Z. Shi, Y. Zhang, L. Ma, Nano Res. 17(2023) 2574, https://doi.org/10.1007/s12274-023-6227-4.

    9. [9]

      S.K. Kannan, J. Joseph, M.G. Joseph, Energy Technol. 12(2024) 2400174, https://doi.org/10.1002/ente.202400174.

    10. [10]

      Y. Luan, X. Yan, C. Ji, C. Lv, D. Lan, S. Zhang, J. Sun, D. Li, G. Wu, J. Mater. Sci. Technol. 228(2025) 279, https://doi.org/10.1016/j.jmst.2025.01.005.

    11. [11]

      S. Lu, L. Cai, J. Wang, H. Ying, Z. Han, W. Han, Z. Chen, Small 20(2024) 2307784, https://doi.org/10.1002/smll.202307784.

    12. [12]

      R. Wang, J. Jiao, D. Liu, Y. He, Y. Yang, D. Sun, H. Pan, F. Fang, R. Wu, Small 20(2024) 2405148, https://doi.org/10.1002/smll.202405148.

    13. [13]

      Z. Cheng, J. Lian, J. Zhang, S. Xiang, B. Chen, Z. Zhang, Adv. Sci. 11(2024) 2404834, https://doi.org/10.1002/advs.202404834.

    14. [14]

      S. Lin, J. Dong, R. Chen, G. Zhang, T. Huang, J. Li, H. Zhou, L. H. Chung, X. Hu, J. He, et al., J. Alloy. Compd. 965(2023) 171389, https://doi.org/10.1016/j.jallcom.2023.171389.

    15. [15]

      Z. Li, J. Wang, H. Yuan, Y. Yu, Y. Tan, Adv. Funct. Mater. 34(2024) 2405890, https://doi.org/10.1002/adfm.202405890.

    16. [16]

      Z. Shen, D. Lan, Y. Cong, Y. Lian, N. Wu, Z. Jia, J. Mater. Sci. Technol. 181(2024) 128, https://doi.org/10.1016/j.jmst.2023.10.007.

    17. [17]

      Y. C. Zhang, Y. W. Li, C. Han, Y. Qin, J. Zhang, J. Wu, J. Gao, X. D. Zhu, J. Colloid Interface Sci. 653(2024) 664, https://doi.org/10.1016/j.jcis.2023.08.193.

    18. [18]

      Q. Kuang, S. Feng, M. Yang, ACS Appl. Mater. Interfaces 16(2024) 56051, https://doi.org/10.1021/acsami.4c10381.

    19. [19]

      Z. Zhou, D. Lan, J. Ren, Y. Cheng, Z. Jia, G. Wu, P. Yin, J. Mater. Sci. Technol. 185(2024) 165, https://doi.org/10.1016/j.jmst.2023.11.010.

    20. [20]

      C. Jian, J. Li, J. Yuan, X. Wu, J. Li, Q. Liang, F. Wan, Z. Wu, B. Zhong, Y. Chen, X. Guo, et al., Ionics 30(2024) 3973, https://doi.org/10.1007/s11581-024-05559-5.

    21. [21]

      S. Liu, Y. Liu, X. Zhang, M. Shen, X. Liu, X. Gao, L. Hou, C. Yuan, Nanomaterials 14(2024) 656, https://doi.org/10.3390/nano14080656.

    22. [22]

      P. Yin, Y. Luo, D. Lan, J. Wang, X. Feng, Z. Jia, G. Wu, Y. Zhang, J. Mater. Sci. Technol. 180(2024) 12, https://doi.org/10.1016/j.jmst.2023.08.057.

    23. [23]

      L. Ma, Y. Wang, Z. Wang, J. Wang, Y. Cheng, J. Wu, B. Peng, J. Xu, W. Zhang, Z. Jin, ACS Nano 17(2023) 11527, https://doi.org/10.1021/acsnano.3c01469.

    24. [24]

      Y. Shin, A. Le Mong, C.N.T. Linh, D. Kim, J. Mater. Chem. A 12(2024) 13980, https://doi.org/10.1039/d4ta01569j.

    25. [25]

      J. Zheng, S. Mao, S. Zhang, J. Liu, Y. Song, S. Zhang, J. Alloy. Compd. 1022(2025) 179884, https://doi.org/10.1016/j.jallcom.2025.179884.

    26. [26]

      S. Zhang, J. Zheng, C. Lv, D. Lan, Q. Tian, Z. Gao, S. Zhang, Z. Zhao, S. Cai, G. Wu, et al., Carbon 234(2025) 120037, https://doi.org/10.1016/j.carbon.2025.120037.

    27. [27]

      J. Liu, Y. Pan, L. Yu, Z. Gao, S. Zhang, D. Lan, Z. Jia, G. Wu, Carbon 238(2025) 120233, https://doi.org/10.1016/j.carbon.2025.120233.

    28. [28]

      X. Xie, R. Liu, C. Chen, D. Lan, Z. Chen, W. Du, G. Wu, Int. J. Miner. Metall. Mater. 32(2025) 566, https://doi.org/10.1007/s12613-024-3024-3.

    29. [29]

      Z. Niu, Y. Wang, Q. Tian, J. Wang, Z. Gao, D. Lan, G. Wu, Carbon 233(2025) 119848, https://doi.org/10.1016/j.carbon.2024.119848.

    30. [30]

      Y. Liu, W. Geng, L. Wang, H. Wang, R. Zhang, D. Lan, B. Fan, Chem. Eng. J. 505(2025) 159489, https://doi.org/10.1016/j.cej.2025.159489.

    31. [31]

      H. Jia, T. Guo, P. Su, M. Liu, W. Zhang, T. Huo, J. Fan, J. Power Sources 631(2025) 236220, https://doi.org/10.1016/j.jpowsour.2025.236220.

    32. [32]

      T. Hu, D. Lan, J. Wang, X. Zhong, G. Bu, P. Yin, Carbon 232(2025) 119798, https://doi.org/10.1016/j.carbon.2024.119798.

    33. [33]

      Z. Guo, X. Zhang, C. Lv, S. Zhang, Z. Gao, Z. Jia, D. Lan, G. Wu, Carbon 234(2025) 120010, https://doi.org/10.1016/j.carbon.2025.120010.

    34. [34]

      Z. Guo, D. Lan, C. Zhang, Z. Gao, M. Han, X. Shi, M. He, H. Guo, Z. Jia, G. Wu, et al., J. Mater. Sci. Technol. 220(2025) 307, https://doi.org/10.1016/j.jmst.2024.09.020.

    35. [35]

      Y. Gu, Z. Chen, Z. Wang, S. Yu, L. Bi, J. Adv. Ceram. 14(2025) 9221040, https://doi.org/10.26599/jac.2025.9221040.

    36. [36]

    37. [37]

      R. Gan, Y. Zu, T. Zhang, C. Yang, C. Wang, B. Zeng, P. Liu, X. Li, F. Han, Y. Qian, et al., Ceram. Int. 2025, https://doi.org/10.1016/j.ceramint.2025.01.111.

    38. [38]

      X. Chen, D. Lan, L. Zhou, H. Liu, X. Song, S. Wang, Z. Zou, G. Wu, Int. J. Miner. Metall. Mater. 32(2025) 591, https://doi.org/10.1007/s12613-024-3063-9.

    39. [39]

      S. Zhang, J. Zheng, D. Lan, Z. Gao, X. Liang, Q. Tian, Z. Zhao, G. Wu, Adv. Funct. Mater. 35(2025) 2413884, https://doi.org/10.1002/adfm.202413884.

    40. [40]

      M. Zhang, X. Zhang, S. Liu, W. Hou, Y. Lu, L. Hou, Y. Luo, Y. Liu, C. Yuan, ChemSusChem 17(2024) e202400538, https://doi.org/10.1002/cssc.202400538.

    41. [41]

      J. Zhang, X. Zhu, T. Zhang, X. Liu, X. Elvis Cao, J. Shen, M. Shan, H. Yang, X. Shu, G. Xu, et al., Chem. Eng. J. 496(2024) 154031, https://doi.org/10.1016/j.cej.2024.154031.

    42. [42]

      H. Wang, X. Chen, H. Yu, X. Liang, Z. Li, M. Hu, L. Yang, P. Tsiakaras, S. Yin, Chem. Eng. J. 487(2024) 150669, https://doi.org/10.1016/j.cej.2024.150669.

    43. [43]

      M. Ren, F. Han, X. Zhu, Y. Peng, Y. Zu, P. Liu, A. Feng, Materials 17(2024) 5932, https://doi.org/10.3390/ma17235932.

    44. [44]

      Y. Miao, M. Zhang, Q. Liu, T. Xi, Y. Liu, Y. Wang, C. Wang, A. Cui, Z. Tian, T. Wang, J. Liu, Q. Jia, D. Lan, Y. Bi, Z. Li, Carbon 235(2025) 120076, https://doi.org/10.1016/j.carbon.2025.120076.

    45. [45]

      H. Yuan, Z. Wang, D. Lan, S. Zhang, Z. Zang, G. Jiang, H. Wei, Y. Zhang, J. Zheng, J. Ren, G. Wu, S. Jia, et al., Adv. Compos. Hybrid Mater. 8(2025) 161, https://doi.org/10.1007/s42114-025-01222-3.

    46. [46]

      X. Li, X. Zhu, A. Feng, M. An, P. Liu, Y. Zu, J. Mater. Res. Technol. 29(2024) 5667, https://doi.org/10.1016/j.jmrt.2024.03.001.

    47. [47]

      X. Dong, S. Yu, Y. Gu, L. Bi, Sustain. Mater.Technol. 41(2024) e01104, https://doi.org/10.1016/j.susmat.2024.e01104.

    48. [48]

      H. Dai, H. Du, S. Boulfrad, S. Yu, L. Bi, Q. Zhang, J. Adv. Ceram. 13(2024) 579, https://doi.org/10.26599/jac.2024.9220880.

    49. [49]

      A. Cui, C. Wang, Y. Miao, X. Wang, Y. Wang, D. Lan, S. Wu, G. Song, T. Wang, Z. Tian, et al., Adv. Funct. Mater. 35(2025) 2420292, https://doi.org/10.1002/adfm.202420292.

    50. [50]

      H. Chen, C. Wang, H. Wu, L. Li, Y. Xing, C. Zhang, X. Long, Nat. Commun. 15(2024) 9222, https://doi.org/10.1038/s41467-024-53714-3.

    51. [51]

      P. Zhang, Y. Zhao, Y. Li, N. Li, S. R. P. Silva, G. Shao, P. Zhang, Adv. Sci. 10(2023) 2206786, https://doi.org/10.1002/advs.202206786.

    52. [52]

      Y. Yin, Y. Zhou, Y. Gu, L. Bi, J. Adv. Ceram. 12(2023) 587, https://doi.org/10.26599/jac.2023.9220707.

    53. [53]

      Y. Yin, R. Zhou, H. Dai, X. Yang, Y. Gu, L. Bi, J. Adv. Ceram. 12(2023) 1189, https://doi.org/10.26599/jac.2023.9220748.

    54. [54]

      Y. Yin, D. Xiao, S. Wu, E.H. Da'as, Y. Gu, L. Bi, SusMat 3(2023) 697, https://doi.org/10.1002/sus2.156.

    55. [55]

      L. Wang, Y. Li, Y. Ai, E. Fan, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Funct. Mater. 33(2023) 2306466, https://doi.org/10.1002/adfm.202306466.

    56. [56]

      Y. Zhang, Z. Wu, S. Wang, N. Li, S.R.P. Silva, G. Shao, P. Zhang, InfoMat 4(2022) e12294, https://doi.org/10.1002/inf2.12294.

    57. [57]

      R. Li, J. Li, Q. Liu, T. Li, D. Lan, Y. Ma, Adv. Compos. Hybrid Mater. 8(2025) 86, https://doi.org/10.1007/s42114-024-01177-x.

    58. [58]

      Y. Li, L. Wang, F. Zhang, W. Zhang, G. Shao, P. Zhang, Adv. Sci. 10(2022) 2205020, https://doi.org/10.1002/advs.202205020.

    59. [59]

      R. Hou, S. Zhang, Y. Zhang, N. Li, S. Wang, B. Ding, G. Shao, P. Zhang, Adv. Funct. Mater. 32(2022) 2200302, https://doi.org/10.1002/adfm.202200302.

    60. [60]

      P. Li, H. Lv, Z. Li, X. Meng, Z. Lin, R. Wang, X. Li, Adv. Mater. 33(2021) 2007803, https://doi.org/10.1002/adma.202007803.

    61. [61]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0.

    62. [62]

      T. Zhao, T. Zheng, D. Lan, Y. Zhang, Z. Sun, C. Wang, Z. Jia, G. Wu, Nano Res. 17(2024) 1625, doi: 10.1007/s12274-023-6160-6.

    63. [63]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865.

    64. [64]

      R. Yang, D. Zhang, N. Li, H. Zhang, G. Zeng, D. Lan, Chem. Eng. J. 506(2025) 160007, https://doi.org/10.1016/j.cej.2025.160007.

    65. [65]

      G. Kresse, D. Joubert, Phys. Rev. B 59(1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.

    66. [66]

      S. Yu, G. Qin, D. Lan, H. Xu, Z. Yan, Y. Zhou, B. Zhang, X. Su, Compos. Commun. 52(2024) 102157, https://doi.org/10.1016/j.coco.2024.102157.

    67. [67]

      Y. Zhao, X. Liu, Z. Liu, X. Lin, J. Lan, Y. Zhang, Y. Lu, M. Peng, T. Chan, Y. Tan, et al., Nano Lett. 21(2021) 6907, https://doi.org/10.1021/acs.nanolett.1c02053.

    68. [68]

      Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin, T. Ma, Angew. Chem. Int. Ed. 60(2021) 12554, https://doi.org/10.1002/anie.202102832.

    69. [69]

      F. Ma, Z. Chen, K. Srinivas, D. Liu, Z. Zhang, Y. Wu, M. Q. Zhu, Q. Wu, Y. Chen, Chem. Eng. J. 459(2023) 141526, https://doi.org/10.1016/j.cej.2023.141526.

    70. [70]

      S. Liu, D. Lan, K. Wang, Z. Gao, X. Sun, P. Yin, Mater. Res. Bull. 173(2024) 112702, https://doi.org/10.1016/j.materresbull.2024.112702.

    71. [71]

      J. Liu, L. Yu, Q. Ran, X.A. Chen, X. Wang, X. He, H. Jin, T. Chen, J.S. Chen, D. Guo, S. Wang, et al., Small 20(2024) 2311750, https://doi.org/10.1002/smll.202311750.

    72. [72]

      F. Shen, Y. Wan, H. Yao, X. Liu, D. Lan, J. Alloy. Compd. 1005(2024) 176229, https://doi.org/10.1016/j.jallcom.2024.176229.

    73. [73]

      B. Zhao, D. Lan, M. Zhang, L. Liu, N. Wu, S. Yao, Mater. Res. Bull. 171(2024) 112621, https://doi.org/10.1016/j.materresbull.2023.112621.

    74. [74]

      R. Li, F. Zhang, C. Li, Y. Cui, J. Wen, D. Lv, Y. Chen, Y. Wei, H. Wei, J. Bu, J. Mater. Sci. Mater. Electron. 34(2023) 293, https://doi.org/10.1007/s10854-022-09727-z.

    75. [75]

      C. Yin, W. Fu, L. Fang, S. You, H. Zhang, Y. Wang, J. Electrochem. 25(2019) 579, https://doi.org/10.13208/j.electrochem.181142.

    76. [76]

      T.D. Nguyen, S. Roh, M.T.N. Nguyen, Y. Nam, D. J. Kim, B. Lim, Y.S. Yoon, J.S. Lee, Chem. Eng. J. 497(2024) 154430, https://doi.org/10.1016/j.cej.2024.154430.

    77. [77]

      Q. Yang, N. Deng, Y. Zhao, L. Gao, B. Cheng, W. Kang, Chem. Eng. J. 451(2023) 138532, https://doi.org/10.1016/j.cej.2022.138532.

    78. [78]

      Y. Kong, L. Wang, M. Mamoor, B. Wang, G. Qu, Z. Jing, Y. Pang, F. Wang, X. Yang, D. Wang, L. Xu, et al., Adv. Mater. 36(2024) 2310143, https://doi.org/10.1002/adma.202310143.

    79. [79]

      M. Chen, M. Shao, J. Jin, L. Cui, H. Tu, X. Fu, Energy Storage Mater. 47(2022) 629, https://doi.org/10.1016/j.ensm.2022.02.051.

    80. [80]

      H. Yang, L. Li, Y. Shan, X. Chen, Y. Zhao, S. Fan, Appl. Surf. Sci. 635(2023) 157738, https://doi.org/10.1016/j.apsusc.2023.157738.

    81. [81]

      L. Gai, H. Zhao, X. Li, P. Wang, S. Yu, Y. Chen, C. Wang, D. Lan, F. Han, Y. Du, et al., Chem. Eng. J. 501(2024) 157556, https://doi.org/10.1016/j.cej.2024.157556.

    82. [82]

      R. Qiang, R. Xue, D. Lan, Y. Shao, Y. Chen, X. Yang, G. Wu, J. Mater. Chem. C, 12(2024) 17890, https://doi.org/10.1039/D4TC03287J.

    83. [83]

      Y. Yang, W. Wang, J. Zhang, Angew. Chem. Int. Ed. 64(2024) e202417031, https://doi.org/10.1002/anie.202417031.

    84. [84]

      X. Yang, J. Liu, F. Chu, J. Lei, F. Wu, Mater. Today Energy 35(2023) 101318, https://doi.org/10.1016/j.mtener.2023.101318.

    85. [85]

      Q. Wang, Y. Bai, N. Zhao, L. Wang, F. Zhang, Y. Zhu, D. Lan, R. Zhang, H. Wang, B. Fan, et al., Ceram. Int. 50(2024) 49217, https://doi.org/10.1016/j.ceramint.2024.09.264.

    86. [86]

      J. Wu, Q. Feng, Y. Wang, J. Wang, X. Zhao, L. Zhan, M. Liu, Z. Jin, Z. Chen, Y. Lei, et al., Chem. Commun. 59(2023) 2966, https://doi.org/10.1039/d2cc06893a.

    87. [87]

      X. Luo, T. Liu, C. Wei, D. Lan, X. Li, Y. Ma, H. Xie, F. Yu, G. Wu, Sustain. Mater. Technol. 42(2024) e01127, https://doi.org/10.1016/j.susmat.2024.e01127.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    4. [4]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    5. [5]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    9. [9]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    15. [15]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(0)
  • Abstract views(92)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return