Citation:
Chao Liu, Huan Yu, Jiaming Li, Xi Yu, Zhuangzhi Yu, Yuxi Song, Feng Zhang, Qinfang Zhang, Zhigang Zou. Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100075.
doi:
10.1016/j.actphy.2025.100075
-
Photocatalytic technology is considered to be an efficient and green approach for removing tetracycline hydrochloride (TC) to meet the demands of sustainable development. Here, a facile stirring process was employed to construct Ti3C2/Bi12O17Br2 (termed as TBOB) Schottky heterojunction with a hierarchical structure, in which the Bi12O17Br2 component was closely deposited on the surface of Ti3C2. The TC photodegradation performance was estimated for all catalysts under simulated solar light. Compared with Bi12O17Br2, TBOB materials exhibited the superior photodegradation activity due to the synergistic effect between Ti3C2 and Bi12O17Br2, which could increase light harvesting capacity derived from Ti3C2 loading, promote the charge carrier separation due to the formed Schottky heterojunction, and facilitate surface reaction kinetics owing to the photothermal effect. Besides, some crucial influencing factors on the photocatalytic performance over TBOB composites were separately studied in detail. The free radical capture experiment and electron paramagnetic resonance (EPR) technique confirmed the predominant active species of ·O2- and e- for the TC photodegradation. Combined with experimental analysis and theoretical calculations, insight into the charge carrier transfer and photodegradation mechanisms were proposed. This study provides theoretical and experimental insights for the rational design of high-efficiency photothermal-assisted Ti3C2-based photocatalysts.
-
-
-
[1]
M. Wang, B.L. Bodirsky, R. Rijneveld, F. Beier, M.P. Bak, M. Batool, B. Droppers, A. Popp, M.T.H. van Vliet, M. Strokal, Nat. Commun. 15(2024) 880, https://doi.org/10.1038/s41467-024-44947-3.
-
[2]
E.D. Kelsic, J. Zhao, K. Vetsigian, R. Kishony, Nature 521(2015) 516, https://doi.org/10.1038/nature14485.
-
[3]
S.M. Zainab, M. Junaid, N. Xu, R.N. Malik, Water Res. 187(2020) 116455, https://doi.org/10.1016/j.watres.2020.116455.
-
[4]
H.W. Ding, B. Peng, Z.H. Wang, Q.F. Han, Acta Phys.-Chim. Sin. 40(2023) 2305048, https://doi.org/10.3866/PKU.WHXB202305048.
-
[5]
C. Wang, B.K. Dang, H.W. Wang, Y.P. Chen, Y.S. Yang, Y.Y. Li, Y. Xiong, Chem. Eng. J. 479(2024) 147730, https://doi.org/10.1016/j.cej.2023.147730.
-
[6]
Y.P. Li, Y.L. Li, L.Y. Huang, S.A. Liu, M.H. Zhu, L. Qiu, J. Huang, Y.Y. Fu, L.J. Huang, J. Colloid Interface Sci. 677(2025) 234, https://doi.org/10.1016/j.jcis.2024.08.063.
-
[7]
Y. Wu, P. Wang, H. Che, W. Liu, C. Tang, Y. Ao, Angew. Chem. Int. Ed. 63(2023) e202316410, https://doi.org/10.1002/anie.202316410.
-
[8]
H. Cai, F. Chen, C. Hu, W.Y. Ge, T. Li, X.L. Zhang, H.W. Huang, Chin. J. Catal. 57(2024) 123, https://doi.org/10.1016/s1872-2067(23)64591-7.
-
[9]
M. Zhang, Y. Wu, H.M. Liang, Y.J. Hua, C. Chen, J. Xiong, J. Di, Appl. Catal. B-Environ. 361(2025) 124658, https://doi.org/10.1016/j.apcatb.2024.124658.
-
[10]
Q.Y. Gu, W.H. Xu, J. Rong, Y.Z. Zhang, X. Zheng, J.N. Mei, Z.Y. Li, S. Xu, Colloid Surface A 682(2024) 132903, https://doi.org/10.1016/j.colsurfa.2023.132903.
-
[11]
X.M. Jia, J. Cao, H.Y. Sun, X.Y. Li, H.L. Lin, S.F. Chen, Appl. Catal. B-Environ. 343(2024) 123522, https://doi.org/10.1016/j.apcatb.2023.123522.
-
[12]
J.L. Chen, S.S. Zang, K.Y. Gao, C.M. Zhang, X.F. Wang, H.W. Liu, Appl. Surf. Sci. 639(2023) 158216, https://doi.org/10.1016/j.apsusc.2023.158216.
-
[13]
W.G. Zeng, X. Ye, Y.C. Dong, Y.Q. Zhang, C.Z. Sun, T. Zhang, X.J. Guan, L.J. Guo, Coord. Chem. Rev. 508(2024) 215753, https://doi.org/10.1016/j.ccr.2024.215753.
-
[14]
Q. Zhang, W. Li, R.X. Zhao, P.Z. Tang, J. Zhao, G.R. Wu, X. Chen, M.J. Hu, K.J. Yuan, J.B. Li, X.M. Yang, Nat. Commun. 15(2024) 4406, https://doi.org/10.1038/s41467-024-48842-9.
-
[15]
D.X. Wu, Z. Tong, J. Wang, G. Chen, A.L. Zhu, H.X. Tong, M.M. Dang, Sep. Purif. Technol. 359(2025) 130873, https://doi.org/10.1016/j.seppur.2024.130873.
-
[16]
W. Xiao, H. Yu, C.H. Xu, Z.Y. Pu, X.Y. Cheng, F. Yu, C. Liu, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 180(2024) 193, https://doi.org/10.1016/j.jmst.2023.08.021.
-
[17]
Q. Li, Q. Zhou, H. Deng, Z.H. Li, B. Xue, A.X. Liu, B. Shen, D. Hao, H.Y. Zhu, Q. Wang, Appl. Catal. B-Environ. 360(2025) 124533, https://doi.org/10.1016/j.apcatb.2024.124533.
-
[18]
Z.Q. Wang, H.T. Xia, Z.H. Chen, W.Z. Yang, J. Mater. Sci. Technol. 199(2024) 17, https://doi.org/10.1016/j.jmst.2024.02.093.
-
[19]
Y.S. Cai, F.-X. Xiao, Acta Phys.-Chim. Sin. 40(2023) 2306048, https://doi.org/10.3866/PKU.WHXB202306048.
-
[20]
X.Q. Xie, N. Zhang, Adv. Funct. Mater. 30(2020) 2002528, https://doi.org/10.1002/adfm.202002528.
-
[21]
K. Wang, M. Cheng, N. Wang, Q.Y. Zhang, Y. Liu, J.W. Liang, J. Guan, M.C. Liu, J.C. Zhou, N.X. Li, Chin. J. Catal. 44(2023) 146, https://doi.org/10.1016/s1872-2067(22)64155-x.
-
[22]
S.H. Li, J.H. Ye, Z.Y. Fan, Y.H. Dai, Y. Xie, Y. Ling, M.J. Xu, Y.Q. Wang, Sep. Purif. Technol. 358(2025) 130294, https://doi.org/10.1016/j.seppur.2024.130294.
-
[23]
J. Zhang, C. Shao, Z. Lei, Y. Li, H. Bai, L. Zhang, G. Ren, X. Wang, J. Mater. Sci. Technol. 194(2024) 124, https://doi.org/10.1016/j.jmst.2024.02.005.
-
[24]
C. Liu, H. Yu, W. Xiao, C.X. Gu, J.W. Yu, J.M. Li, J. Song, Y.X. Song, T. Sun, Z.G. Zou, Q.F. Zhang, Appl. Surf. Sci. 682(2025) 161717, https://doi.org/10.1016/j.apsusc.2024.161717.
-
[25]
S.J. Kalita, S. Varangane, P. Basyach, K. Sonowal, B.M. Abraham, A.K. Guha, U. Pal, L. Saikia, ACS Appl. Mater. Interfaces 16(2024) 40825, https://doi.org/10.1021/acsami.4c03855.
-
[26]
Y.Q. Zhan, X.M. Chen, A. Sun, H.S. Jia, Y.C. Liu, L.L. Li, Y.-H. Chiao, X.L. Yang, F. Zhu, J. Hazard. Mater. 458(2023) 131965, https://doi.org/10.1016/j.jhazmat.2023.131965.
-
[27]
P. Kuang, J. Low, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56(2020) 18, https://doi.org/10.1016/j.jmst.2020.02.037.
-
[28]
Y. Wang, J.Z. Zhao, Y.M. Liu, G.P. Liu, S.M. Ding, Y.J. Li, J.X. Xia, H.M. Li, J. Colloid Interface Sci. 616(2022) 649, https://doi.org/10.1016/j.jcis.2022.02.109.
-
[29]
A.Q. Wang, Y.K. Wen, H.D. Zhu, Z. Liu, H. Wang, W.N. Yao, Y.L. Fan, G.C. Xie, X.H. Chen, K. Yan, Q. Duan, Z.W. Jiang, M.M. Xu, Y.D. Wei, H. Lin, Chem. Eng. J. 496(2024) 154264, https://doi.org/10.1016/j.cej.2024.154264.
-
[30]
J. Li, J. Li, C. Wu, Z. Li, L. Cai, H. Tang, Z. Zhou, G. Wang, J. Wang, L. Zhao, S. Wang, Carbon 179(2021) 387, https://doi.org/10.1016/j.carbon.2021.04.046.
-
[31]
J. Di, P. Song, C. Zhu, C. Chen, J. Xiong, M.L. Duan, R. Long, W.Q. Zhou, M.Z. Xu, L.X. Kang, B. Lin, D.B. Liu, S.M. Chen, C.T. Liu, H.M. Li, Y.L. Zhao, S.Z. Li, Q.Y. Yan, L. Song, Z. Liu, ACS Mater. Lett. 2(2020) 1025, https://doi.org/10.1021/acsmaterialslett.0c00306.
-
[32]
K.Y. Gao, C.M. Zhang, Y. Zhang, X.Y. Zhou, S. Gu, K.H. Zhang, X.F. Wang, X.J. Song, J. Colloid Interface Sci. 614(2022) 12, https://doi.org/10.1016/j.jcis.2022.01.084
-
[33]
D. Liu, M.F. Chen, Y.Y. Han, C.T. Sun, L.L. Xu, D.Y. Su, Sep. Purif. Technol. 345(2024) 127328, https://doi.org/10.1016/j.seppur.2024.127328.
-
[34]
L.H. Chen, M. Yin, C.H. Xiao, Y. Jin, Y.Y. Guo, Q.M. Hasi, Desalination 575(2024) 117312, https://doi.org/10.1016/j.desal.2024.117312.
-
[35]
H.W. Zhang, L. Bao, Y. Pan, J. Du, W. Wang, J. Colloid Interface Sci. 675(2024) 130, https://doi.org/10.1016/j.jcis.2024.07.008.
-
[36]
L.X. Wang, K. Liu, T. Fu, J. Sun, J.Y. Yan, Y. Hu, Z.F. Tong, H.B. Zhang, Chem. Eng. J. 480(2024) 148252, https://doi.org/10.1016/j.cej.2023.148252.
-
[37]
Y.Z. Wang, F.X. Xie, R. Li, Z.B. Yu, X. Jian, X.M. Gao, H.F. Li, X. Zhang, J. Liu, X.C. Zhang, Y.W. Wang, C.M. Fan, X.P. Yue, A.J. Zhou, Sep. Purif. Technol. 318(2023) 124001, https://doi.org/10.1016/j.seppur.2023.124001.
-
[38]
D.F. Liu, B. Sun, S.J. Bai, T.T. Gao, G.W. Zhou, Chin. J. Catal. 50(2023) 273, https://doi.org/10.1016/s1872-2067(23)64462-6.
-
[39]
S. Li, C. You, F. Yang, G. Liang, C. Zhuang, X. Li, Chin. J. Catal. 68(2025) 259, https://doi.org/10.1016/s1872-2067(24)60181-6.
-
[40]
M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52(2023) 239, https://doi.org/10.1016/s1872-2067(23)64496-1.
-
[41]
J. Yang, J. Wang, W. Zhao, G. Wang, K. Wang, X. Wu, J. Li, Appl. Surf. Sci. 613(2023) 156083, https://doi.org/10.1016/j.apsusc.2022.156083.
-
[42]
C.J. You, C.C. Wang, M.J. Cai, Y.P. Liu, B.K. Zhu, S.J. Li, Acta Phys.-Chim. Sin. 40(2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.
-
[43]
M.J. Chen, L.Y. Zhao, X.J. Shi, W. Wang, Y. Huang, L.J. Fu, L.J. Ma, Chin. Chem. Lett. 35(2024) 109336, https://doi.org/10.1016/j.cclet.2023.109336.
-
[44]
J. Li, L. Zhao, S. Wang, J. Li, G. Wang, J. Wang, Appl. Surf. Sci. 515(2020) 145922, https://doi.org/10.1016/j.apsusc.2020.145922.
-
[45]
Q. Li, H. Zhou, Z.H. Li, A.X. Liu, E.P. Wang, Y.L. Wu, X.J. Tang, H. Du, L.M. Jin, H.Y. Zhu, B.J. Ni, Q. Wang, J. Hazard. Mater. 486(2025) 137051, https://doi.org/10.1016/j.jhazmat.2024.137051.
-
[46]
B. Zhang, X. He, C.Z. Yu, G.C. Liu, D. Ma, C.Y. Cui, Q.H. Yan, Y.J. Zhang, G. Zhang, J. Ma, Y.J. Xin, Chin. Chem. Lett. 33(2022) 1337, https://doi.org/10.1016/j.cclet.2021.08.008.
-
[47]
Q.H. Liang, X.J. Liu, J.J. Wang, Y. Liu, Z.F. Liu, L. Tang, B.B. Shao, W. Zhang, S.X. Gong, M. Cheng, Q.Y. He, C.Y. Feng, J. Hazard. Mater. 401(2021) 123355, https://doi.org/10.1016/j.jhazmat.2020.123355.
-
[48]
H.Y. Du, Y.H. Ma, X.Q. Du, W.T. Zhang, X.F. Chen, J. Environ. Chem. Eng. 11(2023) 110501, https://doi.org/10.1016/j.jece.2023.110501.
-
[49]
Z. Yan, Z.R. Dai, W.X. Zheng, Z.C. Lei, J.W. Qiu, W.J. Kuang, W.J. Huang, C.H. Feng, Water Res. 205(2021) 117678, https://doi.org/10.1016/j.watres.2021.117678.
-
[50]
B.L. Zhang, F.X. Liu, B. Sun, T.T. Gao, G.W. Zhou, Chin. J. Catal. 59(2024) 334, https://doi.org/10.1016/s1872-2067(23)64633-9.
-
[51]
T. Li, Y. Jiang, X.Q. An, H.J. Liu, C. Hu, J.H. Qu, Water Res. 102(2016) 421, https://doi.org/10.1016/j.watres.2016.06.051.
-
[52]
X. Li, S.Q. Ma, Y.Y. Hu, C.Y. Zhang, C. Xiao, Y.Y. Shi, J.Y. Liu, J.H. Cheng, Y.C. Chen, Chem. Eng. J. 473(2023) 145202, https://doi.org/10.1016/j.cej.2023.145202.
-
[53]
Y. Zhang, J.H. Li, J. Bai, Z.X. Shen, L.S. Li, L.G. Xia, S. Chen, B.X. Zhou, Environ. Sci. Technol. 52(2018) 1413, https://doi.org/10.1021/acs.est.7b04626.
-
[54]
N.C. Zheng, X. He, Q. Zhou, R.L. Wang, X.R. Zhang, R.T. Hu, Z.F. Hu, Appl. Catal. B-Environ. 319(2022) 121918, https://doi.org/10.1016/j.apcatb.2022.121918.
-
[55]
H.M. Huang, Q.Q. Lin, Q. Niu, J.Q. Ning, L.Y. Li, J.H. Bi, Y. Yu, Chin. J. Catal. 60(2024) 201, https://doi.org/10.1016/s1872-2067(24)60027-6.
-
[56]
C. Liu, Y. Feng, Z. Han, Y. Sun, X. Wang, Q. Zhang, Z. Zou, Chin. J. Catal. 42(2021) 164, https://doi.org/10.1016/s1872-2067(20)63608-7.
-
[57]
K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys.-Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.
-
[58]
S.J. Li, K. Rong, X.Q. Wang, C.Q. Shen, F. Yang, Q.H. Zhang, Acta Phys.-Chim. Sin. 40(2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.
-
[59]
X.X. Deng, P. Chen, R.R. Cui, X.Y. Gong, X.C. Li, X. Wang, C.Y. Deng, Nano Energy 126(2024) 109657, https://doi.org/10.1016/j.nanoen.2024.109657.
-
[60]
X.H. Yan, W.X. Chen, W. Xiao, G.Y. Yu, H.J. Hou, C. Liu, Surf. Interfaces 46(2024) 104183, https://doi.org/10.1016/j.surfin.2024.104183.
-
[61]
J.R. Ran, L. Chen, D.Y. Wang, A. Talebian‐Kiakalaieh, Y. Jiao, M. Adel Hamza, Y. Qu, L.Q. Jing, K. Davey, S.Z. Qiao, Adv. Mater. 35(2023) 2210164, https://doi.org/10.1002/adma.202210164.
-
[62]
J.W. Hu, K. Xia, A. Yang, Z.H. Zhang, W. Xiao, C. Liu, Q.F. Zhang, Acta Phys.-Chim. Sin. 40(2023) 2305043, https://doi.org/10.3866/PKU.WHXB202305043.
-
[63]
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, W. Macyk, Appl. Catal. B-Environ. 272(2020) 119006, https://doi.org/10.1016/j.apcatb.2020.119006.
-
[64]
C. Liu, W. Xiao, G. Yu, Q. Wang, J. Hu, C. Xu, X. Du, J. Xu, Q. Zhang, Z. Zou, J. Colloid Interface Sci. 640(2023) 851, https://doi.org/10.1016/j.jcis.2023.02.137.
-
[65]
J.W. Hu, J.M. Li, X.Y. Liu, W. Xiao, H. Yu, H. Abdelsalam, C. Liu, Z.G. Zou, Q.F. Zhang, J. Colloid Interface Sci. 680(2025) 506, https://doi.org/10.1016/j.jcis.2024.11.014.
-
[66]
C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139(2023) 167, https://doi.org/10.1016/j.jmst.2022.08.030.
-
[67]
L.W. Zhang, Y.Y. Huang, H.J. Yan, Y.Y. Cheng, Y.X. Ye, F. Zhu, G.F. Ouyang, Adv. Mater. 36(2024) 2401162, https://doi.org/10.1002/adma.202401162.
-
[68]
H.S. Kang, J.W. Zou, Y. Liu, L. Ma, J.R. Feng, Z.Y. Yu, X.B. Chen, S.J. Ding, L. Zhou, Q.Q. Wang, Adv. Funct. Mater. 33(2023) 2303911, https://doi.org/10.1002/adfm.202303911.
-
[69]
J. Yang, J. Wang, G. Wang, K. Wang, J. Li, L. Zhao, J. Mater. Sci. Technol. 189(2024) 86, https://doi.org/10.1016/j.jmst.2023.11.065.
-
[70]
K.X. Gao, L. Hou, X.Q. An, D.D. Huang, Y. Yang, Appl. Catal. B-Environ. 323(2023) 122150, https://doi.org/10.1016/j.apcatb.2022.122150.
-
[71]
C. Liu, W. Xiao, X.Y. Liu, Q. Wang, J.W. Hu, S.Y. Zhang, J.G. Xu, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 161(2023) 123, https://doi.org/10.1016/j.jmst.2023.04.007.
-
[72]
C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys.-Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.
-
[73]
W.X. Yang, G.Z. Ma, Y. Fu, K. Peng, H.L. Yang, X.Q. Zhan, W.Y. Yang, L. Wang, H.L. Hou, Chem. Eng. J. 429(2022) 132381, https://doi.org/10.1016/j.cej.2021.132381.
-
[74]
C. Liu, Y.L. Zhang, J.X. Wu, H.L. Dai, C.J. Ma, Q.F. Zhang, Z.G. Zou, J. Mater. Sci. Technol. 114(2022) 81, https://doi.org/10.1016/j.jmst.2021.12.003.
-
[75]
X. Xiong, N. Arshad, J.Y. Tao, N. Alwadie, G. Liu, L.Y. Lin, M.A.K. Yousaf Shah, M.S. Irshad, J.W. Qian, X.B. Wang, J. Colloid Interface Sci. 668(2024) 385, https://doi.org/10.1016/j.jcis.2024.04.081.
-
[1]
-
-
-
[1]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[2]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[3]
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
-
[4]
Jiahui YU , Jixian DONG , Yutong ZHAO , Fuping ZHAO , Bo GE , Xipeng PU , Dafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1
-
[5]
Ke Zhang , Yajing Wei , Linhua Xie , Sha Kang , Fei Li , Chuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086
-
[6]
Kun Rong , Cuilian Wen , Jiansen Wen , Xiong Li , Qiugang Liao , Siqing Yan , Chao Xu , Xiaoliang Zhang , Baisheng Sa , Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053
-
[7]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[8]
Qiang ZHAO , Zhinan GUO , Shuying LI , Junli WANG , Zuopeng LI , Zhifang JIA , Kewei WANG , Yong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435
-
[9]
Huakang Zong , Xinyue Li , Yanlin Zhang , Faxun Wang , Xingxing Yu , Guotao Duan , Yuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195
-
[10]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[11]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[12]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[13]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[14]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[15]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[16]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[17]
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
-
[18]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[19]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[20]
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(17)
- HTML views(2)