Citation:
Yu Wang, Haiyang Shi, Zihan Chen, Feng Chen, Ping Wang, Xuefei Wang. Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100081.
doi:
10.1016/j.actphy.2025.100081
-
Platinum (Pt) is an excellent oxygen reduction cocatalyst with great potential for the photocatalytic production of H2O2. However, its catalytic efficiency is limited by the strong adsorption of O2, which facilitates O―O bond cleavage and reduces selectivity for the 2-electron oxygen reduction reaction (ORR). Fortunately, the strength of the Pt―O bond can be weakened by adjusting the structure of the cocatalyst to modify the electronic structure of Pt. In this paper, Pt and Ag cocatalysts are successively modified on the (010) facet of BiVO4 through a two-step photodeposition method. Due to the occurrence of a displacement reaction during the process, a synergistic catalyst with a hollow AgPt alloy core and an electron-rich Ptδ- shell (AgPt@Pt) structure is ultimately synthesized. Photocatalytic experiments demonstrated that the H2O2 production from BiVO4 modified with hollow AgPt@Pt reached an impressive 1021.5 μmol·L-1. This corresponds to an AQE of 5.1%, which is 28.6 times higher than that of the Pt/BiVO4 photocatalyst with only 35.7 μmol·L-1. Furthermore, research results show that AgPt can transfer electrons to the Pt shell to generate electron-rich Ptδ- active sites, thus increasing the antibonding orbital occupancy of Pt―Oads in AgPt@Pt catalysts. This electron redistribution weakens the adsorption strength of O2 on Pt, promoting the 2-electron ORR and facilitating the efficient generation of H2O2. This synthesis strategy offers a versatile approach for preparing other Pt-based nano-alloy cocatalysts with improved activity for the selective reduction of O2 to H2O2.
-
Keywords:
- Photocatalysis,
- Electron-rich Ptδ-,
- O2-adsorption,
- H2O2,
- BiVO4
-
-
-
[1]
X. Zhu, B. Xiao, J. Su, S. Wang, Q. Zhang, J. Wang, Acta Phys. Chim. Sin. 40 (2024) 2407005, https://doi.org/10.3866/PKU.WHXB202407005.
-
[2]
A. Fink, R. Delima, A. Rousseau, C. Hunt, N. LeSage, A. Huang, M. Stolar, C. Berlinguette, Nat. Commun. 15(2024) 766, https://doi.org/10.1038/s41467-024-44741-1.
-
[3]
Y. Luo, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 497(2024) 154886, https://doi.org/10.1016/j.cej.2024.154886.
-
[4]
Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11(2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.
-
[5]
X. Zhou, C. Ai, X Wang, Z. Wu, J. Zhang, J. Materiomics 11(2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.
-
[6]
S. Ho-Kimura, ACS Appl. Energy Mater. 7(2024) 1902, https://doi.org/10.1021/acsaem.3c02981.
-
[7]
C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15(2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.
-
[8]
J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36(2024) 2400288, https://doi.org/10.1002/adma.202400288.
-
[9]
Y. Yang, B. Cheng, J. Yu, L. Wang, W. Ho, Nano Res. 16(2023) 4506, https://doi.org/10.1007/s12274-021-3733-0.
-
[10]
X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.
-
[11]
H. Shi, S. Li, M. Wang, X. Yin, J. Huang, W. Qi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 13(2023) 3884, https://doi.org/10.1039/D3CY00331K.
-
[12]
L. Lin, Z. Sun, H. Chen, L. Zhao, M. Sun, Y. Yang, Z. Liao, X. Wu, X. Li, C. Tang, Acta Phys. Chim. Sin. 40(2024) 2305019, https://doi.org/10.3866/PKU.WHXB202305019.
-
[13]
Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11(2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.
-
[14]
K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36(2024) 2406460, https://doi.org/10.1002/adma.202406460.
-
[15]
J. Huang, H. Shi, X. Wang, P. Wang, F. Chen, H. Yu, Catal. Sci. Technol. 14(2024) 2514, https://doi.org/10.1039/D4CY00141A.
-
[16]
Y. Li, Z. Liu, W. Qi, H. Shi, K. Wang, X. Wang, P. Wang, F. Chen, H. Yu, Appl. Surf. Sci. 656(2024) 159664, https://doi.org/10.1016/j.apsusc.2024.159664.
-
[17]
Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40(2024) 2407012, https://doi.org/10.3866/PKU.WHXB202407012.
-
[18]
H. Shi, Y. Li, K. Wang, S. Li, X. Wang, P. Wang, F. Chen, H. Yu, Chem. Eng. J. 443(2022) 136429, https://doi.org/10.1016/j.cej.2022.136429.
-
[19]
Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57(2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.
-
[20]
H. Chen, L. Nie, K. Xu, Y. Yang, C. Fang, Acta Phys. Chim. Sin. 40(2024) 2406019, https://doi.org/10.3866/PKU.WHXB202406019.
-
[21]
H. Lee, H. Nam, G. Han, Y. Cho, B. Yeo, M. Kim, D. Kim, K. Lee, S. Lee, S Han, Acta Mater. 205(2021) 116563, https://doi.org/10.1016/j.actamat.2020.116563.
-
[22]
B. Park, W. Park, J. Choi, W. Choi, Y. Sung, S. Sul, O. Kwon, H. Song, Chem. Sci. 14(2023) 7553, https://doi.org/10.1039/D3SC01429K.
-
[23]
S. He, D. Chu, Z. Pang, Y. Du, J. Wang, Y. Chen, Y. Su, J. Qin, X. Pan, Z. Zhou, et al., Acta Phys. Chim. Sin. 41(2025) 2408006, https://doi.org/10.3866/PKU.WHXB202408006.
-
[24]
Y. Xia, B. Zhu, X. Qin, W. Ho, J. Yu, Chem. Eng. J. 467(2023) 143528, https://doi.org/10.1016/j.cej.2023.143528.
-
[25]
B. He, C. Luo, Z. Wang, L. Zhang, J. Yu, Appl. Catal., B. 323(2022) 1222000, https://doi.org/10.1016/j.apcatb.2022.122200.
-
[26]
B. Zi, H. Zheng, T. Zhou, Y. Zhang, Q. Lu, M. Chen, H. Sun, B. Xiao, Z. Qiu, J. Zhao, et al., J. Colloid Interface Sci. 680(2024) 298, https://doi.org/10.1016/j.jcis.2024.11.018.
-
[27]
F. Shao, X. Zhu, A. Wang, K. Fang, J. Yuan, J. Feng, J. Colloid Interface Sci. 505(2017) 307, https://doi.org/10.1016/j.jcis.2017.05.088.
-
[28]
G. Wu, W. Xu, H. Zuo, X. Wei, J. Cao, Comput. Mater. Sci. 228(2023) 112328, https://doi.org/10.1016/j.commatsci.2023.112328
-
[29]
K. Wang, M. Wang, J. Yu, D. Liao, H. Shi, X. Wang, H. Yu, ACS Appl. Nano Mater. 4(2021) 13158, https://doi.org/10.1021/acsanm.1c02688.
-
[30]
Y. Lin, C. Lu, C. Wei, J. Alloys Compd. 781(2019) 56, https://doi.org/10.1016/j.jallcom.2018.12.071.
-
[31]
Y. Zhang, H. Gong, Y. Zhang, K. Liu, H. Cao, H. Yan, J. Zhu, Eur. J. Inorg. Chem. 2017(2017) 2990, https://doi.org/10.1002/ejic.201700165.
-
[32]
G. Che, D. Wang, C. Wang, F. Yu, D. Li, N. Suzuki, C. Terashima, A. Fujishima, Y. Liu, X. Zhang, Chem. Eng. J. 397(2020) 125381, https://doi.org/10.1016/j.cej.2020.125381.
-
[33]
S. Heckel, M. Wittmann, M. Reid, K. Villa, J. Simmchen, Acc. Mater. Res. 5(2024) 400, https://doi.org/10.1021/accountsmr.3c00021.
-
[34]
H. Lv, Y. Liu, J. Zhou, Y. Bai, H. Shi, B. Yue, S. Shen, D. Yu, Chem. Eng. J. 484(2024) 149514, https://doi.org/10.1016/j.cej.2024.149514.
-
[35]
G. Yentür, M. Dükkancı, Appl. Surf. Sci. 531(2020) 147322, https://doi.org/10.1016/j.apsusc.2020.147322.
-
[36]
Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal., B. 333(2023) 122780, https://doi.org/10.1016/j.apcatb.2023.122780.
-
[37]
L. Wang, J. Sun, B. Cheng, R. He, J. Yu, J. Phys. Chem. Lett. 14(2023) 4803, https://doi.org/10.1021/acs.jpclett.3c00811.
-
[38]
K. Niu, J. Park, H. Zheng, A. Alivisatos, Nano Lett. 13(2013) 5715, https://doi.org/10.1021/nl4035362.
-
[39]
He, W.; Wu, X.; Liu, J.; Hu, X.; Zhang, K.; Hou, S.; Zhou, W.; Xie, S. Chem. Mater. 22(2010) 2988, https://doi.org/10.1021/cm100393v.
-
[40]
S. Lin, M. Habib, S. Burse, R. Mandavkar, M. Joni, S. Kunwar, J. Lee, J. Alloys Compd. 952(2023) 169952, https://doi.org/10.1016/j.jallcom.2023.169952.
-
[41]
Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53(2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.
-
[42]
R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138(2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.
-
[43]
H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166(2023) 241. https://doi.org/10.1016/j.jmst.2023.05.030.
-
[44]
D. Gao, W. Zhong, X. Zhang, P. Wang, H. Yu, Small 20(2023) 2309123, https://doi.org/10.1002/smll.202309123.
-
[45]
B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162(2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.
-
[46]
Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162(2023) 1, https://doi.org/10.1016/j.jmst.2023.03.045.
-
[47]
B. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang, Adv. Mater. 34(2022) 2203225, https://doi.org/10.1002/adma.202203225.
-
[48]
Z. Jiang, Y. Zhang, L. Zhang, B. Cheng, L. Wang, Chin. J. Catal. 43(2022) 226, https://doi.org/10.1016/S1872-2067(21)63832-9.
-
[49]
G. Han, F. Xu, B. Cheng, Y. Li, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 38(2022) 2112037, https://doi.org/10.3866/PKU.WHXB202112037.
-
[50]
Z. Jiang, B. Cheng, Y. Zhang, S. Wageh, Ahmed A. Al‐Ghamdi, J. Yu, L. Wang, J. Mater. Sci. Technol. 124(2022) 193, https://doi.org/10.1016/j.jmst.2022.01.029.
-
[51]
Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11(2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.
-
[52]
K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K Wang, Sci. China Mater. 67(2024) 484, https://doi.org/10.1007/s40843-023-2717-0.
-
[53]
X. Yin, D. Gao, J. Xu, B. Zhao, X. Wang, J. Yu, H. Yu, J. Colloid Interface Sci. 678(2025) 1249, https://doi.org/10.1016/j.jcis.2024.09.195.
-
[54]
S. Wu, X. Wang, H. Yu, Chin. J. Struct. Chem. 43(2024) 100457, https://doi.org/10.1016/j.cjsc.2024.100457.
-
[55]
G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. Talebian-Kiakalaieh, J. Ran, Chin. J. Catal. 61(2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8.
-
[56]
X. Cao, Y. Han, C. Gao, X. Huang, Y. Xu, N. Wang, J. Mater. Chem. A, 1(2013) 14904, https://doi.org/10.1039/C3TA13071A.
-
[57]
Y. Zhao, S. Zhang, Z. Wu, B Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60(2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5.
-
[58]
M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12(2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.
-
[59]
H. Phuoc Toan, D. Nguyen,P. Minh Phan, N. Anh, P. Phuong Ly, M. Pham, S. Hyun Hur, T. Thi Ung, D. Danh Bich, M. Chien Nguyen, et al., ACS Appl. Mater. Interfaces 16(2024) 29421, https://doi.org/10.1021/acsami.4c04387.
-
[60]
H. Sun, D. Li, Y. Min, Y. Wang, Y. Ma, Y. Zheng, H. Huang, Acta Phys. Chim. Sin. 40(2024) 2307007, https://doi.org/10.3866/PKU.WHXB202307007.
-
[61]
J. Yang, T. Shao, C. Luo, J. Li, S. He, B. Meng, Q. Zhang, D. Zhang, Z. Xue, X. Zhou, J. Alloys Compd. 834(2020) 155056, https://doi.org/10.1016/j.jallcom.2020.155056.
-
[62]
R. Bariki, S. Pradhan, S. Panda, S. Nayak, A. Pati, B. Mishra, Langmuir 39(2023) 7707, https://doi.org/10.1021/acs.langmuir.3c00519.
-
[63]
M. Song, M. Chen, C. Zhang, J. Zhang, W. Liu, X. Huang, J. Li, G. Feng, D. Wang, ACS Appl. Mater. Interfaces 15(2023) 31375, https://doi.org/10.1021/acsami.3c02793.
-
[64]
B. Zhao, W. Zhong, F. Chen, P. Wang, C. Bie, H. Yu, Chin. J. Catal. 52(2023) 127, https://doi.org/10.1016/S1872-2067(23)64491-2.
-
[65]
Y. Ko, K. Choi, B. Yang, W. Lee, J. Kim, J. Choi, K. Chae, J. Lee, Y. Hwang, B. Min, et al., J. Mater. Chem. A 8(2020) 9859, https://doi.org/10.1039/D0TA01869D.
-
[66]
N. Wilson, Y. Pan, Y. Shao, J. Zuo, H. Yang, D. Flaherty, ACS Catal. 8(2018) 2880, https://doi.org/10.1021/acscatal.7b04186.
-
[67]
X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. Chim. Sin. 40(2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.
-
[68]
J. Xu, W. Zhong, D. Gao, X. Wang, P. Wang, H. Yu, Chem. Eng. J. 439(2022) 135758, https://doi.org/10.1016/j.cej.2022.135758.
-
[69]
K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40(2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.
-
[1]
-
-
-
[1]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[2]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[3]
Sikai Wu , Xuefei Wang , Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457
-
[4]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[5]
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
-
[6]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[11]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[12]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[13]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
-
[14]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[15]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[16]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[19]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[20]
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
-
[1]
Metrics
- PDF Downloads(3)
- Abstract views(42)
- HTML views(9)