Citation: Xueqi Yang,  Juntao Zhao,  Jiawei Ye,  Desen Zhou,  Tingmin Di,  Jun Zhang. Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100074. doi: 10.1016/j.actphy.2025.100074 shu

Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity

  • Received Date: 26 January 2025
    Revised Date: 26 February 2025
    Accepted Date: 26 February 2025

    Fund Project: This study was supported by the National Natural Science Foundation of China (NSFC) (22308341, 22005228) and the Scientific Research Foundation of Wuhan Institute of Technology (K2024047).

  • Photocatalytic reduction of carbon dioxide (CO2) has emerged as an effective technology to transform CO2 into valuable chemicals. Metal-organic frameworks (MOFs) show great promise due to their adjustable structures, huge specific surface areas, excellent catalytic properties, and remarkable photo responsiveness. Herein, the MOF material NNU-55(Fe) was employed for the photocatalytic transformation of CO2 into carbon monoxide (CO). Through electronic modulation of the active metal center (Fe-N4) via inorganic anionic ligand tuning, the photocatalytic performance of NNU-55(Fe) MOFs can be easily regulated. Notably, NO-3-coordinated NNU-55(Fe) demonstrated superior catalytic performance compared to SO42-- and Cl--coordinated catalysts, achieving a CO production of 124 μmol·g-1 within 3 h. The stronger electron donation capacity of NO-3 leads to an improved electron density of Fe centers, which lowers the Fe d-band center and enhances the bonding orbital occupancy in the adsorption system, thereby increasing the adsorption strength of CO2 and reduction activity. This study highlights a simple strategy for altering the catalytic activity and electrical structure of MOFs by altering the coordinated inorganic ligands of metal sites, offering a novel approach to developing efficient photocatalytic materials.
  • 加载中
    1. [1]

      J. Jiang, X. Wang, Q. Xu, Z. Mei, L. Duan, H. Guo, Appl. Catal. B-Environ. 316(2022) 121679, https://doi.org/10.1016/j.apcatb.2022.121679.

    2. [2]

      K. Zhong, P. Sun, H. Xu, Small (2024) 2310677, https://doi.org/10.1002/smll.202310677.

    3. [3]

      J. Li, S. Jiang, S. Song, Chin. J. Catal. 59(2024) 1, https://doi.org/10.1016/s1872-2067(23)64647-9.

    4. [4]

      Y. Bian, H. He, G. Dawson, J. Zhang, K. Dai, Sci. China Mater. 67(2024) 514, https://doi.org/10.1007/s40843-023-2725-y.

    5. [5]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B-Environ. Energy 361(2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560.

    6. [6]

      J. Lei, N. Zhou, S. Sang, S. Meng, J. Low, Y. Li, Chin. J. Catal. 65(2024) 163, https://doi.org/10.1016/s1872-2067(24)60109-9.

    7. [7]

      K. Wang, Q. Cheng, W. Hou, H. Guo, X. Wu, J. Wang, J. Li, Z. Liu, L. Wang, Adv. Funct. Mater. 34(2023) 2309603, https://doi.org/10.1002/adfm.202309603.

    8. [8]

      X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chin. J. Catal. 51(2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X.

    9. [9]

      S. Xiong, S. Bao, W. Wang, J. Hao, Y. Mao, P. Liu, Y. Huang, Z. Duan, Y. Lv, D. Ouyang, Appl. Catal. B-Environ. 305(2022) 121026, https://doi.org/10.1016/j.apcatb.2021.121026.

    10. [10]

      L. Li, Z. Zhang, C. Ding, J. Xu, Chem. Eng. J. 419(2021) 129543, https://doi.org/10.1016/j.cej.2021.129543.

    11. [11]

      Z. Wang, G. Zou, J.H. Park, K. Zhang, Sci. China Mater. 67(2024) 397, https://doi.org/10.1007/s40843-023-2698-5.

    12. [12]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67(2024) 541, https://doi.org/10.1007/s40843-023-2770-8.

    13. [13]

      C. Guan, Y. Liao, Q. Xiang, Sci. China Mater. 67(2024) 473, https://doi.org/10.1007/s40843-023-2703-0.

    14. [14]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys. -Chim. Sin. 40(2024) 2403032, https://doi.org/10.3866/PKU.WHXB202403032.

    15. [15]

      Y. Xia, B. Cheng, J. Fan, J. Yu, G. Liu, Sci. China Mater. 63(2020) 552, https://doi.org/10.1007/s40843-019-1234-x.

    16. [16]

      H. Kominami, J. Kato, S. Murakami, Y. Ishii, M. Kohno, K. Yabutani, T. Yamamoto, Y. Kera, M. Inoue, T. Inui, B. Ohtani, Catal. Today 84(2003) 181, https://doi.org/10.1016/s0920-5861(03)00272-4.

    17. [17]

      J. Qin, Y. An, Y. Zhang, Acta Phys. -Chim. Sin. 40(2024) 2408002, https://doi.org/10.3866/PKU.WHXB202408002.

    18. [18]

      X. Wang, S. Dong, K. Qi, V. Popkov, X. Xiang, Acta Phys. -Chim. Sin. 40(2024) 2408005, https://doi.org/10.3866/PKU.WHXB202408005.

    19. [19]

      W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3(2015) 19936, https://doi.org/10.1039/c5ta05503b.

    20. [20]

      X. Xu, C. Shao, J. Zhang, Z. Wang, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2309031, https://doi.org/10.3866/PKU.WHXB202309031.

    21. [21]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63(2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.

    22. [22]

      Z. Zhang, X. Wang, H. Tang, D. Li, J. Xu, Chin. J. Catal. 55(2023) 227, https://doi.org/10.1016/s1872-2067(23)64549-8.

    23. [23]

      Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56(2020) 143, https://doi.org/10.1016/j.jmst.2020.02.062.

    24. [24]

      J. Yang, J. Wang, G. Wang, K. Wang, J. Li, L. Zhao, J. Mater. Sci. Technol. 189(2024) 86, https://doi.org/10.1016/j.jmst.2023.11.065.

    25. [25]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016.

    26. [26]

      J. Wang, J. Yin, O. Shekhah, O.M. Bakr, M. Eddaoudi, O.F. Mohammed, ACS Appl. Mater. Interfaces 14(2022) 9970, https://doi.org/10.1021/acsami.1c24759.

    27. [27]

      Y. Chen, D. Wang, X. Deng, Z. Li, Catal. Sci. Technol. 7(2017) 4893, https://doi.org/10.1039/c7cy01653k.

    28. [28]

      J. Tian, K. Zhong, X. Zhu, J. Yang, Z. Mo, J. Liu, J. Dai, Y. She, Y. Song, H. Li, H. Xu, Chem. Eng. J. 451(2023) 138392, https://doi.org/10.1016/j.cej.2022.138392.

    29. [29]

      K. Liu, T. Wu, L. Xu, Z. Zhang, Z. Liu, L. Wang, Z. Wang, Nano Res. 17(2023) 1173, https://doi.org/10.1007/s12274-023-5957-7.

    30. [30]

      R. Li, F. Xie, P. Kuang, T. Liu, J. Yu, Small 20(2024) 2402867, https://doi.org/10.1002/smll.202402867.

    31. [31]

      F. Zhao, B. Zhu, L. Wang, J. Yu, J. Colloid Interface Sci. 659(2024) 486, https://doi.org/10.1016/j.jcis.2023.12.173.

    32. [32]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12(2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.

    33. [33]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40(2024) 2407002, https://doi.org/10.3866/pku.Whxb202407002.

    34. [34]

      L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, Chin. J. Catal. 42(2021) 1648, https://doi.org/10.1016/S1872-2067(21)63805-6.

    35. [35]

      J. Liu, N. Li, J. Sun, J. Liu, L. Dong, S. Yao, L. Zhang, Z. Xin, J. Shi, J. Wang, S. Li, Y. Lan, ACS Catal. 11(2021) 4510, https://doi.org/10.1021/acscatal.0c04495.

    36. [36]

      R. Manna, S. Rahut, A.N. Samanta, Mater. Today Energy 35(2023) 101326, https://doi.org/10.1016/j.mtener.2023.101326.

    37. [37]

      F. Dai, M. Zhang, Q. Chen, M. Mi, Z. Li, J. Han, J. Xing, S. Feng, L. Wang, Appl. Catal. B-Environ. 336(2023) 122934, https://doi.org/10.1016/j.apcatb.2023.122934.

    38. [38]

      S. Chen, F. Yang, H. Gao, J. Wang, X. Chen, X. Zhang, J. Li, A. Li, J. CO2 Util. 48(2021) 101528, https://doi.org/10.1016/j.jcou.2021.101528.

    39. [39]

      X. Sun, L. Sun, G. Li, Y. Tuo, C. Ye, J. Yang, J. Low, X. Yu, J.H. Bitter, Y. Lei, D. Wang, Y. Li, Angew. Chem. Int. Ed. 61(2022) e202207677, https://doi.org/10.1002/anie.202207677.

    40. [40]

      J. Liu, B. Han, X. Liu, S. Liang, Y. Fu, J. He, L.H. Chung, Y. Lin, Y. Wei, S. Wang, T. Ma, Z. Yang, Angew. Chem. Int. Ed. 64(2025) e202417435, https://doi.org/10.1002/anie.202417435.

    41. [41]

      D. Zhou, X. Zhang, Z. Li, J. Zhang, T. Wang, S. Cao, Appl. Catal. B-Environ. 344(2024) 123639, https://doi.org/10.1016/j.apcatb.2023.123639.

    42. [42]

      M. Glorius, C. Breitkopf, Catal. Today 417(2023) 113735, https://doi.org/10.1016/j.cattod.2022.04.036.

    43. [43]

      S.A. Rincón-Ortiz, J.H. Quintero-Orozco, R. Ospina, Surf. Sci. Spectra 30(2023) 024003, https://doi.org/10.1116/6.0002667.

    44. [44]

      T.G. Azuara, S.E. Muñoz, L.R.A. Guirado, Phys. Chem. Chem. Phys. 25(2023) 3718, https://doi.org/10.1039/d2cp04701b.

    45. [45]

      B.C. Beard, Appl. Surf. Sci. 45(1990) 221, https://doi.org/10.1016/0169-4332(90)90005-k.

    46. [46]

      J.M. Lázaro Martínez, E. Rodríguez-Castellón, R.M.T. Sánchez, L.R. Denaday, G.Y. Buldain, V. Campo Dall’ Orto, J. Mol. Catal. A-Chem. 339(2011) 43, https://doi.org/10.1016/j.molcata.2011.02.010.

    47. [47]

      I.G. Casella, M. Contursi, J. Electroanal. Chem. 588(2006) 147, https://doi.org/10.1016/j.jelechem.2005.12.015.

    48. [48]

      S. Tengeler, M. Fingerle, W. Calvet, C. Steinert, B. Kaiser, T. Mayer, W. Jaegermann, J. Electrochem. Soc. 165(2018) H3122, https://doi.org/10.1149/2.0151804jes.

    49. [49]

      T. Chen, J. Hu, K. Wang, K. Wang, G. Gan, J. Shi, Energy Fuels 35(2021) 17784, https://doi.org/10.1021/acs.energyfuels.1c01616.

    50. [50]

      N. Geng, W. Chen, H. Xu, M. Ding, T. Lin, Q. Wu, L. Zhang, Ultrason. Sonochem. 72(2021) 105411, https://doi.org/10.1016/j.ultsonch.2020.105411.

    51. [51]

      J. Gandara Loe, L. Pastor Perez, L.F. Bobadilla, J.A. Odriozola, T.R. Reina, React. Chem. Eng. 6(2021) 787, https://doi.org/10.1039/d1re00034a.

    52. [52]

      C. Zheng, X. Qiu, J. Han, Y. Wu, S. Liu, ACS Appl. Mater. Interfaces 11(2019) 42243, https://doi.org/10.1021/acsami.9b15306.

    53. [53]

      H. Zhong, F. Pan, S. Yue, C. Qin, V. Hadjiev, F. Tian, X. Liu, F. Lin, Z. Wang, J. Bao, J. Phys. Chem. Lett. 14(2023) 6702, https://doi.org/10.1021/acs.jpclett.3c01416.

    54. [54]

      S. Kagatikar, D. Sunil, D. Kekuda, Chem. Pap. 76(2022) 7685, https://doi.org/10.1007/s11696-022-02445-0.

    55. [55]

      Z. Jin, J. Zhang, J. Qiu, Y. Hu, T. Di, T. Wang, J. Colloid Interface Sci. 652(2023) 122, https://doi.org/10.1016/j.jcis.2023.08.025.

    56. [56]

      Y. Xiong, Y. Jin, T. Deng, K. Mei, P. Qiu, L. Xi, Z. Zhou, J. Yang, X. Shi, L. Chen, J. Am. Chem. Soc. 144(2022) 8030, https://doi.org/10.1021/jacs.1c13713.

    57. [57]

      Z. Chen, G. Zhang, H. Chen, J. Prakash, Y. Zheng, S. Sun, Renew. Sust. Energ. Rev. 155(2022) 111922, https://doi.org/10.1016/j.rser.2021.111922.

    58. [58]

      J. Hao, Y. Zhang, L. Zhang, J. Shen, L. Meng, X. Wang, Chem. Eng. J. 464(2023) 142536, https://doi.org/10.1016/j.cej.2023.142536.

    59. [59]

      J. Xu, Q. Li, Y. Shang, Z. Liu, Z. Jin, Sol. RRL 8(2024) 1006, https://doi.org/10.1002/solr.202301006.

    60. [60]

      A.I. Ahmed, D.A. Kospa, S. Gamal, S.E. Samra, A.A. Salah, S.A. El-Hakam, A. Awad Ibrahim, J. Photochem. Photobiol. A 429(2022) 113907, https://doi.org/10.1016/j.jphotochem.2022.113907.

    61. [61]

      E.S. Gad, K. Chaudhary, A.H. Ahmed, S. Rafiq, A.M. Yousif, M. Suleman, Opt. Mater. 135(2023) 113274, https://doi.org/10.1016/j.optmat.2022.113274.

    62. [62]

      I.V. Pushkareva, M.A. Solovyev, S.I. Butrim, M.V. Kozlova, D.A. Simkin, A.S. Pushkarev, Membranes 13(2023) 192, https://doi.org/10.3390/membranes13020192.

    63. [63]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15(2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.

    64. [64]

      R. Li, C. Tung, B. Zhu, Y. Lin, F. Tian, T. Liu, H. Chen, P. Kuang, J. Yu, J. Colloid Interface Sci. 674(2024) 326, https://doi.org/10.1016/j.jcis.2024.06.176.

    65. [65]

      L. Wang, S. Zhang, L. Zhang, J. Yu, Appl. Catal. B-Environ. Energy 355(2024) 124167, https://doi.org/10.1016/j.apcatb.2024.124167.

    66. [66]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.

    67. [67]

      Y. Liu, Y. Jiang, M. Zhang, X. Zhang, Y. Ma, ACS Appl. Mater. Interfaces 16(2024) 12455, https://doi.org/10.1021/acsami.3c17808.

    68. [68]

      X. Zheng, L. Shen, X. Chen, X. Zheng, C. Au, L. Jiang, Inorg. Chem. 57(2018) 10081, https://doi.org/10.1021/acs.inorgchem.8b01232.

    69. [69]

      Y. Li, M. Wen, Y. Wang, G. Tian, C. Wang, J. Zhao, Angew. Chem. Int. Ed. 60(2020) 910, https://doi.org/10.1002/anie.202010156.

    70. [70]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15(2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.

    71. [71]

      R. Xie, K. Li, R. Tian, C. Lu, Chem. Sci. 15(2024) 18085, https://doi.org/10.1039/d4sc03763d.

    72. [72]

      Y. Katayama, L. Giordano, R.R. Rao, J. Hwang, H. Muroyama, T. Matsui, K. Eguchi, Y. Shao-Horn, J. Phys. Chem. C 122(2018) 12341, https://doi.org/10.1021/acs.jpcc.8b03556.

    73. [73]

      Z. Ma, X. Liu, X. Wang, Z. Luo, W. Li, Y. Nie, L. Pei, Q. Mao, X. Wen, J. Zhong, Chem. Eng. J. 468(2023) 143569, https://doi.org/10.1016/j.cej.2023.143569.

    74. [74]

      N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, J. CO2 Util. 26(2018) 98, https://doi.org/10.1016/j.jcou.2018.04.026.

    75. [75]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67(2024) 444, https://doi.org/10.1007/s40843-023-2755-2.

    76. [76]

      C. Luo, Q. Long, B. Cheng, B. Zhu, L. Wang, Acta Phys. -Chim. Sin. 39(2023) 2212026, https://doi.org/10.3866/PKU.WHXB202212026.

    77. [77]

      F. Xie, C. Bie, J. Sun, Z. Zhang, B. Zhu, J. Mater. Sci. Technol. 170(2024) 87, https://doi.org/10.1016/j.jmst.2023.06.028.

    78. [78]

      Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 43(2022) 1657, https://doi.org/10.1016/S1872-2067(21)64010-X.

    79. [79]

      G. Qian, W. Lyu, X. Zhao, J. Zhou, R. Fang, F. Wang, Y. Li, Angew. Chem. Int. Ed. 61(2022) 10576, https://doi.org/10.1002/anie.202210576.

  • 加载中
    1. [1]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    4. [4]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

Metrics
  • PDF Downloads(0)
  • Abstract views(17)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return