Citation: Yihan Xue,  Xue Han,  Jie Zhang,  Xiaoru Wen. Efficient capacitive desalination over NCQDs decorated FeOOH composite[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100072. doi: 10.1016/j.actphy.2025.100072 shu

Efficient capacitive desalination over NCQDs decorated FeOOH composite

  • Received Date: 12 December 2024
    Revised Date: 26 January 2025
    Accepted Date: 24 February 2025

    Fund Project: The project was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China (2023MS02010) and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT23032).

  • Capacitive deionization (CDI) is emerging as a novel technology for seawater purification, with the electrode material playing a crucial role in desalination performance. In this study, we designed a nitrogen-doped carbon quantum dots decorated iron oxide hydroxide (NCQDs/FeOOH) composite by a facile hydrothermal strategy and investigated as the CDI cathode for desalination application. Microstructural analyses reveal that the composite features a relatively uniform nanoparticle-assembled network, hierarchical pore alignment, and abundant porosity. Electrochemical tests confirm its outstanding capacitance property and conductivity. In an initial NaCl aqueous solution of 2000 mg·L-1 at an applied potential of 1.4 V, the GACNaCl of NCQDs/FeOOH hybrid electrode reaches 56.52 mg·g-1, along with remarkable cycling durability. Furthermore, the CV (cyclic voltammetry) and ex situ XPS (X-ray photoelectron spectroscopy) characterizations indicate the predominantly pseudocapacitive desalination mechanism.
  • 加载中
    1. [1]

      Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S.; et al. Nat. Sustain. 2018, 1, 486. doi: 10.1038/s41893-018-0134-9

    2. [2]

      Elimelech, M.; Phillip, W.A. Science 2011, 333, 712. doi: 10.1126/science.1200488

    3. [3]

      Ying, T.; Xiong, Y.; Peng, H.R.; Yang, R.J.; Mei, L.; Zhang, Z.; Zheng, W.K.; Yan, R.X.; Zhang, Y.; Hu, H.L.; et al. Adv. Mater. 2024, 36 (31), 2403385. doi: 10.1002/adma.202403385

    4. [4]

      Amiri, A.; Chen, Y.J.; Bee Teng, C.; Naraghi, M. Energy Storage Mater. 2020, 25, 731. doi: 10.1016/j.ensm.2019.09.013.

    5. [5]

      Gamaethiralalage, J.G.; Singh, K.; Sahin, S.; Yoon, J.; Elimelech, M.; Suss, M.E.; Liang, P.; Biesheuvel, P.M.; Zornitta, R.L.; De Smet, L.C.P.M. Energy Environ. Sci. 2021, 14 (3), 1095. doi: 10.1039/d0ee03145c

    6. [6]

      Li, Q.; Xu, X.T.; Guo, J.R.; Hill, J.P.; Xu, H.; Xiang, L.X.; Li, C.; Yamauchi, Y.; Mai, Y.Y. Angew. Chem. Int. Ed. 2021, 60 (51), 26528. doi: 10.1002/anie.202111823

    7. [7]

      Kumar, S.; Aldaqqa, N.M.; Alhseinat, E.; Shetty, D. Angew. Chem. Int. Ed. 2023, 62 (35), e202302180. doi: 10.1002/anie.202302180

    8. [8]

      Wang, H.; Edaño, L.; Valentino, L.; Lin, Y.J.; Palakkal, V.M.; Hu, D.-L.; Chen, B.-H.; Liu, D.-J. Nano Energy 2020, 77, 105304. doi: 10.1016/j.nanoen.2020.105304

    9. [9]

      Cho, Y.; Lee, K.S.; Yang, S.C.; Choi, J.; Park, H.-R.; Kim, D.K. Energy Environ. Sci. 2017, 10 (8), 1746. doi: 10.1039/c7ee00698e

    10. [10]

      Ma, J.; Li, Q.; Zhang, X.C.; Yu, F. Coord. Chem. Rev. 2024, 517, 216001. doi: 10.1016/j.ccr.2024.216001

    11. [11]

      Zhang, Y.; Wu, J.Y.; Zhang, S.H.; Shang, N.Z.; Zhao, X.X.; Alshehri, S.M.; Ahamad, T.; Yamauchi, Y.; Xu, X.T.; Bando, Y. Nano Energy 2022, 97, 107146. doi: 10.1016/j.nanoen.2022.107146

    12. [12]

      Li, Y.Y.; Chen, N.; Li, Z.L.; Shao, H.B.; Sun, X.T.; Liu, F.; Liu, X.T.; Guo, Q.; Qu, L.T. Adv. Mater. 2021, 33 (48), 2105853. doi: 10.1002/adma.202105853

    13. [13]

      Chen, Z.L.; Zhang, H.T.; Wu, C.X.; Luo, L.T.; Wang, C.P.; Huang, S.B.; Xu, H. Desalination 2018, 433, 68. doi: 10.1016/j.desal.2017.11.036

    14. [14]

      Zeng, J.J.; Wang, T.; Wang, Y.; Gao, L.; Sun, D.D.; Ge, C.; Deng, D.F.; Zhu, H.D.; Bando, Y.; Li, R.Q.; et al. J. Mater. Chem. A 2023, 11 (43), 23430. doi: 10.1039/d3ta04476a

    15. [15]

      Liu, X.H.; Xu, X.T.; Xuan, X.X.; Xia, W.; Feng, G.L.; Zhang, S.H.; Wu, Z.-G.; Zhong, B.H.; Guo, X.D.; Xie, K.; et al. J. Am. Chem. Soc. 2023, 145 (16), 9242. doi: 10.1021/jacs.3c01755

    16. [16]

      Zhao, B.; Wang, Y.; Wang, Z.; Hu, Y.T.; Zhang, J.Y.; Bai, X. Chem. Eng. J. 2024, 487, 150437. doi: 10.1016/j.cej.2024.150437

    17. [17]

      Tang, Z.Y.; Hu, B.; Nie, P.F.; Shang, X.H.; Yang, J.M.; Liu, J.Y. Chem. Eng. J. 2023, 466, 143216. doi: 10.1016/j.cej.2023.143216.

    18. [18]

      Xue, J.; Zhang, Z.H.; Li, H.B. Sep. Purif. Technol. 2024, 339, 126713. doi: 10.1016/j.seppur.2024.126713

    19. [19]

      Tang, M.F.; Shen, X.Y.; Zhao, L.; Wang, S.Y.; Lv, S.H.; Zhou, A.G.; Zhu, B.K.; Wang, G. Sep. Purif. Technol. 2025, 352, 128169. doi: 10.1016/j.seppur.2024.128169

    20. [20]

      Sun, Y.; Su, Y.G.; Zhao, Z.B.; Zhao, J.X.; Ye, M.D.; Wen, X.R. Chem. Eng. J. 2022, 443, 136542. doi: 10.1016/j.cej.2022.136542

    21. [21]

      Liu, Z.L.; Wang, Y.; Wang, H.T.; Lee Smith, R.; Qi, X.H. Chem. Eng. J. 2024, 484, 149664. doi: 10.1016/j.cej.2024.149664

    22. [22]

      Zhang, B.; Yi, Q.Y.; Qu, W.Q.; Zhang, K.; Lu, Q.; Yan, T.T.; Zhang, D.S. Adv. Funct. Mater. 2024, 34 (36), 2401332. doi: 10.1002/adfm.202401332

    23. [23]

      Ji, Z.Y.; Tang, G.X.; Zhang, J.C.; Chuan, X.H.; Zhong, J.L.; Lin, Z.X.; Song, P.; Xu, K.Q.; Shen, X.P. Chem. Eng. J. 2024, 501, 157619. doi: 10.1016/j.cej.2024.157619

    24. [24]

      Zhao, Z.P.; Li, C.Q.; Liu, Z.Y.; Li, D. Int. J. Hydrogen Energy 2021, 46 (52), 26457. doi: 10.1016/j.ijhydene.2021.05.147

    25. [25]

      Li, J.; Xu, Y.L.; Zhang, Y.; He, C.; Li, T.T. J. Mater. Chem. A 2020, 8 (37), 19544. doi: 10.1039/d0ta06701f

    26. [26]

      Li, L.; Guo, C.F.; Ning, J.Q.; Zhong, Y.J.; Chen, D.L.; Hu, Y. Appl. Catal. B: Environ. 2021, 293, 120203. doi: 10.1016/j.apcatb.2021.120203

    27. [27]

      Wei, B.B.; Shang, C.Q.; Wang, X.; Zhou, G.F. Small 2020, 16 (34), 2002789. doi: 10.1002/smll.202002789

    28. [28]

      Shen, G.Z.; Guo, Z.X.; Zhang, L.; Ma, Q.H.; Xiao, C.Y.; Qin, C.J.; Chong, H.L.H.; Moh, P.Y.; Liu, Y.; Yuan, X. Sep. Purif. Technol. 2024, 335, 126034. doi: 10.1016/j.seppur.2023.126034

    29. [29]

      Zhao, J.X.; Wu, B.Y.; Huang, X.W.; Sun, Y.; Zhao, Z.B.; Ye, M.D.; Wen, X.R. Adv. Sci. 2022, 9 (25), 2201678. doi: 10.1002/advs.202201678

    30. [30]

      Li, D.Z.; Wang, S.Y.; Wang, G.; Li, C.X.; Che, X.P.; Wang, S.F.; Zhang, Y.Q.; Qiu, J.S. ACS Appl. Mater. Interfaces 2019, 11 (34), 31200. doi: 10.1021/acsami.9b10307

    31. [31]

      Zhang, W.; Zhang, P.; Li, F.K.; He, M.M.; Gong, A.; Zhang, W.Z.; Mo, X.P.; Li, K.X. Desalination 2022, 543, 116090. doi: 10.1016/j.desal.2022.116090

    32. [32]

      Wang, Z.R.; Huang, X.H.; Wang, T.; Zhao, R.K.; Chan, V.; Hu, G.Z. Chem. Eng. J. 2024, 484, 149666. doi: 10.1016/j.cej.2024.149666

    33. [33]

      Gao, M.; Li, J.X.; Wang, Y.; Liang, W.C.; Yang, Z.Q.; Chen, Y.; Deng, W.Y.; Wang, Z.; Ao, T.Q.; Chen, W.Q. Desalination 2023, 549, 116360. doi: 10.1016/j.desal.2022.116360

    34. [34]

      Tian, L.; Li, Z.; Wang, P.; Zhai, X.H.; Wang, X.; Li, T.X. J. Energy Chemistry 2021, 55, 279. doi: 10.1016/j.jechem.2020.06.057

    35. [35]

      Sung, K.-W.; Ko, K.-Y.; Ahn, H.-J. J. Energy Storage 2023, 72, 108797. doi: 10.1016/j.est.2023.108797

    36. [36]

      Shin, D.-Y.; Sung, K.-W.; Ahn, H.-J. Chem. Eng. J. 2021, 413, 127563. doi: 10.1016/j.cej.2020.127563

    37. [37]

      Wang, R.Y.; Liu, J.; Xie, J.H.; Cai, Z.; Yu, Y.; Zhang, Z.X.; Meng, X.; Wang, C.; Xu, X.Q.; Zou, J.L. Appl. Catal. B: Environ. 2023, 324, 122230. doi: 10.1016/j.apcatb.2022.122230

    38. [38]

      Yang, Y.; Sun, Z.Y.; Zhang, L.; Ye, M.D.; Wen, X.R. Adv. Funct. Mater. 2024, 34, 2403149. doi: 10.1002/adfm.202403149

    39. [39]

      Li, J.F.; Zhang, X.Q.; Zhang, Z.H.; Li, Z.Y.; Gao, M.M.; Wei, H.; Chu, H.B. Electrochim. Acta 2019, 304, 487. doi: 10.1016/j.electacta.2019.03.023

    40. [40]

      Ganganboina, A.B.; Chowdhury, A.D.; Doong, R.-A. Electrochim. Acta 2017, 245, 912. doi: 10.1016/j.electacta.2017.06.002

    41. [41]

      Shao, B.; Meng, L.X.; Chen, F.; Wang, J.Y.; Zhai, W.; Li, L. Small 2024, 20 (33), 2401143. doi: 10.1002/smll.202401143

    42. [42]

      Yan, Y.T.; Huang, K.K.; Lin, J.H.; Yang, T.L.; Wang, P.J.; Qiao, L.; Cai, W.; Zheng, X.H. Appl. Catal. B: Environ. 2023, 330, 122595. doi: 10.1016/j.apcatb.2023.122595

    43. [43]

      Yin, X.L.; Cai, R.; Dai, X.P.; Nie, F.; Gan, Y.H.; Ye, Y.; Ren, Z.T.; Liu, Y.J.; Wu, B.Q.; Cao, Y.H.; et al. J. Mater. Chem. A 2022, 10 (21), 11386. doi: 10.1039/d2ta01929a

    44. [44]

      Wang, Y.C.; Gu, Y.; Li, H.M.; Ye, M.X.; Qin, W.X.; Zhang, H.M.; Wang, G.Z.; Zhang, Y.X.; Zhao, H.J. Chem. Eng. J. 2020, 392, 123773. doi: 10.1016/j.cej.2019.123773

    45. [45]

      Shi, W.L.; Sun, W.; Liu, Y.N.; Zhang, K.; Sun, H.R.; Lin, X.; Hong, Y.Z.; Guo, F. J. Hazard. Mater. 2022, 436, 129141. doi: 10.1016/j.jhazmat.2022.129141

    46. [46]

      Zhao, D.Y.; Zhu, Q.C.; Chen, D.J.; Li, X.; Yu, Y.; Huang, X.T. J. Mater. Chem. A 2018, 6 (34), 16475. doi: 10.1039/c8ta06820h

    47. [47]

      Zhang, S.H.; Xia, W.; Yang, Q.; Valentino Kaneti, Y.; Xu, X.T.; Alshehri, S.M.; Ahamad, T.; Hossain, M.S.A.; Na, J.; Tang, J.; et al. Chem. Eng. J. 2020, 396, 125154. doi: 10.1016/j.cej.2020.125154

    48. [48]

      Meng, J.S.; Niu, C.J.; Xu, L.H.; Li, J.T.; Liu, X.; Wang, X.P.; Wu, Y.Z.; Xu, X.M.; Chen, W.Y.; Li, Q.; et al. J. Am. Chem. Soc. 2017, 139(24), 8212. doi: 10.1021/jacs.7b01942

    49. [49]

      Zhang, D.Y.; Han, M.; Wang, B.; Li, Y.B.; Lei, L.Y.; Wang, K.J.; Wang, Y.; Zhang, L.; Feng, H.X. J. Power Sources 2017, 358, 112. doi: 10.1016/j.jpowsour.2017.05.031

    50. [50]

      Yan, J.Q.; Li, P.; Ji, Y.J.; Bian, H.; Li, Y.Y.; Liu, S.Z. J. Mater. Chem. A 2017, 5 (40), 21478. doi: 10.1039/c7ta07208b

    51. [51]

      Zhu, M.M.; Fan, Q.W.; Zhang, Y.X.; Chen, S.; Cao, W.X.; Xiong, R.H.; Huang, C.B.; Lu, H.F.; Ma, W.J. J. Environ. Chem. Eng. 2024, 12 (6), 114522. doi: 10.1016/j.jece.2024.114522

    52. [52]

      Zhang, L.; Fu, F.L.; Tang, B. Chem. Eng. J. 2019, 356, 151. doi: 10.1016/j.cej.2018.08.224

    53. [53]

      Pang, Y.; Wei, J.S.; Wang, Y.G.; Xia, Y.Y. Adv. Energy Mater. 2018, 8 (10), 1702288. doi: 10.1002/aenm.201702288

    54. [54]

      Wu, P.P.; Liu, H.Z.; Xie, Z.Y.; Xie, L.J.; Liu, G.Z.; Xu, Y.C.; Chen, J.; Lu, C.-Z. ACS Appl. Mater. Interfaces 2024, 16 (13), 16601. doi: 10.1021/acsami.3c15957

    55. [55]

      Zhang, Z.H.; He, B.B.; Chen, L.J.; Wang, H.W.; Wang, R.; Zhao, L.; Gong, Y.S. ACS Appl. Mater. Interfaces 2018, 10 (44), 38032. doi: 10.1021/acsami.8b12372

    56. [56]

      Li, L.B.; Liu, D.; Shi, A.P.; You, T.Y. Sens. Actuator B-Chem. 2018, 255, 1762. doi: 10.1016/j.snb.2017.08.190

    57. [57]

      Sharanappa, S.; Vijaykumar, S.P.; Suresh, D.S.; Shbil, A.B.; Ganesha, H.; Veeresh, S.; Nagaraju, Y.S.; Devendrappa, H. J. Energy Storage 2023, 74, 109371. doi: 10.1016/j.est.2023.109371

    58. [58]

      Tang, X.H.; Liu, L.; Cui, Y. Int. J. Hydrogen Energy 2022, 47 (7), 4838. doi: 10.1016/j.ijhydene.2021.11.096

    59. [59]

      Hu, J.; Li, S.W.; Chu, J.Y.; Niu, S.Q.; Wang, J.; Du, Y.C.; Li, Z.H.; Han, X.J.; Xu, P. ACS Catal. 2019, 9 (12), 10705. doi: 10.1021/acscatal.9b03876

    60. [60]

      Li, M.Q.; Li, B.; Meng, F.L.; Liu, J.Y.; Yuan, Z.Y.; Wang, C.; Liu, J.H. Sens. Actuator B-Chem. 2018, 273, 543. doi: 10.1016/j.snb.2018.06.081

    61. [61]

      Zhao, Z.P.; Su, H.; Li, S.H.; Li, C.Q.; Liu, Z.Y.; Li, D. J. Alloys Compd. 2020, 838, 155394. doi: 10.1016/j.jallcom.2020.155394

    62. [62]

      Gao, C.; Ao, T.Q.; Wang, Z.; Ma, W.L.; Chen, W.Q. Desalination 2023, 564, 116794. doi: 10.1016/j.desal.2023.116794

    63. [63]

      Zhang, N.N.; Xiang, D.P. J. Hazard. Mater. 2021, 419, 126385. doi: 10.1016/j.jhazmat.2021.126385

    64. [64]

      Zhao, J.X.; Zhao, Z.B.; Sun, Y.; Ma, X.D.; Ye, M.D.; Wen, X.R. Environ. Sci-Nano 2021, 8 (7), 2059. doi: 10.1039/d1en00175b

    65. [65]

      Wang, Z.; Yan, T.T.; Shi, L.Y.; Zhang, D.S. ACS Appl. Mater. Interfaces 2017, 9 (17), 15068. doi: 10.1021/acsami.7b02712

    66. [66]

      Ding, M.; Li, S.; Guo, L.; Jing, L.; Gao, S.-P.; Yang, H.T.; Little, J.M.; Dissanayake, T.U.; Li, K.R.; Yang, J.; et al. Adv. Energy Mater. 2021, 11 (35), 2101494. doi: 10.1002/aenm.202101494

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    11. [11]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    14. [14]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    16. [16]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    17. [17]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    20. [20]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN modified PP separator for high-stability and high-efficiency lithium-sulfur batteries. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

Metrics
  • PDF Downloads(0)
  • Abstract views(13)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return