Citation: Sumiya Akter Dristy,  Md Ahasan Habib,  Shusen Lin,  Mehedi Hasan Joni,  Rutuja Mandavkar,  Young-Uk Chung,  Md Najibullah,  Jihoon Lee. Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100079. doi: 10.1016/j.actphy.2025.100079 shu

Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting

  • Corresponding author: Jihoon Lee, jihoonlee@kw.ac.kr
  • Received Date: 19 December 2024
    Revised Date: 7 March 2025
    Accepted Date: 7 March 2025

    Fund Project: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. RS-2018-NR031063) and in part by the Research Grant of Kwangwoon University in 2025.

  • Green hydrogen holds great promise for the future energy ecosystem and designing alternative electrocatalysts is essential for industrial-scale green hydrogen production for high-current water splitting under industrial conditions. Herein, the Zn-doped NiBP microsphere electrocatalyst is fabricated via a multi-step process combining hydrothermal and electrochemical approaches, followed by post-annealing. The optimized Zn/NiBP electrode outperforms the majority of previously reported catalysts, with low overpotentials of 95 mV for HER (hydrogen evolution reaction) and 280 mV for OER (oxygen evolution reaction) at 100 mA·cm-2 in 1 mol·L-1 KOH. The bifunctional Zn/NiBP||Zn/NiBP demonstrates a 3.10 V cell voltage at 2000 mA·cm-2 in 1 mol·L-1 KOH, surpassing the benchmark Pt/C||RuO2systems. The Pt/C||Zn/NiBP hybrid system exhibits exceptionally low cell voltages of 2.50 and 2.30 V at 2000 mA·cm-2 in 1 and 6 mol·L-1 KOH respectively, demonstrating excellent overall water-splitting performance under challenging industrial conditions. Furthermore, the 2-E system shows remarkable stability over 120 hours at 1000 mA·cm-2 in 1 and 6 mol·L-1 KOH, indicating the robust anti-corrosion properties of the Zn/NiBP microspheres. Zn-doped NiBP microspheres exhibit enhanced electrochemical conductivity, active surface area and intrinsic electrocatalytic activity due to synergistic interactions among Zn, Ni, B and P, enabling rapid charge transfer and superior electrocatalytic performance for efficient hydrogen generation.
  • 加载中
    1. [1]

      A.Z. Arsad, M.A. Hannan, A.Q. Al-Shetwi, R.A. Begum, M.J. Hossain, P.J. Ker, T.M.I. Mahlia, Int. J. Hydrogen Energy 48(2023) 27841, https://doi.org/10.1016/j.ijhydene.2023.04.014.

    2. [2]

      A.E. Yüzbaşıoğlu, C. Avşar, A.O. Gezerman, Curr. Res. Green Sustain. Chem. 5(2022) 100307, https://doi.org/10.1016/j.crgsc.2022.100307.

    3. [3]

      M. Amin, H.H. Shah, A.G. Fareed, W.U. Khan, E. Chung, A. Zia, Z.U.R. Farooqi, C. Lee, Int. J. Hydrogen Energy 47(2022) 33112, https://doi.org/10.1016/j.ijhydene.2022.07.172.

    4. [4]

      U.Y. Qazi, Energies 15(2022) 4741, https://doi.org/10.3390/en15134741.

    5. [5]

      W.-J. Jiang, T. Tang, Y. Zhang, J.-S. Hu, Acc. Chem. Res. 53(2020) 1111, https://doi.org/10.1021/acs.accounts.0c00127.

    6. [6]

      R. Santhosh Kumar, S.C. Karthikeyan, S. Ramakrishnan, S. Vijayapradeep, A. Rhan Kim, J.-S. Kim, D. Jin Yoo, Chem. Eng. J. 451(2023) 138471, https://doi.org/10.1016/j.cej.2022.138471.

    7. [7]

      S.D. Bhoyate, J. Kim, F.M. de Souza, J. Lin, E. Lee, A. Kumar, R.K. Gupta, Coord. Chem. Rev. 474(2023) 214854, https://doi.org/10.1016/j.ccr.2022.214854.

    8. [8]

      R. Zheng, C. Zhao, J. Xiong, X. Teng, W. Chen, Z. Hu, Z. Chen, Sustain. Energy Fuels 5(2021) 4023, https://doi.org/10.1039/D1SE00697E.

    9. [9]

      P.J. Chirik, K.M. Engle, E.M. Simmons, S.R. Wisniewski, Org. Process Res. Dev. 27(2023) 1160, https://doi.org/10.1021/acs.oprd.3c00025.

    10. [10]

      S. Bulakhe, N. Shinde, J.S. Kim, R.S. Mane, R. Deokate, Int. J. Energy Res. 46(2022) 17829, https://doi.org/10.1002/er.8458.

    11. [11]

      M.N. Lakhan, A. Hanan, A. Hussain, I. Ali Soomro, Y. Wang, M. Ahmed, U. Aftab, H. Sun, H. Arandiyan, Chem. Commun. 60(2024) 5104, https://doi.org/10.1039/D3CC06015B.

    12. [12]

      H. Su, J. Jiang, S. Song, B. An, N. Li, Y. Gao, L. Ge, Chinese J. Catal. 44(2023) 7–49, https://doi.org/10.1016/S1872-2067(22)64149-4.

    13. [13]

      Y. Xin, Q. Hua, C. Li, H. Zhu, L. Gao, X. Ren, P. Yang, A. Liu, J. Mater. Chem. A 12(2024) 23147, https://doi.org/10.1039/D4TA03393K.

    14. [14]

      L. Huo, C. Jin, K. Jiang, Q. Bao, Z. Hu, J. Chu, Adv. Energy Sustain. Res. 3(2022) 2100189, https://doi.org/10.1002/aesr.202100189.

    15. [15]

      X. Deng, R. Zhang, Q. Li, W. Gu, L. Hao, ChemistrySelect 7(2022) e202200091, https://doi.org/10.1002/slct.202200091.

    16. [16]

      G. Anandha babu, S. Perumal, M.K.A. Mohammed, M. Govindasamy, A.A. Alothman, M. Ouladsmane, R. Ganesan, Int. J. Hydrogen Energy 54(2024) 652, https://doi.org/10.1016/j.ijhydene.2023.06.063.

    17. [17]

      S. Lin, R. Mandavkar, M.A. Habib, S.A. Dristy, M.H. Joni, J.-H. Jeong, J. Lee, J. Colloid Interface Sci. 677(2024) 587, https://doi.org/10.1016/j.jcis.2024.08.009.

    18. [18]

      W. Li, Y. Deng, L. Luo, Y. Du, X. Cheng, Q. Wu, J. Colloid Interface Sci. 639(2023) 416, https://doi.org/10.1016/j.jcis.2023.02.071.

    19. [19]

      P. Ye, K. Fang, H. Wang, Y. Wang, H. Huang, C. Mo, J. Ning, Y. Hu, Nat. Commun. 15(2024) 1012, https://doi.org/10.1038/s41467-024-45320-0.

    20. [20]

      L. Huang, R. Yao, X. Wang, S. Sun, X. Zhu, X. Liu, M.G. Kim, J. Lian, F. Liu, Y. Li, H. Zong, S. Han, X. Ding, Energy Environ. Sci. 15(2022) 2425, https://doi.org/10.1039/D1EE02764F.

    21. [21]

      J. Du, Z. Zou, C. Xu, Electrochem. Sci. Adv. 1(2021) e2000038, https://doi.org/10.1002/elsa.202000038.

    22. [22]

      M. Ahasan Habib, R. Mandavkar, S. Lin, S. Burse, T. Khalid, M. Hasan Joni, J.H. Jeong, J. Lee, Chem. Eng. J. 462(2023) 142177, https://doi.org/10.1016/j.cej.2023.142177.

    23. [23]

      S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6(2016) 8069, https://doi.org/10.1021/acscatal.6b02479.

    24. [24]

      M.K. Sikdar, A. Singh, S. Bhakta, M. Sahoo, S.N. Jha, D.K. Shukla, D. Kanjilal, P.K. Sahoo, Phys. Chem. Chem. Phys. 24(2022) 18255, https://doi.org/10.1039/D2CP02514K.

    25. [25]

      X. Zhao, Z. Li, S. Wu, M. Lu, X. Xie, D. Zhan, J. Yan, Adv. Electron. Mater. 10(2024) 2300610, https://doi.org/10.1002/aelm.202300610.

    26. [26]

      S. Guo, Z. Du, S. Dai, Phys. Status Solidi 246(2009) 2329, https://doi.org/10.1002/pssb.200945192.

    27. [27]

      C. Huang, B. Zhang, Y. Wu, Q. Ruan, L. Liu, J. Su, Y. Tang, R. Liu, P.K. Chu, Appl. Catal. B-Environ. 297(2021) 120461, https://doi.org/10.1016/j.apcatb.2021.120461.

    28. [28]

      A. Mitra, M. Mallik, S. Sengupta, S. Banthia, K. Das, S. Das, Cryst. Growth Des. 17(2017) 1539, https://doi.org/10.1021/acs.cgd.6b01420.

    29. [29]

      M.A. Habib, S. Lin, M.H. Joni, S.A. Dristy, R. Mandavkar, J.-H. Jeong, J. Lee, J. Energy Chem. 100(2025) 397, https://doi.org/10.1016/j.jechem.2024.08.060.

    30. [30]

      M. Batool, A. Hameed, M.A. Nadeem, Coord. Chem. Rev. 480(2023) 215029, https://doi.org/10.1016/j.ccr.2023.215029.

    31. [31]

      Y. Hong, J. Choi, E. Lee, Y.J. Hwang, Nanoscale 16(2024) 11564, https://doi.org/10.1039/D4NR01186D.

    32. [32]

      H. Pan, R. Hao, L. Wang, Y. Yu, N. Yang, ChemSusChem 18(2024) e202400900, https://doi.org/10.1002/cssc.202400900.

    33. [33]

      Y. Wei, X. Wang, M. Sun, M. Ma, J. Tian, M. Shao, ENERGY Environ. Mater. 7(2024) e12630, https://doi.org/10.1002/eem2.12630.

    34. [34]

      J. Cao, Z. Jiao, R. Zhu, H. Long, Y. Zheng, J. Pan, J. Wang, F. Luo, C. Li, Q. Wei, J. Alloys Compd. 914(2022) 165362, https://doi.org/10.1016/j.jallcom.2022.165362.

    35. [35]

      S.-Y. Lu, L. Wang, C. Wu, J. Zhang, W. Dou, T. Hu, R. Wang, Y. Liu, Q. Yang, H. Yi, ACS Sustain. Chem. Eng. 12(2024) 6376, https://doi.org/10.1021/acssuschemeng.4c00479.

    36. [36]

      R. Mandavkar, M.A. Habib, S. Lin, R. Kulkarni, S. Burse, J.-H. Jeong, J. Lee, Appl. Mater. Today 29(2022) 101579, https://doi.org/10.1016/j.apmt.2022.101579.

    37. [37]

      D. Briggs, Handb. Adhes, second ed., 2005, p. 621, https://doi.org/10.1002/0470014229.ch22.

    38. [38]

      D. Rathore, A. Banerjee, S. Pande, ACS Appl. Nano Mater. 5(2022) 2664, https://doi.org/10.1021/acsanm.1c04359.

    39. [39]

      G. Fu, X. Kang, Y. Zhang, X. Yang, L. Wang, X.-Z. Fu, J. Zhang, J.-L. Luo, J. Liu, Nano-Micro Lett. 14(2022) 200, https://doi.org/10.1007/s40820-022-00940-3.

    40. [40]

      P. Krishnamurthy, T. Maiyalagan, G. Panomsuwan, Z. Jiang, M. Rahaman, Catalysts 13(2023) 1095, https://doi.org/10.3390/catal13071095.

    41. [41]

      H. Li, Y. Wang, C. Liu, S. Zhang, H. Zhang, Z. Zhu, Int. J. Hydrogen Energy 47(2022) 20718, https://doi.org/10.1016/j.ijhydene.2022.04.200.

    42. [42]

      M.A. Ashraf, Y. Yang, D. Zhang, B.T. Pham, J. Colloid Interface Sci. 577(2020) 265, https://doi.org/10.1016/j.jcis.2020.05.060.

    43. [43]

      C.M. Coaty, A.A. Corrao, V. Petrova, P.G. Khalifah, P. Liu, J. Phys. Chem. C 123(2019) 17873, https://doi.org/10.1021/acs.jpcc.9b04172.

    44. [44]

      [M.A. Habib, S. Burse, S. Lin, R. Mandavkar, M.H. Joni, J. Jeong, S. Lee, J. Lee, Small (2023) 2307533, https://doi.org/10.1002/smll.202307533.

    45. [45]

      C. Prakash, P. Sahoo, R. Yadav, A. Pandey, V.K. Singh, A. Dixit, Int. J. Hydrogen Energy 48(2023) 21969, https://doi.org/10.1016/j.ijhydene.2023.03.093.

    46. [46]

      L. Jiang, R. Wang, Z. Xiang, X. Wang, Int. J. Hydrogen Energy 51(2024) 898, https://doi.org/10.1016/j.ijhydene.2023.10.238.

    47. [47]

      S. Burse, R. Kulkarni, R. Mandavkar, M.A. Habib, S. Lin, Y.-U. Chung, J.-H. Jeong, J. Lee, Nanomaterials 12(2022) 3283, https://doi.org/10.3390/nano12193283.

    48. [48]

      L. Quan, H. Jiang, G. Mei, Y. Sun, B. You, Chem. Rev. 124(2024) 3694, https://doi.org/10.1021/acs.chemrev.3c00332.

    49. [49]

      J. Jayabharathi, B. Karthikeyan, B. Vishnu, S. Sriram, Phys. Chem. Chem. Phys. 25(2023) 8992, https://doi.org/10.1039/D2CP05522H.

    50. [50]

      S.Y. Lim, S. Park, S.W. Im, H. Ha, H. Seo, K.T. Nam, ACS Catal. 10(2020) 235, https://doi.org/10.1021/acscatal.9b03544.

    51. [51]

      M.A. Habib, R. Mandavkar, S. Burse, S. Lin, R. Kulkarni, C.S. Patil, J.H. Jeong, J. Lee, Mater. Today Energy 26(2022) 101021, https://doi.org/10.1016/j.mtener.2022.101021.

    52. [52]

      T. Zhao, B. Gong, G. Xu, J. Jiang, L. Zhang, Chinese J. Catal. 61(2024) 269, https://doi.org/10.1016/S1872-2067(24)60037-9.

    53. [53]

      R. Srivastava, H. Chaudhary, A. Kumar, F.M. de Souza, S.R. Mishra, F. Perez, R.K. Gupta, Discov. Nano 18(2023) 148, https://doi.org/10.1186/s11671-023-03937-y.

    54. [54]

      H. Liu, X. Li, L. Chen, X. Zhu, P. Dong, M.O.L. Chee, M. Ye, Y. Guo, J. Shen, Adv. Funct. Mater. 32(2022) 1, https://doi.org/10.1002/adfm.202107308.

    55. [55]

      B. Han, X. Du, J. Li, H. Wang, G. Liu, J. Li, Appl. Surf. Sci. 604(2022), https://doi.org/10.1016/j.apsusc.2022.154617.

    56. [56]

      S. Lin, M.A. Habib, R. Mandavkar, R. Kulkarni, S. Burse, Y.-U. Chung, C. Liu, Z. Wang, S. Lin, J.-H. Jeong, J. Lee, Adv. Sustain. Syst. 6(2022) 2200213, https://doi.org/10.1002/adsu.202200213.

    57. [57]

      E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu, X.W.D. Lou, Sci. 11(2018) 872, https://doi.org/10.1039/C8EE00076J.

    58. [58]

      Y. Qi, Q. Zhang, S. Meng, D. Li, W. Wei, D. Jiang, M. Chen, Electrochim. Acta 334(2020), https://doi.org/10.1016/j.electacta.2020.135633.

    59. [59]

      P. Zhou, X. Lv, D. Xing, F. Ma, Y. Liu, Z. Wang, P. Wang, Z. Zheng, Y. Dai, B. Huang, Appl. Catal. B-Environ. 263(2020) 118330, https://doi.org/10.1016/j.apcatb.2019.118330.

    60. [60]

      E. Hatami, A. Toghraei, G. Barati Darband, Int. J. Hydrogen Energy 46(2021) 9394, https://doi.org/10.1016/j.ijhydene.2020.12.110.

    61. [61]

      Y. Liu, J. Cao, Y. Chen, M. Wei, X. Liu, X. Li, Q. Wu, B. Feng, Y. Zhang, L. Yang, CrystEngComm 24(2022) 1704, https://doi.org/10.1039/d1ce01555a.

    62. [62]

      S. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 10(2020) 1152, https://doi.org/10.1021/acscatal.9b04922.

    63. [63]

      Q. Ma, R. Dong, H. Liu, A. Zhu, L. Qiao, Y. Ma, J. Wang, J. Xie, J. Pan, J. Alloys Compd. 820(2020) 153438, https://doi.org/10.1016/j.jallcom.2019.153438.

    64. [64]

      Y. Teng, X.D. Wang, J.F. Liao, W.G. Li, H.Y. Chen, Y.J. Dong, D. Bin Kuang, Adv. Funct. Mater. 28(2018), https://doi.org/10.1002/adfm.201802463.

    65. [65]

      D. Wang, L. Gu, X. Luo, R. Su, Y. Shang, Y. Wang, S. Hao, Y. Yang, J. Electroanal. Chem. 924(2022) 116875, https://doi.org/10.1016/j.jelechem.2022.116875.

    66. [66]

      X. Lin, J. Xu, Z. Peng, Sustain. Times 3(2024) 100023, https://doi.org/10.1016/j.nxsust.2023.100023.

    67. [67]

      Y. Hao, X. Cao, C. Lei, Z. Chen, X. Yang, M. Gong, Mater. Today Catal 2(2023) 100012, https://doi.org/10.1016/j.mtcata.2023.100012.

    68. [68]

      C. Linder, S.G. Rao, R.D. Boyd, A. le Febvrier, P. Eklund, S. Munktell, E.M. Björk, ACS Appl. Energy Mater. 5(2022) 10838, https://doi.org/10.1021/acsaem.2c01499.

    69. [69]

      W. Zhang, M. Liu, X. Gu, Y. Shi, Z. Deng, N. Cai, Chem. Rev. 123(2023) 7119, https://doi.org/10.1021/acs.chemrev.2c00573.

    70. [70]

      P. Zhai, M. Xia, Y. Wu, G. Zhang, J. Gao, B. Zhang, S. Cao, Y. Zhang, Z. Li, Z. Fan, C. Wang, X. Zhang, J.T. Miller, L. Sun, J. Hou, Nat. Commun. 12(2021) 1, https://doi.org/10.1038/s41467-021-24828-9.

    71. [71]

      L. Ye, Y. Zhang, B. Guo, D. Cao, Y. Gong, Dalt. Trans. 50(2021) 13951, https://doi.org/10.1039/d1dt02341a.

    72. [72]

      Q.-N. Ha, N. Susanto Gultom, C.-H. Yeh, D.-H. Kuo, Chem. Eng. J. 472(2023) 144931, https://doi.org/10.1016/j.cej.2023.144931.

    73. [73]

      C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Nano Energy 48(2018) 73, https://doi.org/10.1016/j.nanoen.2018.03.034.

    74. [74]

      Q. Che, N. Bai, Q. Li, X. Chen, Y. Tan, X. Xu, Nanoscale 10(2018) 15238, https://doi.org/10.1039/c8nr03944e.

    75. [75]

      G. Ren, Q. Hao, J. Mao, L. Liang, H. Liu, C. Liu, J. Zhang, Nanoscale 10(2018) 17347, https://doi.org/10.1039/C8NR05494K.

    76. [76]

      X. Cheng, Z. Pan, C. Lei, Y. Jin, B. Yang, Z. Li, X. Zhang, L. Lei, C. Yuan, Y. Hou, J. Mater. Chem. A 7(2019) 965, https://doi.org/10.1039/c8ta11223a.

    77. [77]

      Y. Dong, Z. Deng, H. Zhang, G. Liu, X. Wang, Nano Lett. 23(2023) 9087, https://doi.org/10.1021/acs.nanolett.3c02940.

    78. [78]

      X. Li, T. Wu, N. Li, S. Zhang, W. Chang, J. Chi, X. Liu, L. Wang, Adv. Funct. Mater. 34(2024) 2400734, https://doi.org/10.1002/adfm.202400734.

    79. [79]

      J. Chen, L. Zhang, J. Li, X. He, Y. Zheng, S. Sun, X. Fang, D. Zheng, Y. Luo, Y. Wang, J. Zhang, L. Xie, Z. Cai, Y. Sun, A.A. Alshehri, Q. Kong, C. Tang, X. Sun, J. Mater. Chem. A 11(2023) 1116, https://doi.org/10.1039/D2TA08568B.

    80. [80]

      Y. Hu, H. Yu, L. Qi, J. Dong, P. Yan, T.T. Isimjan, X. Yang, ChemSusChem 14(2021) 1565, https://doi.org/10.1002/cssc.202002873.

    81. [81]

      H. Sun, C. Tian, G. Fan, J. Qi, Z. Liu, Z. Yan, F. Cheng, J. Chen, C.-P. Li, M. Du, Adv. Funct. Mater. 30(2020) 1910596, https://doi.org/10.1002/adfm.201910596.

    82. [82]

      Y. Liu, X. Gu, W. Jiang, H. Li, Y. Ma, C. Liu, Y. Wu, G. Che, Dalt. Trans. 51(2022) 9486, https://doi.org/10.1039/D2DT01098D.

    83. [83]

      H. Mao, X. Liu, S. Wu, G. Sun, G. Zhou, J. Chi, L. Wang, Adv. Energy Mater. 13(2023) 2302251, https://doi.org/10.1002/aenm.202302251.

    84. [84]

      M. Ning, F. Zhang, L. Wu, X. Xing, D. Wang, S. Song, Q. Zhou, L. Yu, J. Bao, S. Chen, Energy Environ. Sci. 15(2022) 3945, https://doi.org/10.1039/D2EE01094A.

    85. [85]

      X. Hou, C. Yu, T. Ni, S. Zhang, J. Zhou, S. Dai, L. Chu, M. Huang, Chinese J. Catal. 61(2024) 192, https://doi.org/10.1016/S1872-2067(24)60030-6.

    86. [86]

      Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater. 2(2019) 3910, https://doi.org/10.1021/acsaem.9b00599.

    87. [87]

      X. Luo, X. Tan, P. Ji, L. Chen, J. Yu, S. Mu, EnergyChem 5(2023) 100091, https://doi.org/10.1016/j.enchem.2022.100091

  • 加载中
    1. [1]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    2. [2]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    3. [3]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    4. [4]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    5. [5]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    6. [6]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    7. [7]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    8. [8]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    9. [9]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    10. [10]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    11. [11]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    12. [12]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    13. [13]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    14. [14]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    15. [15]

      Jincheng ZhangMengjie SunJiali RenRui ZhangMin MaQingzhong XueJian Tian . Oxygen vacancies-rich molybdenum tungsten oxide nanowires as a highly active nitrogen fixation electrocatalyst. Chinese Chemical Letters, 2025, 36(1): 110491-. doi: 10.1016/j.cclet.2024.110491

    16. [16]

      Xinxin ZhangZhijian LiangXu ZhangQian GuoYing XieLei WangHonggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935

    17. [17]

      Yongjing DengFeiyang LiZijian ZhouMengzhu WangYongkang ZhuJianwei ZhaoShujuan LiuQiang Zhao . Chiral induction and Sb3+ doping in indium halides to trigger second harmonic generation and circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(8): 109085-. doi: 10.1016/j.cclet.2023.109085

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    20. [20]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

Metrics
  • PDF Downloads(0)
  • Abstract views(14)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return