Citation:
Yihan Xue, Xue Han, Jie Zhang, Xiaoru Wen. Efficient capacitive desalination over NCQDs decorated FeOOH composite[J]. Acta Physico-Chimica Sinica,
;2025, 41(7): 100072.
doi:
10.1016/j.actphy.2025.100072
-
Capacitive deionization (CDI) is emerging as a novel technology for seawater purification, with the electrode material playing a crucial role in desalination performance. In this study, we designed a nitrogen-doped carbon quantum dots decorated iron oxide hydroxide (NCQDs/FeOOH) composite by a facile hydrothermal strategy and investigated as the CDI cathode for desalination application. Microstructural analyses reveal that the composite features a relatively uniform nanoparticle-assembled network, hierarchical pore alignment, and abundant porosity. Electrochemical tests confirm its outstanding capacitance property and conductivity. In an initial NaCl aqueous solution of 2000 mg·L-1 at an applied potential of 1.4 V, the GACNaCl of NCQDs/FeOOH hybrid electrode reaches 56.52 mg·g-1, along with remarkable cycling durability. Furthermore, the CV (cyclic voltammetry) and ex situ XPS (X-ray photoelectron spectroscopy) characterizations indicate the predominantly pseudocapacitive desalination mechanism.
-
Keywords:
- Carbon quantum dots,
- FeOOH,
- Composite material,
- CDI desalination,
- Durability
-
-
-
[1]
Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S.; et al. Nat. Sustain. 2018, 1, 486. doi: 10.1038/s41893-018-0134-9
-
[2]
Elimelech, M.; Phillip, W.A. Science 2011, 333, 712. doi: 10.1126/science.1200488
-
[3]
Ying, T.; Xiong, Y.; Peng, H.R.; Yang, R.J.; Mei, L.; Zhang, Z.; Zheng, W.K.; Yan, R.X.; Zhang, Y.; Hu, H.L.; et al. Adv. Mater. 2024, 36 (31), 2403385. doi: 10.1002/adma.202403385
-
[4]
Amiri, A.; Chen, Y.J.; Bee Teng, C.; Naraghi, M. Energy Storage Mater. 2020, 25, 731. doi: 10.1016/j.ensm.2019.09.013.
-
[5]
Gamaethiralalage, J.G.; Singh, K.; Sahin, S.; Yoon, J.; Elimelech, M.; Suss, M.E.; Liang, P.; Biesheuvel, P.M.; Zornitta, R.L.; De Smet, L.C.P.M. Energy Environ. Sci. 2021, 14 (3), 1095. doi: 10.1039/d0ee03145c
-
[6]
Li, Q.; Xu, X.T.; Guo, J.R.; Hill, J.P.; Xu, H.; Xiang, L.X.; Li, C.; Yamauchi, Y.; Mai, Y.Y. Angew. Chem. Int. Ed. 2021, 60 (51), 26528. doi: 10.1002/anie.202111823
-
[7]
Kumar, S.; Aldaqqa, N.M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62 (35), e202302180. doi: 10.1002/anie.202302180
-
[8]
Wang, H.; Edaño, L.; Valentino, L.; Lin, Y.J.; Palakkal, V.M.; Hu, D.-L.; Chen, B.-H.; Liu, D.-J. Nano Energy 2020, 77, 105304. doi: 10.1016/j.nanoen.2020.105304
-
[9]
Cho, Y.; Lee, K.S.; Yang, S.C.; Choi, J.; Park, H.-R.; Kim, D.K. Energy Environ. Sci. 2017, 10 (8), 1746. doi: 10.1039/c7ee00698e
-
[10]
Ma, J.; Li, Q.; Zhang, X.C.; Yu, F. Coord. Chem. Rev. 2024, 517, 216001. doi: 10.1016/j.ccr.2024.216001
-
[11]
Zhang, Y.; Wu, J.Y.; Zhang, S.H.; Shang, N.Z.; Zhao, X.X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.T.; Bando, Y. Nano Energy 2022, 97, 107146. doi: 10.1016/j.nanoen.2022.107146
-
[12]
Li, Y.Y.; Chen, N.; Li, Z.L.; Shao, H.B.; Sun, X.T.; Liu, F.; Liu, X.T.; Guo, Q.; Qu, L.T. Adv. Mater. 2021, 33 (48), 2105853. doi: 10.1002/adma.202105853
-
[13]
Chen, Z.L.; Zhang, H.T.; Wu, C.X.; Luo, L.T.; Wang, C.P.; Huang, S.B.; Xu, H. Desalination 2018, 433, 68. doi: 10.1016/j.desal.2017.11.036
-
[14]
Zeng, J.J.; Wang, T.; Wang, Y.; Gao, L.; Sun, D.D.; Ge, C.; Deng, D.F.; Zhu, H.D.; Bando, Y.; Li, R.Q.; et al. J. Mater. Chem. A 2023, 11 (43), 23430. doi: 10.1039/d3ta04476a
-
[15]
Liu, X.H.; Xu, X.T.; Xuan, X.X.; Xia, W.; Feng, G.L.; Zhang, S.H.; Wu, Z.-G.; Zhong, B.H.; Guo, X.D.; Xie, K.; et al. J. Am. Chem. Soc. 2023, 145 (16), 9242. doi: 10.1021/jacs.3c01755
-
[16]
Zhao, B.; Wang, Y.; Wang, Z.; Hu, Y.T.; Zhang, J.Y.; Bai, X. Chem. Eng. J. 2024, 487, 150437. doi: 10.1016/j.cej.2024.150437
-
[17]
Tang, Z.Y.; Hu, B.; Nie, P.F.; Shang, X.H.; Yang, J.M.; Liu, J.Y. Chem. Eng. J. 2023, 466, 143216. doi: 10.1016/j.cej.2023.143216.
-
[18]
Xue, J.; Zhang, Z.H.; Li, H.B. Sep. Purif. Technol. 2024, 339, 126713. doi: 10.1016/j.seppur.2024.126713
-
[19]
Tang, M.F.; Shen, X.Y.; Zhao, L.; Wang, S.Y.; Lv, S.H.; Zhou, A.G.; Zhu, B.K.; Wang, G. Sep. Purif. Technol. 2025, 352, 128169. doi: 10.1016/j.seppur.2024.128169
-
[20]
Sun, Y.; Su, Y.G.; Zhao, Z.B.; Zhao, J.X.; Ye, M.D.; Wen, X.R. Chem. Eng. J. 2022, 443, 136542. doi: 10.1016/j.cej.2022.136542
-
[21]
Liu, Z.L.; Wang, Y.; Wang, H.T.; Lee Smith, R.; Qi, X.H. Chem. Eng. J. 2024, 484, 149664. doi: 10.1016/j.cej.2024.149664
-
[22]
Zhang, B.; Yi, Q.Y.; Qu, W.Q.; Zhang, K.; Lu, Q.; Yan, T.T.; Zhang, D.S. Adv. Funct. Mater. 2024, 34 (36), 2401332. doi: 10.1002/adfm.202401332
-
[23]
Ji, Z.Y.; Tang, G.X.; Zhang, J.C.; Chuan, X.H.; Zhong, J.L.; Lin, Z.X.; Song, P.; Xu, K.Q.; Shen, X.P. Chem. Eng. J. 2024, 501, 157619. doi: 10.1016/j.cej.2024.157619
-
[24]
Zhao, Z.P.; Li, C.Q.; Liu, Z.Y.; Li, D. Int. J. Hydrogen Energy 2021, 46 (52), 26457. doi: 10.1016/j.ijhydene.2021.05.147
-
[25]
Li, J.; Xu, Y.L.; Zhang, Y.; He, C.; Li, T.T. J. Mater. Chem. A 2020, 8 (37), 19544. doi: 10.1039/d0ta06701f
-
[26]
Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Appl. Catal. B: Environ. 2021, 293, 120203. doi: 10.1016/j.apcatb.2021.120203
-
[27]
Wei, B.B.; Shang, C.Q.; Wang, X.; Zhou, G.F. Small 2020, 16 (34), 2002789. doi: 10.1002/smll.202002789
-
[28]
Shen, G.Z.; Guo, Z.X.; Zhang, L.; Ma, Q.H.; Xiao, C.Y.; Qin, C.J.; Chong, H.L.H.; Moh, P.Y.; Liu, Y.; Yuan, X. Sep. Purif. Technol. 2024, 335, 126034. doi: 10.1016/j.seppur.2023.126034
-
[29]
Zhao, J.X.; Wu, B.Y.; Huang, X.W.; Sun, Y.; Zhao, Z.B.; Ye, M.D.; Wen, X.R. Adv. Sci. 2022, 9 (25), 2201678. doi: 10.1002/advs.202201678
-
[30]
Li, D.Z.; Wang, S.Y.; Wang, G.; Li, C.X.; Che, X.P.; Wang, S.F.; Zhang, Y.Q.; Qiu, J.S. ACS Appl. Mater. Interfaces 2019, 11 (34), 31200. doi: 10.1021/acsami.9b10307
-
[31]
Zhang, W.; Zhang, P.; Li, F.K.; He, M.M.; Gong, A.; Zhang, W.Z.; Mo, X.P.; Li, K.X. Desalination 2022, 543, 116090. doi: 10.1016/j.desal.2022.116090
-
[32]
Wang, Z.R.; Huang, X.H.; Wang, T.; Zhao, R.K.; Chan, V.; Hu, G.Z. Chem. Eng. J. 2024, 484, 149666. doi: 10.1016/j.cej.2024.149666
-
[33]
Gao, M.; Li, J.X.; Wang, Y.; Liang, W.C.; Yang, Z.Q.; Chen, Y.; Deng, W.Y.; Wang, Z.; Ao, T.Q.; Chen, W.Q. Desalination 2023, 549, 116360. doi: 10.1016/j.desal.2022.116360
-
[34]
Tian, L.; Li, Z.; Wang, P.; Zhai, X.H.; Wang, X.; Li, T.X. J. Energy Chemistry 2021, 55, 279. doi: 10.1016/j.jechem.2020.06.057
-
[35]
Sung, K.-W.; Ko, K.-Y.; Ahn, H.-J. J. Energy Storage 2023, 72, 108797. doi: 10.1016/j.est.2023.108797
-
[36]
Shin, D.-Y.; Sung, K.-W.; Ahn, H.-J. Chem. Eng. J. 2021, 413, 127563. doi: 10.1016/j.cej.2020.127563
-
[37]
Wang, R.Y.; Liu, J.; Xie, J.H.; Cai, Z.; Yu, Y.; Zhang, Z.X.; Meng, X.; Wang, C.; Xu, X.Q.; Zou, J.L. Appl. Catal. B: Environ. 2023, 324, 122230. doi: 10.1016/j.apcatb.2022.122230
-
[38]
Yang, Y.; Sun, Z.Y.; Zhang, L.; Ye, M.D.; Wen, X.R. Adv. Funct. Mater. 2024, 34, 2403149. doi: 10.1002/adfm.202403149
-
[39]
Li, J.F.; Zhang, X.Q.; Zhang, Z.H.; Li, Z.Y.; Gao, M.M.; Wei, H.; Chu, H.B. Electrochim. Acta 2019, 304, 487. doi: 10.1016/j.electacta.2019.03.023
-
[40]
Ganganboina, A.B.; Chowdhury, A.D.; Doong, R.-A. Electrochim. Acta 2017, 245, 912. doi: 10.1016/j.electacta.2017.06.002
-
[41]
Shao, B.; Meng, L.X.; Chen, F.; Wang, J.Y.; Zhai, W.; Li, L. Small 2024, 20 (33), 2401143. doi: 10.1002/smll.202401143
-
[42]
Yan, Y.T.; Huang, K.K.; Lin, J.H.; Yang, T.L.; Wang, P.J.; Qiao, L.; Cai, W.; Zheng, X.H. Appl. Catal. B: Environ. 2023, 330, 122595. doi: 10.1016/j.apcatb.2023.122595
-
[43]
Yin, X.L.; Cai, R.; Dai, X.P.; Nie, F.; Gan, Y.H.; Ye, Y.; Ren, Z.T.; Liu, Y.J.; Wu, B.Q.; Cao, Y.H.; et al. J. Mater. Chem. A 2022, 10 (21), 11386. doi: 10.1039/d2ta01929a
-
[44]
Wang, Y.C.; Gu, Y.; Li, H.M.; Ye, M.X.; Qin, W.X.; Zhang, H.M.; Wang, G.Z.; Zhang, Y.X.; Zhao, H.J. Chem. Eng. J. 2020, 392, 123773. doi: 10.1016/j.cej.2019.123773
-
[45]
Shi, W.L.; Sun, W.; Liu, Y.N.; Zhang, K.; Sun, H.R.; Lin, X.; Hong, Y.Z.; Guo, F. J. Hazard. Mater. 2022, 436, 129141. doi: 10.1016/j.jhazmat.2022.129141
-
[46]
Zhao, D.Y.; Zhu, Q.C.; Chen, D.J.; Li, X.; Yu, Y.; Huang, X.T. J. Mater. Chem. A 2018, 6 (34), 16475. doi: 10.1039/c8ta06820h
-
[47]
Zhang, S.H.; Xia, W.; Yang, Q.; Valentino Kaneti, Y.; Xu, X.T.; Alshehri, S.M.; Ahamad, T.; Hossain, M.S.A.; Na, J.; Tang, J.; et al. Chem. Eng. J. 2020, 396, 125154. doi: 10.1016/j.cej.2020.125154
-
[48]
Meng, J.S.; Niu, C.J.; Xu, L.H.; Li, J.T.; Liu, X.; Wang, X.P.; Wu, Y.Z.; Xu, X.M.; Chen, W.Y.; Li, Q.; et al. J. Am. Chem. Soc. 2017, 139(24), 8212. doi: 10.1021/jacs.7b01942
-
[49]
Zhang, D.Y.; Han, M.; Wang, B.; Li, Y.B.; Lei, L.Y.; Wang, K.J.; Wang, Y.; Zhang, L.; Feng, H.X. J. Power Sources 2017, 358, 112. doi: 10.1016/j.jpowsour.2017.05.031
-
[50]
Yan, J.Q.; Li, P.; Ji, Y.J.; Bian, H.; Li, Y.Y.; Liu, S.Z. J. Mater. Chem. A 2017, 5 (40), 21478. doi: 10.1039/c7ta07208b
-
[51]
Zhu, M.M.; Fan, Q.W.; Zhang, Y.X.; Chen, S.; Cao, W.X.; Xiong, R.H.; Huang, C.B.; Lu, H.F.; Ma, W.J. J. Environ. Chem. Eng. 2024, 12 (6), 114522. doi: 10.1016/j.jece.2024.114522
-
[52]
Zhang, L.; Fu, F.L.; Tang, B. Chem. Eng. J. 2019, 356, 151. doi: 10.1016/j.cej.2018.08.224
-
[53]
Pang, Y.; Wei, J.S.; Wang, Y.G.; Xia, Y.Y. Adv. Energy Mater. 2018, 8 (10), 1702288. doi: 10.1002/aenm.201702288
-
[54]
Wu, P.P.; Liu, H.Z.; Xie, Z.Y.; Xie, L.J.; Liu, G.Z.; Xu, Y.C.; Chen, J.; Lu, C.-Z. ACS Appl. Mater. Interfaces 2024, 16 (13), 16601. doi: 10.1021/acsami.3c15957
-
[55]
Zhang, Z.H.; He, B.B.; Chen, L.J.; Wang, H.W.; Wang, R.; Zhao, L.; Gong, Y.S. ACS Appl. Mater. Interfaces 2018, 10 (44), 38032. doi: 10.1021/acsami.8b12372
-
[56]
Li, L.B.; Liu, D.; Shi, A.P.; You, T.Y. Sens. Actuator B-Chem. 2018, 255, 1762. doi: 10.1016/j.snb.2017.08.190
-
[57]
Sharanappa, S.; Vijaykumar, S.P.; Suresh, D.S.; Shbil, A.B.; Ganesha, H.; Veeresh, S.; Nagaraju, Y.S.; Devendrappa, H. J. Energy Storage 2023, 74, 109371. doi: 10.1016/j.est.2023.109371
-
[58]
Tang, X.H.; Liu, L.; Cui, Y. Int. J. Hydrogen Energy 2022, 47 (7), 4838. doi: 10.1016/j.ijhydene.2021.11.096
-
[59]
Hu, J.; Li, S.W.; Chu, J.Y.; Niu, S.Q.; Wang, J.; Du, Y.C.; Li, Z.H.; Han, X.J.; Xu, P. ACS Catal. 2019, 9 (12), 10705. doi: 10.1021/acscatal.9b03876
-
[60]
Li, M.Q.; Li, B.; Meng, F.L.; Liu, J.Y.; Yuan, Z.Y.; Wang, C.; Liu, J.H. Sens. Actuator B-Chem. 2018, 273, 543. doi: 10.1016/j.snb.2018.06.081
-
[61]
Zhao, Z.P.; Su, H.; Li, S.H.; Li, C.Q.; Liu, Z.Y.; Li, D. J. Alloys Compd. 2020, 838, 155394. doi: 10.1016/j.jallcom.2020.155394
-
[62]
Gao, C.; Ao, T.Q.; Wang, Z.; Ma, W.L.; Chen, W.Q. Desalination 2023, 564, 116794. doi: 10.1016/j.desal.2023.116794
-
[63]
Zhang, N.N.; Xiang, D.P. J. Hazard. Mater. 2021, 419, 126385. doi: 10.1016/j.jhazmat.2021.126385
-
[64]
Zhao, J.X.; Zhao, Z.B.; Sun, Y.; Ma, X.D.; Ye, M.D.; Wen, X.R. Environ. Sci-Nano 2021, 8 (7), 2059. doi: 10.1039/d1en00175b
-
[65]
Wang, Z.; Yan, T.T.; Shi, L.Y.; Zhang, D.S. ACS Appl. Mater. Interfaces 2017, 9 (17), 15068. doi: 10.1021/acsami.7b02712
-
[66]
Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S.-P.; Yang, H.T.; Little, J.M.; Dissanayake, T.U.; Li, K.R.; Yang, J.; et al. Adv. Energy Mater. 2021, 11 (35), 2101494. doi: 10.1002/aenm.202101494
-
[1]
-
-
-
[1]
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
-
[2]
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
-
[3]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[4]
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
-
[5]
Li'na ZHONG , Jingling CHEN , Qinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Zhanggui DUAN , Yi PEI , Shanshan ZHENG , Zhaoyang WANG , Yongguang WANG , Junjie WANG , Yang HU , Chunxin LÜ , Wei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317
-
[10]
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
-
[11]
Chengcheng Si , Linshan Chai , Huiyuan Liu , Liye Sun , Shijian Cheng , Hailing Li , Wenyun Wang , Fang Liu , Qing Feng , Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069
-
[12]
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
-
[13]
Jiatong Hu , Qiyi Wang , Ruiwen Tang , Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015
-
[14]
Bowen Yang , Rui Wang , Benjian Xin , Lili Liu , Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024
-
[15]
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
-
[16]
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
-
[17]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[18]
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
-
[19]
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
-
[20]
Yingtong Shi , Guotong Xu , Guizeng Liang , Di Lan , Siyuan Zhang , Yanru Wang , Daohao Li , Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(12)
- HTML views(2)