Citation: Haiyu Zhu,  Zhuoqun Wen,  Wen Xiong,  Xingzhan Wei,  Zhi Wang. Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100078. doi: 10.1016/j.actphy.2025.100078 shu

Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions

  • Received Date: 17 January 2025
    Revised Date: 2 March 2025
    Accepted Date: 4 March 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (12174380, 11904359, 62074021), the Natural Science Foundation of Chongqing, China (CSTB2023NSCQ-LZX0087), and the Natural Science Foundation Project of CQ CSTC, China (cstc2020jcyj-msxmX0822).

  • The accurate prediction of the Schottky barrier height (SBH) holds significant importance for optimizing the performance of semimetal/semiconductor heterojunction devices. Two-dimensional semimetal/semiconductor heterostructures have now been extensively studied experimentally. However, first-principles predictions of the corresponding SBH typically require solving the ab initio Hamiltonian in supercells containing more than 103 atoms. This high computational complexity not only results in extremely low efficiency but also hinders the design and optimization of heterojunction devices. Herein, we apply density functional theory with a core-level energy alignment method for transition-metal-ditelluride semimetal/silicon junctions, which enables a reduction in supercell size by one order of magnitude. The predicted SBHs show excellent agreement with experiment. We further investigate different 2D semimetal compounds, finding that all candidates exhibit lower SBHs for holes than electrons, with thickness effects becoming negligible beyond three to five layers. This study presents an efficient framework for calculating SBH in complex heterostructures and provides theoretical guidance for the efficient design of high-performance 2D semimetal heterojunction devices.
  • 加载中
    1. [1]

      Chang, C. C.; Sharma, Y. D.; Kim, Y. S.; Bur, J. A.; Shenoi, R. V.; Krishna, S.; Huang, D.; Lin, S. Y. Nano. Lett. 2010, 10, 1704. doi: 10.1021/nl100081j

    2. [2]

      Tan, C. L.; Mohseni, H. Nanophotonics 2018, 7, 169. doi: 10.1515/nanoph-2017-0061

    3. [3]

      Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Nanoscale 2020, 12, 3535. doi: 10.1039/c9nr10178k

    4. [4]

      Liu, C. Y.; Guo, J. S.; Yu, L. W.; Li, J.; Zhang, M.; Li, H.; Shi, Y. C.; Dai, D. X. Light Sci. Appl. 2021, 10, 123. doi: 10.1038/s41377-021-00551-4

    5. [5]

      Zhang, K. X.; Zhang, L. B.; Han, L.; Wang, L.; Chen, Z. Q. Z.; Xing, H. Z.; Chen, X. S. Nano Ex. 2021, 2, 012001. doi: 10.1088/2632-959X/abd45b

    6. [6]

      Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Adv. Funct. Mater. 2018, 29, 1803807. doi: 10.1002/adfm.201803807

    7. [7]

      Zha, J. J.; Luo, M. C.; Ye, M.; Ahmed, T.; Yu, X. C.; Lien, D. H.; He, Q. Y.; Lei, D. Y.; Ho, J. C.; Bullock, J.; et al. Adv. Funct. Mater. 2021, 32, 2111970. doi: 10.1002/adfm.202111970

    8. [8]

      Jiang, H.; Wang, M.; Fu, J.; Li, Z.; Shaikh, M. S.; Li, Y.; Nie, C.; Sun, F.; Tang, L.; Yang, J.; et al. ACS Nano 2022, 16, 12777. doi: 10.1021/acsnano.2c04704

    9. [9]

      Jiang, H.; Wei, J.; Sun, F.; Nie, C.; Fu, J.; Shi, H.; Sun, J.; Wei, X.; Qiu, C. W. ACS Nano 2022, 16, 4458. doi: 10.1021/acsnano.1c10795

    10. [10]

      Fu, J.; Guo, Z.; Nie, C.; Sun, F.; Li, G.; Feng, S.; Wei, X. Innovation 2024, 5, 100600. doi: 10.1016/j.xinn.2024.100600

    11. [11]

      Xie, C.; Zeng, L.; Zhang, Z.; Tsang, Y. H.; Luo, L.; Lee, J. H. Nanoscale 2018, 10, 15285. doi: 10.1039/c8nr04004d

    12. [12]

      Wu, Y.; Nie, C.; Sun, F.; Jiang, X.; Zhang, X.; Fu, J.; Peng, Y.; Wei, X. ACS Appl. Mater. Interfaces 2024, 16, 22632. doi: 10.1021/acsami.4c00827

    13. [13]

      Chen, B.; Xu, S.; Cheng, R.; Zhao, Y. IEEE Electron Device Lett. 2019, 40, 632. doi: 10.1109/led.2019.2897817

    14. [14]

      Huang, Z. W.; Yu, C. Y.; Chang, A. L.; Zhao, Y. M.; Huang, W.; Chen, S. Y.; Li, C. J. Mater. Sci. 2020, 55, 8630. doi: 10.1007/s10853-020-04625-3

    15. [15]

      Tersoff, J. Phys. Rev. B 1984, 30, 4874. doi: 10.1103/PhysRevB.30.4874

    16. [16]

      Tersoff, J. Phys. Rev. B 1985, 32, 6968. doi: 10.1103/physrevb.32.6968

    17. [17]

      Chiappe, D.; Scalise, E.; Cinquanta, E.; Grazianetti, C.; Van den Broek, B.; Fanciulli, M.; Houssa, M.; Molle, A. Adv. Mater. 2014, 26, 2096. doi: 10.1002/adma.201304783

    18. [18]

      Van, B. R.; Yao, Q.; Banerjee, S.; Cakir, D.; Oncel, N.; Zandvliet, H. J. W. Beilstein J. Nanotechnol 2017, 8, 1952. doi: 10.3762/bjnano.8.196

    19. [19]

      Zhou, S. R.; Wen, S. F.; Fan, H. D.; Wei, Y. Y.; Yin, Y.; Lan, C. Y.; Li, C.; Liu, Y. ACS Photonics 2024, 11, 1810. doi: 10.1021/acsphotonics.4c00331

    20. [20]

      Choi, H.; Min, K. A.; Cha, J.; Hong, S. Phys. Chem. Chem. Phys. 2018, 20, 25240. doi: 10.1039/c8cp05201h

    21. [21]

      Fang, P. X. W.; Nihtianov, S.; Sberna, P.; De Wijs, G. A.; Fang, C. M. J. Phys. Commun. 2022, 6, 085010. doi: 10.1088/2399-6528/ac8854

    22. [22]

      Mott, N. F. Proc. R. Soc. (London) A 1939, 171, 27. doi: 10.1098/rspa.1939.0051

    23. [23]

      Schottky, W. Z. Phys. 1939, 113, 367. doi: 10.1007/BF01340116

    24. [24]

      Bardeen, J. Phys. Rev. 1947, 71, 717. doi: 10.1103/PhysRev.71.717

    25. [25]

      Skachkov, D.; Liu, S. L.; Wang, Y.; Zhang, X. G.; Cheng H. P. Phys. Rev. B 2021, 104, 045429. doi: 10.1103/PhysRevB.104.045429

    26. [26]

      Nangoi, J. K.; Palmstrom, C. J.; Van de Walle, C. G. Phys. Rev. B 2024, 110, 035302. doi: 10.1103/PhysRevB.110.035302

    27. [27]

      Chin, K. K.; Cao, R.; Kendelewicz, T.; Miyano, K.; Williams, M. D.; Doniach, S.; Lindau, I.; Spicer, W. E. MRS Online Proc. Libr. 1986, 77, 297. doi: 10.1557/PROC-77-297

    28. [28]

      Kim, H.; Kumar, M. D.; Kim, J. Sensor Actuat A-phys 2015, 233, 290. doi: 10.1016/j.sna.2015.07.026

    29. [29]

      Taffelli, A.; Dirè, S.; Quaranta, A.; Pancheri, L. Sensors 2021, 21, 2758. doi: 10.3390/s21082758

    30. [30]

      Wei, S. H.; Alex, Z. Appl. Phys. Lett. 1998, 72, 2011. doi: 10.1063/1.121249

    31. [31]

      Li, Y. H.; Walsh, A.; Chen, S. Y.; Yin, W. J.; Yang, J. H.; Li, J. B.; Da Silva, J. L. F.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2009, 94, 212109. doi: 10.1063/1.3143626

    32. [32]

      Lang, L.; Zhang, Y. Y.; Xu, P.; Chen, S. Y.; Xiang, H. J.; Gong, X. G. Phys. Rev. B 2015, 92, 075102. doi: 10.1103/PhysRevB.92.075102

    33. [33]

      Hu, Y. Y; Qiu, C.; Shen, T.; Yang, K. K.; Deng, H. X. J. Semicond. 2021, 42, 112102. doi: 10.1088/1674-4926/42/11/112102

    34. [34]

      Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. doi: 10.1016/0927-0256(96)00008-0

    35. [35]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169

    36. [36]

      Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758. doi: 10.1103/PhysRevB.59.1758

    37. [37]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865

    38. [38]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060

    39. [39]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597

    40. [40]

      Leendertz, C.; Mingirulli, N.; Schulze, T. F.; Kleider, J. P.; Rech, B.; Korte, L. Appl. Phys. Lett. 2011, 98, 2002108. doi: 10.1063/1.3590254

    41. [41]

      Zeng, L. H.; Wu, D.; Jie, J. S.; Ren, X. Y.; Hu, X.; Lau, S. P.; Chai, Y.; Tsang, Y. H. Adv. Mater. 2020, 32, 2004412. doi: 10.1002/adma.202004412

    42. [42]

      Wei, S. H.; Zunger, A. Phys. Rev. B 1999, 60, 5404. doi: 10.1103/PhysRevB.60.5404

    43. [43]

      Li, Y. H.; Gong X. G.; Wei, S. H. Appl. Phys. Lett. 2006, 88, 042104. doi: 10.1063/1.2168254

    44. [44]

      Zhang, L.; Zhu, X. D.; Ling, L. S.; Zhang, C. J.; Pi, L.; Zhang, Y. H. Philos. Mag. 2013, 94, 439. doi: 10.1080/14786435.2013.855333

    45. [45]

      Qi, M. Y.; An, C.; Zhou, Y. H.; Wu, H.; Zhang, B. W.; Chen, C. H.; Yuan, Y. F.; Wang, S. Y.; Zhou, Y.; Chen, X. L.; et al. Phys. Rev. B 2020, 101, 115124. doi: 10.1103/PhysRevB.101.115124

    46. [46]

      Noh, H. J.; Jeong, J.; Cho, E. J.; Kim, K.; Min, B. I.; Park, B. G. Phys. Rev. Lett. 2017, 119, 016401. doi: 10.1103/PhysRevLett.119.016401

    47. [47]

      Ma, H. F.; Chen, P.; Li, B.; Li, J.; Ai, R. Q.; Zhang, Z. W.; Sun, G. Z.; Yao K. K.; Lin, Z. Y.; Zhao, B.; et al. Nano Lett. 2018, 18, 3523. doi: 10.1021/acs.nanolett.8b00583

    48. [48]

      Zahir, M.; Muhammad, Z.; Sami, U.; Zhang, B.; Lu, Q. X.; Zhu, L.; Hu, R. Inorg. Chem. Front. 2021, 8, 3885. doi: 10.1039/d1qi00553g

    49. [49]

      Li, P. F.; Li, L.; Zeng, X. C. J. Mater. Chem. C 2016, 4, 3106. doi: 10.1039/c6tc00130k

    50. [50]

      Yu, M.; Trinkle, D. R. J. Chem. Phys. 2011, 134, 064111. doi: 10.1063/1.3553716

    51. [51]

      Jan, G.; McMillan, P. F.; Marzke, R. F.; Ramachandran, G. K.; Patton, D.; Deb, S. K.; Sankey, O. F. Phys. Rev. B 2000, 62, R7707. doi: 10.1103/PhysRevB.62.R7707

    52. [52]

      Villaos, R. A. B.; Crisostomo, C. P.; Huang, Z. Q.; Huang, S. M.; Padama, A. A. B.; Albao, M. A.; Lin, H.; Chuang, F. C. NPJ 2D Mater. Appl. 2019, 3, 2. doi: 10.1038/s41699-018-0085-z

    53. [53]

      Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Nat. Commun. 2017, 8, 257. doi: 10.1038/s41467-017-00280-6

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    7. [7]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    8. [8]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    9. [9]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    10. [10]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    11. [11]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    12. [12]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    13. [13]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    14. [14]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    15. [15]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    16. [16]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    17. [17]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    18. [18]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    19. [19]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    20. [20]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

Metrics
  • PDF Downloads(0)
  • Abstract views(45)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return