Citation: Chao Liu,  Huan Yu,  Jiaming Li,  Xi Yu,  Zhuangzhi Yu,  Yuxi Song,  Feng Zhang,  Qinfang Zhang,  Zhigang Zou. Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100075. doi: 10.1016/j.actphy.2025.100075 shu

Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation

  • Received Date: 17 January 2025
    Revised Date: 24 February 2025
    Accepted Date: 3 March 2025

    Fund Project: This work was supported by the National Natural Science Foundation of China (12474276, 12274361), and Qinglan Project of Jiangsu of China.

  • Photocatalytic technology is considered to be an efficient and green approach for removing tetracycline hydrochloride (TC) to meet the demands of sustainable development. Here, a facile stirring process was employed to construct Ti3C2/Bi12O17Br2 (termed as TBOB) Schottky heterojunction with a hierarchical structure, in which the Bi12O17Br2 component was closely deposited on the surface of Ti3C2. The TC photodegradation performance was estimated for all catalysts under simulated solar light. Compared with Bi12O17Br2, TBOB materials exhibited the superior photodegradation activity due to the synergistic effect between Ti3C2 and Bi12O17Br2, which could increase light harvesting capacity derived from Ti3C2 loading, promote the charge carrier separation due to the formed Schottky heterojunction, and facilitate surface reaction kinetics owing to the photothermal effect. Besides, some crucial influencing factors on the photocatalytic performance over TBOB composites were separately studied in detail. The free radical capture experiment and electron paramagnetic resonance (EPR) technique confirmed the predominant active species of ·O2- and e- for the TC photodegradation. Combined with experimental analysis and theoretical calculations, insight into the charge carrier transfer and photodegradation mechanisms were proposed. This study provides theoretical and experimental insights for the rational design of high-efficiency photothermal-assisted Ti3C2-based photocatalysts.
  • 加载中
    1. [1]

      M. Wang, B.L. Bodirsky, R. Rijneveld, F. Beier, M.P. Bak, M. Batool, B. Droppers, A. Popp, M.T.H. van Vliet, M. Strokal, Nat. Commun. 15(2024) 880, https://doi.org/10.1038/s41467-024-44947-3.

    2. [2]

      E.D. Kelsic, J. Zhao, K. Vetsigian, R. Kishony, Nature 521(2015) 516, https://doi.org/10.1038/nature14485.

    3. [3]

      S.M. Zainab, M. Junaid, N. Xu, R.N. Malik, Water Res. 187(2020) 116455, https://doi.org/10.1016/j.watres.2020.116455.

    4. [4]

      H.W. Ding, B. Peng, Z.H. Wang, Q.F. Han, Acta Phys.-Chim. Sin. 40(2023) 2305048, https://doi.org/10.3866/PKU.WHXB202305048.

    5. [5]

      C. Wang, B.K. Dang, H.W. Wang, Y.P. Chen, Y.S. Yang, Y.Y. Li, Y. Xiong, Chem. Eng. J. 479(2024) 147730, https://doi.org/10.1016/j.cej.2023.147730.

    6. [6]

      Y.P. Li, Y.L. Li, L.Y. Huang, S.A. Liu, M.H. Zhu, L. Qiu, J. Huang, Y.Y. Fu, L.J. Huang, J. Colloid Interface Sci. 677(2025) 234, https://doi.org/10.1016/j.jcis.2024.08.063.

    7. [7]

      Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(2023) e202316410, https://doi.org/10.1002/anie.202316410.

    8. [8]

      H. Cai, F. Chen, C. Hu, W.Y. Ge, T. Li, X.L. Zhang, H.W. Huang, Chin. J. Catal. 57(2024) 123, https://doi.org/10.1016/s1872-2067(23)64591-7.

    9. [9]

      M. Zhang, Y. Wu, H.M. Liang, Y.J. Hua, C. Chen, J. Xiong, J. Di, Appl. Catal. B-Environ. 361(2025) 124658, https://doi.org/10.1016/j.apcatb.2024.124658.

    10. [10]

      Q.Y. Gu, W.H. Xu, J. Rong, Y.Z. Zhang, X. Zheng, J.N. Mei, Z.Y. Li, S. Xu, Colloid Surface A 682(2024) 132903, https://doi.org/10.1016/j.colsurfa.2023.132903.

    11. [11]

      X.M. Jia, J. Cao, H.Y. Sun, X.Y. Li, H.L. Lin, S.F. Chen, Appl. Catal. B-Environ. 343(2024) 123522, https://doi.org/10.1016/j.apcatb.2023.123522.

    12. [12]

      J.L. Chen, S.S. Zang, K.Y. Gao, C.M. Zhang, X.F. Wang, H.W. Liu, Appl. Surf. Sci. 639(2023) 158216, https://doi.org/10.1016/j.apsusc.2023.158216.

    13. [13]

      W.G. Zeng, X. Ye, Y.C. Dong, Y.Q. Zhang, C.Z. Sun, T. Zhang, X.J. Guan, L.J. Guo, Coord. Chem. Rev. 508(2024) 215753, https://doi.org/10.1016/j.ccr.2024.215753.

    14. [14]

      Q. Zhang, W. Li, R.X. Zhao, P.Z. Tang, J. Zhao, G.R. Wu, X. Chen, M.J. Hu, K.J. Yuan, J.B. Li, X.M. Yang, Nat. Commun. 15(2024) 4406, https://doi.org/10.1038/s41467-024-48842-9.

    15. [15]

      D.X. Wu, Z. Tong, J. Wang, G. Chen, A.L. Zhu, H.X. Tong, M.M. Dang, Sep. Purif. Technol. 359(2025) 130873, https://doi.org/10.1016/j.seppur.2024.130873.

    16. [16]

      W. Xiao, H. Yu, C.H. Xu, Z.Y. Pu, X.Y. Cheng, F. Yu, C. Liu, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 180(2024) 193, https://doi.org/10.1016/j.jmst.2023.08.021.

    17. [17]

      Q. Li, Q. Zhou, H. Deng, Z.H. Li, B. Xue, A.X. Liu, B. Shen, D. Hao, H.Y. Zhu, Q. Wang, Appl. Catal. B-Environ. 360(2025) 124533, https://doi.org/10.1016/j.apcatb.2024.124533.

    18. [18]

      Z.Q. Wang, H.T. Xia, Z.H. Chen, W.Z. Yang, J. Mater. Sci. Technol. 199(2024) 17, https://doi.org/10.1016/j.jmst.2024.02.093.

    19. [19]

      Y.S. Cai, F.-X. Xiao, Acta Phys.-Chim. Sin. 40(2023) 2306048, https://doi.org/10.3866/PKU.WHXB202306048.

    20. [20]

      X.Q. Xie, N. Zhang, Adv. Funct. Mater. 30(2020) 2002528, https://doi.org/10.1002/adfm.202002528.

    21. [21]

      K. Wang, M. Cheng, N. Wang, Q.Y. Zhang, Y. Liu, J.W. Liang, J. Guan, M.C. Liu, J.C. Zhou, N.X. Li, Chin. J. Catal. 44(2023) 146, https://doi.org/10.1016/s1872-2067(22)64155-x.

    22. [22]

      S.H. Li, J.H. Ye, Z.Y. Fan, Y.H. Dai, Y. Xie, Y. Ling, M.J. Xu, Y.Q. Wang, Sep. Purif. Technol. 358(2025) 130294, https://doi.org/10.1016/j.seppur.2024.130294.

    23. [23]

      J. Zhang, C. Shao, Z. Lei, Y. Li, H. Bai, L. Zhang, G. Ren, X. Wang, J. Mater. Sci. Technol. 194(2024) 124, https://doi.org/10.1016/j.jmst.2024.02.005.

    24. [24]

      C. Liu, H. Yu, W. Xiao, C.X. Gu, J.W. Yu, J.M. Li, J. Song, Y.X. Song, T. Sun, Z.G. Zou, Q.F. Zhang, Appl. Surf. Sci. 682(2025) 161717, https://doi.org/10.1016/j.apsusc.2024.161717.

    25. [25]

      S.J. Kalita, S. Varangane, P. Basyach, K. Sonowal, B.M. Abraham, A.K. Guha, U. Pal, L. Saikia, ACS Appl. Mater. Interfaces 16(2024) 40825, https://doi.org/10.1021/acsami.4c03855.

    26. [26]

      Y.Q. Zhan, X.M. Chen, A. Sun, H.S. Jia, Y.C. Liu, L.L. Li, Y.-H. Chiao, X.L. Yang, F. Zhu, J. Hazard. Mater. 458(2023) 131965, https://doi.org/10.1016/j.jhazmat.2023.131965.

    27. [27]

      P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56(2020) 18, https://doi.org/10.1016/j.jmst.2020.02.037.

    28. [28]

      Y. Wang, J.Z. Zhao, Y.M. Liu, G.P. Liu, S.M. Ding, Y.J. Li, J.X. Xia, H.M. Li, J. Colloid Interface Sci. 616(2022) 649, https://doi.org/10.1016/j.jcis.2022.02.109.

    29. [29]

      A.Q. Wang, Y.K. Wen, H.D. Zhu, Z. Liu, H. Wang, W.N. Yao, Y.L. Fan, G.C. Xie, X.H. Chen, K. Yan, Q. Duan, Z.W. Jiang, M.M. Xu, Y.D. Wei, H. Lin, Chem. Eng. J. 496(2024) 154264, https://doi.org/10.1016/j.cej.2024.154264.

    30. [30]

      J. Li, J. Li, C. Wu, Z. Li, L. Cai, H. Tang, Z. Zhou, G. Wang, J. Wang, L. Zhao, S. Wang, Carbon 179(2021) 387, https://doi.org/10.1016/j.carbon.2021.04.046.

    31. [31]

      J. Di, P. Song, C. Zhu, C. Chen, J. Xiong, M.L. Duan, R. Long, W.Q. Zhou, M.Z. Xu, L.X. Kang, B. Lin, D.B. Liu, S.M. Chen, C.T. Liu, H.M. Li, Y.L. Zhao, S.Z. Li, Q.Y. Yan, L. Song, Z. Liu, ACS Mater. Lett. 2(2020) 1025, https://doi.org/10.1021/acsmaterialslett.0c00306.

    32. [32]

      K.Y. Gao, C.M. Zhang, Y. Zhang, X.Y. Zhou, S. Gu, K.H. Zhang, X.F. Wang, X.J. Song, J. Colloid Interface Sci. 614(2022) 12, https://doi.org/10.1016/j.jcis.2022.01.084

    33. [33]

      D. Liu, M.F. Chen, Y.Y. Han, C.T. Sun, L.L. Xu, D.Y. Su, Sep. Purif. Technol. 345(2024) 127328, https://doi.org/10.1016/j.seppur.2024.127328.

    34. [34]

      L.H. Chen, M. Yin, C.H. Xiao, Y. Jin, Y.Y. Guo, Q.M. Hasi, Desalination 575(2024) 117312, https://doi.org/10.1016/j.desal.2024.117312.

    35. [35]

      H.W. Zhang, L. Bao, Y. Pan, J. Du, W. Wang, J. Colloid Interface Sci. 675(2024) 130, https://doi.org/10.1016/j.jcis.2024.07.008.

    36. [36]

      L.X. Wang, K. Liu, T. Fu, J. Sun, J.Y. Yan, Y. Hu, Z.F. Tong, H.B. Zhang, Chem. Eng. J. 480(2024) 148252, https://doi.org/10.1016/j.cej.2023.148252.

    37. [37]

      Y.Z. Wang, F.X. Xie, R. Li, Z.B. Yu, X. Jian, X.M. Gao, H.F. Li, X. Zhang, J. Liu, X.C. Zhang, Y.W. Wang, C.M. Fan, X.P. Yue, A.J. Zhou, Sep. Purif. Technol. 318(2023) 124001, https://doi.org/10.1016/j.seppur.2023.124001.

    38. [38]

      D.F. Liu, B. Sun, S.J. Bai, T.T. Gao, G.W. Zhou, Chin. J. Catal. 50(2023) 273, https://doi.org/10.1016/s1872-2067(23)64462-6.

    39. [39]

      S. Li, C. You, F. Yang, G. Liang, C. Zhuang, X. Li, Chin. J. Catal. 68(2025) 259, https://doi.org/10.1016/s1872-2067(24)60181-6.

    40. [40]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52(2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.

    41. [41]

      J. Yang, J. Wang, W. Zhao, G. Wang, K. Wang, X. Wu, J. Li, Appl. Surf. Sci. 613(2023) 156083, https://doi.org/10.1016/j.apsusc.2022.156083.

    42. [42]

      C.J. You, C.C. Wang, M.J. Cai, Y.P. Liu, B.K. Zhu, S.J. Li, Acta Phys.-Chim. Sin. 40(2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.

    43. [43]

      M.J. Chen, L.Y. Zhao, X.J. Shi, W. Wang, Y. Huang, L.J. Fu, L.J. Ma, Chin. Chem. Lett. 35(2024) 109336, https://doi.org/10.1016/j.cclet.2023.109336.

    44. [44]

      J. Li, L. Zhao, S. Wang, J. Li, G. Wang, J. Wang, Appl. Surf. Sci. 515(2020) 145922, https://doi.org/10.1016/j.apsusc.2020.145922.

    45. [45]

      Q. Li, H. Zhou, Z.H. Li, A.X. Liu, E.P. Wang, Y.L. Wu, X.J. Tang, H. Du, L.M. Jin, H.Y. Zhu, B.J. Ni, Q. Wang, J. Hazard. Mater. 486(2025) 137051, https://doi.org/10.1016/j.jhazmat.2024.137051.

    46. [46]

      B. Zhang, X. He, C.Z. Yu, G.C. Liu, D. Ma, C.Y. Cui, Q.H. Yan, Y.J. Zhang, G. Zhang, J. Ma, Y.J. Xin, Chin. Chem. Lett. 33(2022) 1337, https://doi.org/10.1016/j.cclet.2021.08.008.

    47. [47]

      Q.H. Liang, X.J. Liu, J.J. Wang, Y. Liu, Z.F. Liu, L. Tang, B.B. Shao, W. Zhang, S.X. Gong, M. Cheng, Q.Y. He, C.Y. Feng, J. Hazard. Mater. 401(2021) 123355, https://doi.org/10.1016/j.jhazmat.2020.123355.

    48. [48]

      H.Y. Du, Y.H. Ma, X.Q. Du, W.T. Zhang, X.F. Chen, J. Environ. Chem. Eng. 11(2023) 110501, https://doi.org/10.1016/j.jece.2023.110501.

    49. [49]

      Z. Yan, Z.R. Dai, W.X. Zheng, Z.C. Lei, J.W. Qiu, W.J. Kuang, W.J. Huang, C.H. Feng, Water Res. 205(2021) 117678, https://doi.org/10.1016/j.watres.2021.117678.

    50. [50]

      B.L. Zhang, F.X. Liu, B. Sun, T.T. Gao, G.W. Zhou, Chin. J. Catal. 59(2024) 334, https://doi.org/10.1016/s1872-2067(23)64633-9.

    51. [51]

      T. Li, Y. Jiang, X.Q. An, H.J. Liu, C. Hu, J.H. Qu, Water Res. 102(2016) 421, https://doi.org/10.1016/j.watres.2016.06.051.

    52. [52]

      X. Li, S.Q. Ma, Y.Y. Hu, C.Y. Zhang, C. Xiao, Y.Y. Shi, J.Y. Liu, J.H. Cheng, Y.C. Chen, Chem. Eng. J. 473(2023) 145202, https://doi.org/10.1016/j.cej.2023.145202.

    53. [53]

      Y. Zhang, J.H. Li, J. Bai, Z.X. Shen, L.S. Li, L.G. Xia, S. Chen, B.X. Zhou, Environ. Sci. Technol. 52(2018) 1413, https://doi.org/10.1021/acs.est.7b04626.

    54. [54]

      N.C. Zheng, X. He, Q. Zhou, R.L. Wang, X.R. Zhang, R.T. Hu, Z.F. Hu, Appl. Catal. B-Environ. 319(2022) 121918, https://doi.org/10.1016/j.apcatb.2022.121918.

    55. [55]

      H.M. Huang, Q.Q. Lin, Q. Niu, J.Q. Ning, L.Y. Li, J.H. Bi, Y. Yu, Chin. J. Catal. 60(2024) 201, https://doi.org/10.1016/s1872-2067(24)60027-6.

    56. [56]

      C. Liu, Y. Feng, Z. Han, Y. Sun, X. Wang, Q. Zhang, Z. Zou, Chin. J. Catal. 42(2021) 164, https://doi.org/10.1016/s1872-2067(20)63608-7.

    57. [57]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys.-Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.

    58. [58]

      S.J. Li, K. Rong, X.Q. Wang, C.Q. Shen, F. Yang, Q.H. Zhang, Acta Phys.-Chim. Sin. 40(2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.

    59. [59]

      X.X. Deng, P. Chen, R.R. Cui, X.Y. Gong, X.C. Li, X. Wang, C.Y. Deng, Nano Energy 126(2024) 109657, https://doi.org/10.1016/j.nanoen.2024.109657.

    60. [60]

      X.H. Yan, W.X. Chen, W. Xiao, G.Y. Yu, H.J. Hou, C. Liu, Surf. Interfaces 46(2024) 104183, https://doi.org/10.1016/j.surfin.2024.104183.

    61. [61]

      J.R. Ran, L. Chen, D.Y. Wang, A. Talebian‐Kiakalaieh, Y. Jiao, M. Adel Hamza, Y. Qu, L.Q. Jing, K. Davey, S.Z. Qiao, Adv. Mater. 35(2023) 2210164, https://doi.org/10.1002/adma.202210164.

    62. [62]

      J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta Phys.-Chim. Sin. 40(2023) 2305043, https://doi.org/10.3866/PKU.WHXB202305043.

    63. [63]

      F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B-Environ. 272(2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.

    64. [64]

      C. Liu, W. Xiao, G. Yu, Q. Wang, J. Hu, C. Xu, X. Du, J. Xu, Q. Zhang, Z. Zou, J. Colloid Interface Sci. 640(2023) 851, https://doi.org/10.1016/j.jcis.2023.02.137.

    65. [65]

      J.W. Hu, J.M. Li, X.Y. Liu, W. Xiao, H. Yu, H. Abdelsalam, C. Liu, Z.G. Zou, Q.F. Zhang, J. Colloid Interface Sci. 680(2025) 506, https://doi.org/10.1016/j.jcis.2024.11.014.

    66. [66]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139(2023) 167, https://doi.org/10.1016/j.jmst.2022.08.030.

    67. [67]

      L.W. Zhang, Y.Y. Huang, H.J. Yan, Y.Y. Cheng, Y.X. Ye, F. Zhu, G.F. Ouyang, Adv. Mater. 36(2024) 2401162, https://doi.org/10.1002/adma.202401162.

    68. [68]

      H.S. Kang, J.W. Zou, Y. Liu, L. Ma, J.R. Feng, Z.Y. Yu, X.B. Chen, S.J. Ding, L. Zhou, Q.Q. Wang, Adv. Funct. Mater. 33(2023) 2303911, https://doi.org/10.1002/adfm.202303911.

    69. [69]

      J. Yang, J. Wang, G. Wang, K. Wang, J. Li, L. Zhao, J. Mater. Sci. Technol. 189(2024) 86, https://doi.org/10.1016/j.jmst.2023.11.065.

    70. [70]

      K.X. Gao, L. Hou, X.Q. An, D.D. Huang, Y. Yang, Appl. Catal. B-Environ. 323(2023) 122150, https://doi.org/10.1016/j.apcatb.2022.122150.

    71. [71]

      C. Liu, W. Xiao, X.Y. Liu, Q. Wang, J.W. Hu, S.Y. Zhang, J.G. Xu, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 161(2023) 123, https://doi.org/10.1016/j.jmst.2023.04.007.

    72. [72]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys.-Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.

    73. [73]

      W.X. Yang, G.Z. Ma, Y. Fu, K. Peng, H.L. Yang, X.Q. Zhan, W.Y. Yang, L. Wang, H.L. Hou, Chem. Eng. J. 429(2022) 132381, https://doi.org/10.1016/j.cej.2021.132381.

    74. [74]

      C. Liu, Y.L. Zhang, J.X. Wu, H.L. Dai, C.J. Ma, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 114(2022) 81, https://doi.org/10.1016/j.jmst.2021.12.003.

    75. [75]

      X. Xiong, N. Arshad, J.Y. Tao, N. Alwadie, G. Liu, L.Y. Lin, M.A.K. Yousaf Shah, M.S. Irshad, J.W. Qian, X.B. Wang, J. Colloid Interface Sci. 668(2024) 385, https://doi.org/10.1016/j.jcis.2024.04.081.

  • 加载中
    1. [1]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    2. [2]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    5. [5]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    6. [6]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    7. [7]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    10. [10]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    13. [13]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    15. [15]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    16. [16]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return