Citation: Fangxuan Liu,  Ziyan Liu,  Guowei Zhou,  Tingting Gao,  Wenyu Liu,  Bin Sun. Hollow structured photocatalysts[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100071. doi: 10.1016/j.actphy.2025.100071 shu

Hollow structured photocatalysts

  • Received Date: 25 January 2025
    Revised Date: 19 February 2025
    Accepted Date: 24 February 2025

    Fund Project: This project was supported by the National Natural Science Foundation of China (52202102, 52472215, 52202007, 51972180), Natural Science Foundation of Shandong Province (ZR2019BB030, ZR2021QE282), Key Research & Development Project of Shandong Province (2024TSGC0222), Science and Technology Support Plan for Youth Innovation of Colleges and Universities of Shandong Province (2021KJ056), Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai (AMGM2023F13, AMGM2021F05), Science, Education and Industry Integration Innovation Pilot Project from Qilu University of Technology (Shandong Academy of Sciences) (2024ZDZX13).

  • Photocatalysis technology, utilizing solar-driven reactions, is poised to emerge as a reliable strategy to alleviate environmental and energy pressures. Thus, whether the photocatalytic performance is excellent depends on the reasonable design of photocatalysts. By considering factors such as morphology engineering, band gap engineering, co-catalyst modification, and heterojunction construction, the photocatalysts with superior performance can be developed. Inspired by this unique characteristic, photocatalysts with a hollow structure endow numerous advantages in photocatalyst design, including enhanced multiple refraction and reflection of light, reduced transport distance of photo-induced carriers, and provided plentiful surface reaction sites. Herein, we systematically review the latest progress of hollow structured photocatalysts and summarize the diversity from geometric morphology, internal structure, and chemical composition. Specifically, the synthetic strategies of hollow structured photocatalysts are highlighted, including hard template, soft template, and template free methods. Furthermore, a series of hollow structured photocatalysts have also been described in detail, such as metal oxide, metal sulfide, metal-organic framework, and covalent organic framework. Subsequently, we present the potential applications of hollow structured photocatalysts in photocatalytic pollutant degradation, H2 production, H2O2 production, CO2 reduction, and N2 fixation. Simultaneously, the relevant relationship between hollow structure and photocatalytic performance is deeply discussed. Toward the end of the review, we introduce the challenges and prospects in the future development direction of hollow structured photocatalysts. The review can provide inspiration for better designing hollow structured photocatalysts to meet the needs of environmental remediation and energy conversion.
  • 加载中
    1. [1]

      H. Lin, M. Ma, H. Qi, X. Wang, Z. Xing, A. Alowasheeir, H. Tang, S. Jun, Y. Yamauchi, S. Liu, Prog. Mater. Sci. 151(2025) 101427, https://doi.org/10.1016/j.pmatsci.2025.101427.

    2. [2]

      J. Qin, Y. Dong, X. Lai, B. Su, B. Pan, C. Wang, S. Wang, J. Mater. Sci. Technol. 198(2024) 176, https://doi.org/10.1016/j.jmst.2024.02.032.

    3. [3]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40(2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.

    4. [4]

      H. Zhang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 49(2023) 42, https://doi.org/10.1016/S1872-2067(23)64444-4.

    5. [5]

      H. Li, B. Sun, T. Gao, H. Li, Y. Ren, G. Zhou, Chin. J. Catal. 43(2022) 461, https://doi.org/10.1016/S1872-2067(21)63915-3.

    6. [6]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. -Chim. Sin. 40(2024) 2407014, https://doi.org/10.3866/PKU.WHXB202407014.

    7. [7]

      Z. Su, J. Zhang, Z. Tan, J. Hu, F. Zhang, R. Duan, L. Yao, B. Han, Y. Zhao, Y. Yang, Green Chem. 25(2023) 2577, https://doi.org/10.1039/d3gc00337j.

    8. [8]

      D. Liu, B. Sun, S. Bai, T. Gao, G. Zhou, Chin. J. Catal. 50(2023) 273, https://doi.org/10.1016/S1872-2067(23)64462-6.

    9. [9]

      F. Wang, M. Li, Z. Zhang, Y. Du, Y. Shang, W. Li, Y. Zhu, Y. Wang, Appl. Catal. B Environ. Energy 366(2025) 125057, https://doi.org/10.1016/j.apcatb.2025.125057.

    10. [10]

      T. Gao, D. Zhao, S. Yuan, M. Zheng, X. Pu, L. Tang, Z. Lei, Carbon Energy 6(2024) e596, https://doi.org/10.1002/cey2.596.

    11. [11]

      X. Zhu, H. Zong, C. Viasus Pérez, H. Miao, W. Sun, Z. Yuan, S. Wang, G. Zeng, H. Xu, Z. Jiang, Angew. Chem., Int. Ed. 62(2023) e202218694, https://doi.org/10.1002/anie.202218694.

    12. [12]

      Y. Chang, X. Zhao, Z. Jiang, Y. Gao, E. Zhou, S. Zhu, Z. Yuan, H. Pang, Chem. Eng. J. 501(2024) 157717, https://doi.org/10.1016/j.cej.2024.157717.

    13. [13]

      Y. Liu, C. Fernández, S. Varanasi, N. Bui, L. Song, M. Hatzell, ACS Energy Lett. 7(2021) 24, https://doi.org/10.1021/acsenergylett.1c02260.

    14. [14]

      R. Wu, S. Gao, C. Jones, M. Sun, M. Guo, R. Tai, S. Chen, Q. Wang, Adv. Funct. Mater. 34(2024) 2314051, https://doi.org/10.1002/adfm.202314051.

    15. [15]

      R. Hailili, X. Reyimu, Z. Li, X. Lu, D. Bahnemann, ACS Appl. Mater. Interfaces 15(2023) 23185, https://doi.org/10.1021/acsami.3c02286.

    16. [16]

      S. Kshirsagar, S. Shelake, B. Biswas, K. Ramesh, R. Gaur, B. Abraham, A. Sainath, U. Pal, Small 20(2024) 2407318, https://doi.org/10.1002/smll.202407318.

    17. [17]

      Z. Yuan, X. Zhu, X. Gao, C. An, Z. Wang, C. Zuo, D. Dionysiou, H. He, Z. Jiang, Environ. Sci. Ecotechnology 20(2024) 100368, https://doi.org/10.1016/j.ese.2023.100368.

    18. [18]

      B. Zhang, F. Liu, B. Sun, T. Gao, G. Zhou, Chin. J. Catal. 59(2024) 334, https://doi.org/10.1016/S1872-2067(23)64633-9.

    19. [19]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40(2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

    20. [20]

      X. Zhang, Z. Zhang, Y. Sun, X. Ma, F. Jin, F. Zhang, W. Han, B. Shen, S. Guo, Rare Met. 43(2024) 3441, https://doi.org/10.1007/s12598-023-02554-z.

    21. [21]

      X. Gao, L. Li, Z. Zhao, Y. Dappe, Z. Jiang, P. Song, Y. Wang, J. Zhu, Appl. Catal. B Environ. Energy 364(2025) 124835, https://doi.org/10.1016/j.apcatb.2024.124835.

    22. [22]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou, Chin. J. Catal. 64(2024) 152, https://doi.org/10.1016/s1872-2067(24)60099-9.

    23. [23]

      Y. Chen, L. Zhang, S. Chen, S. Sun, H. Cheng, S. Li, J. Yu, B. Ding, J. Yan, Adv. Mater. 36(2024) 2407400, https://doi.org/10.1002/adma.202407400.

    24. [24]

      Y. Shi, P. Li, H. Chen, Z. Wang, Y. Song, Y. Tang, S. Lin, Z. Yu, L. Wu, J. Yu, et al., Nat. Commun. 15(2024) 4641, https://doi.org/10.1038/s41467-024-49005-6.

    25. [25]

      M. Chen, M. Sun, X. Cao, H. Wang, L. Xia, W. Jiang, M. Huang, L. He, X. Zhao, Y. Zhou, Coord. Chem. Rev. 510(2024) 215849, https://doi.org/10.1016/j.ccr.2024.215849.

    26. [26]

      Z. Pan, W. Ding, H. Chen, H. Ji, Chin. Chem. Lett. 354(2024) 108567, https://doi.org/10.1016/j.cclet.2023.108567.

    27. [27]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. -Chim. Sin. 40(2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.

    28. [28]

      J. Zhao, G. Ren, X. Meng, Nano Energy 130(2024) 110109, https://doi.org/10.1016/j.nanoen.2024.110109.

    29. [29]

      K. Wu, S. Li, C. Hu, G. Wen, X. Zeng, M. Wang, J. Wang, M. Chu, H. Shang, M. Ye, et al., Appl. Catal. B Environ. Energy 375(2024) 124288, https://doi.org/10.1016/j.apcatb.2024.124288.

    30. [30]

      T. Zhao, X. Wang, Z. Sun, H. Wang, P. Qiu, Q. Xiao, W. Jiang, L. Wang, F. Bu, W. Luo, Adv. Funct. Mater. 33(2023) 2303644, https://doi.org/10.1002/adfm.202303644.

    31. [31]

      R. Zhang, J. Shi, L. Fu, Y. Liu, Y. Jia, Z. Han, K. Yuan, H. Jiang, ACS Nano 18(2024) 12994, https://doi.org/10.1021/acsnano.4c01318.

    32. [32]

      G. Zeng, H. Miao, J. Wu, X. Zhu, J. Yi, X. Zhu, H. Qi, Z. Jiang, Z. Mo, J. Liu, et al., Chem. Eng. J. 499(2024) 156367, https://doi.org/10.1016/j.cej.2024.156367.

    33. [33]

      L. Xiao, W. Ren, S. Shen, M. Chen, R. Liao, Y. Zhou, X. Li, Acta Phys. -Chim. Sin. 40(2024) 2308036, https://doi.org/10.3866/PKU.WHXB202308036.

    34. [34]

      B. Zhang, B. Sun, F. Liu, T. Gao, G. Zhou, Sci. China Mater. 37(2024) 424, https://doi.org/10.1007/s40843-023-2754-8.

    35. [35]

      H. Zhang, P. Sun, X. Fei, X. Wu, Z. Huang, W. Zhong, Q. Gong, Y. Zheng, Q. Zhang, S. Xie, et al., Nat. Commun. 15(2024) 4453, https://doi.org/10.1038/s41467-024-48866-1.

    36. [36]

      C. Wu, K. Lv, X. Li, Q. Li, Chin. J. Catal. 54(2023) 137, https://doi.org/10.1016/s1872-2067(23)64542-5.

    37. [37]

      Y. Wei, N. Yang, K. Huang, J. Wan, F. You, R. Yu, S. Feng, D. Wang, Adv. Mater. 32(2020) 2002556, https://doi.org/10.1002/adma.202002556.

    38. [38]

      P. Hou, D. Li, N. Yang, J. Wan, C. Zhang, X. Zhang, H. Jiang, Q. Zhang, L. Gu, D. Wang, Angew. Chem., Int. Ed. 60(2021) 6926, https://doi.org/10.1002/anie.202016285.

    39. [39]

      M. Zhu, J. Tang, W. Wei, S. Li, Mater. Chem. Front. 4(2020) 1105, https://doi.org/10.1039/c9qm00700h.

    40. [40]

      G. Zhao, X. Long, J. Zou, J. Hu, F. Jiao, Coord. Chem. Rev. 477(2023) 214953, https://doi.org/10.1016/j.ccr.2022.214953.

    41. [41]

      J. Li, X. Wu, S. Liu, Acta Phys. -Chim. Sin. 37(2021) 2009038, https://doi.org/10.3866/PKU.WHXB202009038.

    42. [42]

      J. Liu, Y. Ma, L. Zhang, Y. Zheng, R. Zhang, L. Zhang, F. Wei, Z. Qiao, Nano Res. 14(2021) 3260, https://doi.org/10.1007/s12274-021-3403-2.

    43. [43]

      W. Wang, Y. Zhou, P. Sun, L. Liu, C. Guo, X. Wang, T. Zhang, Y. Cong, Z. Wei, Vacuum 228(2024) 113526, https://doi.org/10.1016/j.vacuum.2024.113526.

    44. [44]

      M. Ran, M. Wang, Z. Hu, Y. Huang, L. Wang, L. Wu, M. Yuan, J. Zhang, B. Li, G. Tendeloo, et al., J. Mater. Sci. Technol. 212(2025) 182, https://doi.org/10.1016/j.jmst.2024.06.016.

    45. [45]

      J. Cai, W. Xu, H. Chi, Q. Liu, W. Gao, L. Shi, J. Low, Z. Zou, Y. Zhou, Acta Phys. -Chim. Sin. 40(2024) 2407002, https://doi.org/10.3866/PKU.WHXB202407002.

    46. [46]

      S. Hao, Y. Xue, C. Peng, Y. Mi, Y. Yan, M. Wang, Q. Han, G. Zheng, J. Am. Chem. Soc. 146(2024) 25870, https://doi.org/10.1021/jacs.4c08801.

    47. [47]

      J. Pan, D. Wang, D. Wu, J. Cao, X. Fang, C. Zhao, Z. Zeng, B. Zhang, D. Liu, S. Liu, Adv. Sci. 11(2024) 2309293, https://doi.org/10.1002/advs.202309293.

    48. [48]

      J. Wang, J. Wan, N. Yang, Q. Li, D. Wang, Nat. Rev. Chem. 4(2020) 159, https://doi.org/10.1038/s41570-020-0161-8.

    49. [49]

      E. Doustkhah, R. Hassandoost, A. Khataee, R. Luque, M. Assadi, Chem. Soc. Rev. 50(2021) 2927, https://doi.org/10.1039/c9cs00813f.

    50. [50]

      T. Yang, B. Wang, P. Chu, J. Xia, H. Li, Chin. J. Catal. 59(2024) 204, https://doi.org/10.1016/S1872-2067(24)60003-3.

    51. [51]

      X. Luo, C. Fu, S. Shen, L. Luo, J. Zhang, Appl. Catal. B Environ 330(2023) 122602, https://doi.org/10.1016/j.apcatb.2023.122602.

    52. [52]

      C. Yuan, W. Wu, Y. Liu, Z. Wang, Y. Yang, L. Han, Q. Zhou, J. Liu, P. Liu, Carbon 195(2022) 101, https://doi.org/10.1016/j.carbon.2022.04.007.

    53. [53]

      S. Zhang, J. Sun, H. Ju, Small 20(2024) 2405712, https://doi.org/10.1002/smll.202405712.

    54. [54]

      G. Feng, S. Wang, S. Wang, Q. Xu, C. Wang, J. Xiao, C. Song, H. Lu, Sens. Actuators B 410(2024) 135616, https://doi.org/10.1016/j.snb.2024.135616.

    55. [55]

      T. Zheng, X. Ding, T. Sun, X. Yang, X. Wang, X. Zhou, P. Zhang, B. Yu, Y. Wang, Q. Xu, et al., Small 20(2024) 2307743, https://doi.org/10.1002/smll.202307743.

    56. [56]

      Y. Zheng, L. Wang, H. Tian, L. Qiao, Y. Zeng, C. Liu, Sens. Actuators B 339(2021) 129862, https://doi.org/10.1016/j.snb.2021.129862.

    57. [57]

      Z. Xiong, Y. Hou, R. Yuan, Z. Ding, W. Ong, S. Wang, Acta Phys. -Chim. Sin. 38(2022) 2111021, https://doi.org/10.3866/PKU.WHXB202111021.

    58. [58]

      Z. Wen, S. Li, G. Zhang, R. Chen, Y. Zhang, X. Liao, G. Cheng, R. Chen, J. Cleaner Prod. 389(2023) 136085, https://doi.org/10.1016/j.jclepro.2023.136085.

    59. [59]

      J. Peng, Z. Zheng, H. Tan, J. Yang, D. Zheng, Y. Song, F. Lu, Y. Chen, W. Gao, Sens. Actuators B 363(2022) 131863, https://doi.org/10.1016/j.snb.2022.131863.

    60. [60]

      Z. Xiong, B. Sun, H. Zou, R. Wang, Q. Fang, Z. Zhang, S. Qiu, J. Am. Chem. Soc. 144(2022) 6583, https://doi.org/10.1021/jacs.2c02089.

    61. [61]

      H. Qu, B. Li, Y. Ma, Z. Xiao, Z. Lv, Z. Li, W. Li, L. Wang, Adv. Mater. 35(2023) 2301359, https://doi.org/10.1002/adma.202301359.

    62. [62]

      M. Farag, S. El-Hakam, A. Ahmed, A. Ibrahim, D. Kospa, Desalination 594(2025) 118296, https://doi.org/10.1016/j.desal.2024.118296.

    63. [63]

      W. Cao, T. Guo, J. Wang, G. Xu, J. Jiang, D. Liu, Coord. Chem. Rev. 497(2023) 215450, https://doi.org/10.1016/j.ccr.2023.215450.

    64. [64]

      S. Tang, Y. Xia, J. Fan, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 42(2021) 743, https://doi.org/10.1016/S1872-2067(20)63695-6.

    65. [65]

      J. Sun, R. Tian, Y. Man, Y. Fei, X. Zhou, Chin. Chem. Lett. 34(2023) 108233, https://doi.org/10.1016/j.cclet.2023.108233.

    66. [66]

      J. Cheng, Y. Liu, X. Zhang, X. Miao, Y. Chen, S. Chen, J. Lin, Y. Zhang, Chem. Eng. J. 419(2021) 129649, https://doi.org/10.1016/j.cej.2021.129649.

    67. [67]

      Y. Ma, L. Zhang, Z. Yan, B. Cheng, J. Yu, T. Liu, Adv. Energy Mater. 12(2022) 2103820, https://doi.org/10.1002/aenm.202103820.

    68. [68]

      N. Kanjana, W. Maiaugree, P. Poolcharuansin, P. Laokul, J. Mater. Sci. Technol. 48(2020) 105, https://doi.org/10.1016/j.jmst.2020.03.013.

    69. [69]

      F. Tao, P. Liang, S. Wei, Y. Hu, P. Zhang, W. Wang, Sep. Purif. Technol. 338(2024) 126510, https://doi.org/10.1016/j.seppur.2024.126510.

    70. [70]

      S. Liang, G. Sui, D. Guo, Z. Luo, R. Xu, H. Yao, J. Li, C. Wang, J. Colloid Interface Sci. 635(2023) 83, https://doi.org/10.1016/j.jcis.2022.12.120.

    71. [71]

      L. Yang, Y. Zhao, Y. Zhang, C. Zhu, W. Wang, J. Shi, S. Liu, J. Chen, M. Huang, J. Wu, et al., Small Methods 8(2024) 2301355, https://doi.org/10.1002/smtd.202301355.

    72. [72]

      K. Jin, X. Li, H. Tang, Y. Shi, C. Wang, W. Guo, K. Tian, H. Wang, J. Mater. Sci. Technol. 177(2024) 224, https://doi.org/10.1016/j.jmst.2023.08.043.

    73. [73]

      X. Gong, D. Li, Q. Zhang, W. Wang, Z. Tian, G. Su, M. Huang, G. Wang, Nano Res. 16(2023) 11358, https://doi.org/10.1007/s12274-023-5813-9.

    74. [74]

      M. Guo, S. Zhong, T. Xu, Y. Huang, G. Xia, T. Zhang, X. Yu, J. Mater. Chem. A 42(2021) 23841, https://doi.org/10.1039/D1TA07250A.

    75. [75]

      J. Wang, M. Pan, J. Yuan, G. Liu, L. Zhu, ACS Appl. Mater. Interfaces 13(2021) 14669, https://doi.org/10.1021/acsami.0c22273.

    76. [76]

      L. Wang, B. Zhu, B. Cheng, J. Zhang, L. Zhang, J. Yu, Chin. J. Catal. 42(2021) 1648, https://doi.org/10.1016/S1872-2067(21)63805-6.

    77. [77]

      X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Chem. Rev. 116(2016) 10983, https://doi.org/10.1021/acs.chemrev.5b00731.

    78. [78]

      N. Chen, Y. Zhou, S. Cao, R. Wang, W. Jiao, Green Energy Environ. 8(2023) 509, https://doi.org/10.1016/j.gee.2021.07.002.

    79. [79]

      J. Qu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, ACS Sustainable Chem. Eng. 8(2020) 10581, https://doi.org/10.1021/acssuschemeng.0c03755.

    80. [80]

      M. Xiao, Z. Wang, M. Lyu, B. Luo, S. Wang, G. Liu, H. Cheng, L. Wang, Adv. Mater. 31(2019) 1801369, https://doi.org/10.1002/adma.201801369.

    81. [81]

      C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, Adv. Mater. 31(2019) 1902868, https://doi.org/10.1002/adma.201902868.

    82. [82]

      J. Hu, R. Zhao, H. Li, Z. Xu, H. Dai, H. Gao, H. Yu, Z. Wang, Y. Wang, Y. Liu, et al., Appl. Catal. B Environ 303(2022) 120869, https://doi.org/10.1016/j.apcatb.2021.120869.

    83. [83]

      C. Xue, X. Zhou, X. Li, N. Yang, X. Xin, Y. Wang, W. Zhang, J. Wu, W. Liu, F. Huo, Adv. Sci. 9(2022) 2104183, https://doi.org/10.1002/advs.202104183.

    84. [84]

      J. Kim, H. Kim, S. Shin, H. Lee, J. Kim, Electrochim. Acta 412(2022) 140097, https://doi.org/10.1016/j.electacta.2022.140097.

    85. [85]

      Z. Deng, J. Cao, S. Hu, S. Wu, M. Xing, J. Zhang, J. Phys. Chem. C 127(2023) 8071, https://doi.org/10.1021/acs.jpcc.3c01375.

    86. [86]

      X. Zhang, Y. He, Y. Wei, R. Yu, Mater. Chem. Front. 22(2021) 8010, https://doi.org/10.1039/d1qm01124c.

    87. [87]

      X. Liu, M. Sayed, C. Bie, B. Cheng, B. Hu, J. Yu, L. Zhang, J. Materiomics 3(2021) 419, https://doi.org/10.1016/j.jmat.2020.10.010.

    88. [88]

      H. Chen, L. Shao, J. Ma, W. He, B. Zhang, X. Zhai, Y. Fu, J. Mol. Liq. 375(2023) 121317, https://doi.org/10.1016/j.molliq.2023.121317.

    89. [89]

      D. Song, X. Xu, X. Huang, G. Li, Y. Zhao, F. Gao, J. Agric. Food Chem. 71(2023) 2600, https://doi.org/10.1021/acs.jafc.2c08818.

    90. [90]

      L. Sun, X. Yu, L. Tang, W. Wang, Q. Liu, Chin. J. Catal. 52(2023) 164, https://doi.org/10.1016/S1872-2067(23)64507-3.

    91. [91]

      K. She, Y. Huang, W. Fan, M. Yu, J. Zhang, C. Chen, J. Colloid Interface Sci. 656(2024) 270, https://doi.org/10.1016/j.jcis.2023.11.108.

    92. [92]

      Y. Zhang, K. Ruan, K. Zhou, J. Gu, Adv. Mater. 35(2023) 2211642, https://doi.org/10.1002/adma.202211642.

    93. [93]

      M. Ding, S. Cui, Z. Lin, X. Yang, Appl. Catal. B Environ. Energy 375(2024) 124333, https://doi.org/10.1016/j.apcatb.2024.124333.

    94. [94]

      J. Shi, J. Xiong, L. Qiao, C. Liu, Y. Zeng, Appl. Surf. Sci. 609(2023) 155271, https://doi.org/10.1016/j.apsusc.2022.155271.

    95. [95]

      F. Tang, X. Wang, F. Ge, W. Pei, J. Yun, S. Lv, T. Wei, Sep. Purif. Technol. 347(2024) 127682, https://doi.org/10.1016/j.seppur.2024.127682.

    96. [96]

      W. Jia, Q. Lu, T. Tian, G. Pan, R. Tan, B. He, J. Liu, Nanoscale 16(2024) 18076, https://doi.org/10.1039/d4nr03347g.

    97. [97]

      L. Que, L. Lu, Y. Xu, X. Xu, H. Li, J. Cao, M. Zhu, C. Li, J. Pan, Int. J. Hydrogen Energy 48(2023) 4708, https://doi.org/10.1016/j.ijhydene.2022.11.019.

    98. [98]

      H. Fan, Y. Jin, K. Liu, W. Liu, Adv. Sci. 9(2022) 2104579, https://doi.org/10.1002/advs.202104579.

    99. [99]

      T. Hoa, T. Phuong, P. Phuoc, L. Hoa, N. Dieu, N. Nhi, D. Nhan, L. Thang, M. Hien, N. Hieu, et al., Ceram. Int. 51(2025) 7986, https://doi.org/10.1016/j.ceramint.2024.12.235.

    100. [100]

      J. Tang, H. Wang, X. Wang, C. Xie, D. Zeng, Sens. Actuators B Chem 351(2022) 130954, https://doi.org/10.1016/j.snb.2021.130954.

    101. [101]

      R. Zhao, F. Hu, Y. Zhang, B. Dong, Z. Li, W. Qu, C. Liu, Z. Song, P. Lu, D. Ji, et al., Sep. Purif. Technol. 337(2024) 126367, https://doi.org/10.1016/j.seppur.2024.126367.

    102. [102]

      J. Lee, S. Park, S. Woo, C. Bae, Y. Jeon, M. Gu, J. Kim, Y. Kim, S. Nam, J. Jung, et al., J. Inorg. Chem. Front. 10(2023) 7146, https://doi.org/10.1039/d3qi01567j.

    103. [103]

      W. Li, Q. Gao, M. Shen, B. Li, C. Ren, J. Yang, J. Inorg. Chem. Front. 9(2022) 1609, https://doi.org/10.1039/d1qi01570b.

    104. [104]

      L. Zhang, M. Li, S. Zhang, X. Cao, J. Bo, X. Zhu, J. Han, Q. Ge, H. Wang, Catal. Today 365(2021) 348, https://doi.org/10.1016/j.cattod.2020.08.001.

    105. [105]

      H. Lee, S. Lee, Dalton Trans. 49(2020) 8274, https://doi.org/10.1039/d0dt01228a.

    106. [106]

      Y. Zhang, J. Gou, L. Chen, Y. Peng, D. Gao, J. Bi, J. Wu, Z. Xie, Sens. Actuators B 370(2022) 132402, https://doi.org/10.1016/j.snb.2022.132402.

    107. [107]

      G. Geng, W. Zhu, R. Pan, Z. Zhang, C. Gu, J. Li, Nano Today 38(2021) 101145, https://doi.org/10.1016/j.nantod.2021.101145.

    108. [108]

      N. He, Y. Zou, C. Chen, M. Tan, Y. Zhang, X. Li, Z. Jia, J. Zhang, H. Long, H. Peng, et al., Nat. Commun. 15(2024) 3896, https://doi.org/10.1038/s41467-024-48160-0.

    109. [109]

      C. Zhao, Z. Ge, Z. Jiang, S. Yan, J. Shu, M. Wang, X. Ge, Chin. Chem. Lett. 34(2023) 107499. https://doi.org/10.1016/j.cclet.2022.05.013.

    110. [110]

      F. Butt, A. Lewis, R. Rea, N. Mazlan, T. Chen, N. Radacsi, E. Mangano, X. Fan, Y. Yang, S. Yang, et al., ACS Appl. Mater. Interfaces 15(2023) 31740, https://doi.org/10.1021/acsami.3c06502.

    111. [111]

      D. Mandal, S. Priya, A. Chowdhury, A. Srivastava, A. Chandra, ACS Appl. Nano Mater. 7(2024) 476, https://doi.org/10.1021/acsanm.3c04684.

    112. [112]

      Y. Liao, Z. Fan, J. Du, Acta Phys. -Chim. Sin. 37(2021) 1912053, https://doi.org/10.3866/PKU.WHXB201912053.

    113. [113]

      H. Zhong, J. Wang, T. Wang, S. Zhang, D. Li, P. Tang, N. Alonso-Vante, Y. Feng, ChemElectroChem 5(2018) 2192, https://doi.org/10.1002/celc.201800487.

    114. [114]

      Z. Qin, H. Li, X. Yang, L. Chen, Y. Li, K. Shen, Appl. Catal. B Environ 307(2022) 121163, https://doi.org/10.1016/j.apcatb.2022.121163.

    115. [115]

      C. Huang, X. Cheng, B. Chen, J. Wang, Y. Dai, Y. Situ, H. Huang, Nano Lett. 22(2022) 9290, https://doi.org/10.1021/acs.nanolett.2c02768.

    116. [116]

      X. Luo, Z. Pan, F. Pei, Z. Jin, K. Miao, P. Yang, H. Qian, Q. Chen, G. Feng, J. Ind. Eng. Chem. 59(2018) 410, https://doi.org/10.1016/j.jiec.2017.10.052.

    117. [117]

      F. Francois, Q. Tran, S. Piogé, N. Kornienko, V. Maisonneuve, J. Lhoste, A. Guiet, S. Pascual, ACS Appl. Mater. Interfaces 16(2024) 41351, https://doi.org/10.1021/acsami.4c09575.

    118. [118]

      S. Mei, C. Jafta, I. Lauermann, Q. Ran, M. Kärgell, M. Ballauff, Y. Lu, Adv. Funct. Mater. 27(2017) 1701176, https://doi.org/10.1002/adfm.201701176.

    119. [119]

      J. Ma, Y. Tang, M. Yaseen, L. Qin, X. Chen, S. Xiong, D. Liao, Z. Tong, Sep. Purif. Technol. 322(2023) 124278, https://doi.org/10.1016/j.seppur.2023.124278.

    120. [120]

      J. Feng, Y. Yin, Adv. Mater. 31(2019) 1802349, https://doi.org/10.1002/adma.201802349.

    121. [121]

      H. Xu, C. Gu, G. Wang, P. Nan, J. Zhang, L. Shi, S. Han, B. Ge, Y. Wang, J. Li, et al., J. Am. Chem. Soc. 146(2024) 30372, https://doi.org/10.1021/jacs.4c10252.

    122. [122]

      C. Sun, D. Lan, Z. Jia, Z. Gao, G. Wu, Small 20(2024) 2405874, https://doi.org/10.1002/smll.202405874.

    123. [123]

      G. Shi, Q. Liu, Y. Huang, Y. Wu, R. Huang, L. Zou, X. Liu, J. Li, J. He, L. Yang, et al., Appl. Mater. Today 41(2024) 102441, https://doi.org/10.1016/j.apmt.2024.102441.

    124. [124]

      H. Ma, F. Zhao, M. Li, P. Wang, Y. Fu, G. Wang, X. Liu, Adv. Powder Mater. 2(2023) 100117, https://doi.org/10.1016/j.apmate.2023.100117.

    125. [125]

      Z. Liu, H. Tian, R. Xu, W. Men, T. Su, Y. Qu, W. Zhao, D. Liu, Carbon 205(2023) 138, https://doi.org/10.1016/j.carbon.2023.01.031.

    126. [126]

      C. Kang, L. Ma, Y. Chen, L. Fu, Q. Hu, C. Zhou, Q. Liu, Chem. Eng. J. 427(2022) 131003, https://doi.org/10.1016/j.cej.2021.131003.

    127. [127]

      R. Zeng, K. Lian, B. Su, L. Lu, J. Lin, D. Tang, S. Lin, X. Wang, Angew. Chem., Int. Ed. 60(2021) 25055, https://doi.org/10.1002/anie.202110670.

    128. [128]

      H. Tianou, W. Wang, X. Yang, Z. Cao, Q. Kuang, Z. Wang, Z. Shan, M. Jin, Y. Yin, Nat. Commun. 8(2017) 1261, https://doi.org/10.1038/s41467-017-01258-0.

    129. [129]

      Y. Zhou, S. Zhang, J. Li, L. Liu, C. Wang, B. Bai, H. Hsu, I. Hadar, Z. Yin, M. Buntine, et al., Mater. Today Chem. 38(2024) 102209, https://doi.org/10.1016/j.mtchem.2024.102029.

    130. [130]

      C. Yang, X. Li, T. Gao, S. Gu, X. Wang, Y. Wang, Q. Wang, B. Sun, Y. He, G. Zhou, Chem. Eng. J. 474(2023) 145818, https://doi.org/10.1016/j.cej.2023.145818.

    131. [131]

      B. Jiang, W. Tao, L. Zhao, T. Wang, X. Liu, F. Liu, X. Yan, Y. Sun, G. Lu, P. Sun, Sens. Actuators B 385(2023) 133626, https://doi.org/10.1016/j.snb.2023.133626.

    132. [132]

      X. Qi, H. Dong, H. Yan, B. Hou, H. Liu, N. Shang, L. Wang, J. Song, S. Chen, S. Chou, et al., Angew. Chem., Int. Ed. 63(2024) e202410590, https://doi.org/10.1002/anie.202410590.

    133. [133]

      M. Zhang, X. Qian, Q. Zeng, Y. Zhang, H. Cao, R. Che, Carbon 175(2021) 499, https://doi.org/10.1016/j.carbon.2021.01.013.

    134. [134]

      M. Rigamonti, M. Chavalle, H. Li, P. Antitomaso, L. Hadidi, M. Stucchi, F. Galli, H. Khan, M. Dollé, D. Boffito, et al., J. Power Sources 462(2020) 228103, https://doi.org/10.1016/j.jpowsour.2020.228103.

    135. [135]

      R. Li, Y. Zhou, C. Liu, C. Pei, W. Shu, C. Zhang, L. Liu, L. Zhou, J. Wan, Angew. Chem., Int. Ed. 60(2021) 12504, https://doi.org/10.1002/anie.202101007.

    136. [136]

      P. Cai, T. Liu, L. Zhang, B. Cheng, J. Yu, Appl. Surf. Sci. 504(2020) 144501, https://doi.org/10.1016/j.apsusc.2019.144501.

    137. [137]

      H. Xu, X. Niu, Z. Liu, M. Sun, Z. Liu, Z. Tian, X. Wu, B. Huang, Y. Tang, C. Yan, Small 17(2021) 2103064, https://doi.org/10.1002/smll.202103064.

    138. [138]

      Y. Zeng, X. Lu, S. Zhang, D. Luan, S. Li, X. Lou, Angew. Chem., Int. Ed. 60(2021) 22189, https://doi.org/10.1002/anie.202107697.

    139. [139]

      J. Yu, H. Guo, S. Davis, S. Mann, Adv. Funct. Mater. 16(2006) 2035, https://doi.org/10.1002/adfm.200600552.

    140. [140]

      W. Liu, J. Huang, Q. Yang, S. Wang, X. Sun, W. Zhang, J. Liu, F. Huo, Angew. Chem., Int. Ed. 56(2017) 5512, https://doi.org/10.1002/ange.201701604.

    141. [141]

      S. Yu, J. Li, J. Yin, W. Liang, Y. Zhang, T. Liu, M. Hu, Y. Wang, Z. Wu, Y. Zhang, Chin. Chem. Lett. 35(2024) 110068, https://doi.org/10.1016/j.cclet.2024.110068.

    142. [142]

      T. Dou, Y. Zhu, Z. Chu, L. Sun, Z. Li, L. Jing, Appl. Catal. B Environ. Energy 354(2024) 124112, https://doi.org/10.1016/j.apcatb.2024.124112.

    143. [143]

      G. Wang, K. Wang, Z. Liu, Y. Feng, S. Yang, Y. Su, X. Qian, P. Jin, J. Wei, Appl. Catal. B Environ 325(2023) 122359, https://doi.org/10.1016/j.apcatb.2023.122359.

    144. [144]

      D. Wang, F. Yin, B. Cheng, Y. Xia, J. Yu, W. Ho, Rare Met. 40(2021) 2369, https://doi.org/10.1007/s12598-021-01731-2.

    145. [145]

      J. Zhang, S. Wang, F. Liu, X. Fu, G. Ma, M. Hou, Z. Tang, Acta Phys. -Chim. Sin. 35(2019) 885, https://doi.org/10.3866/PKU.WHXB201812022.

    146. [146]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195(2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081.

    147. [147]

      L. Wang, H. Xiao, L. Yang, J. Li, J. Zi, Z. Lian, Adv. Funct. Mater. 35(2025) 2416358, https://doi.org/10.1002/adfm.202416358.

    148. [148]

      C. Yang, X. Li, M. Li, G.J. Liang, Z.L. Jin, Chin. J. Catal. 56(2024) 88, https://doi.org/10.1016/s1872-2067(23)64563-2.

    149. [149]

      B. Wang, S. Guo, X. Xin, Y. Zhang, Y. Wang, C. Li, Y. Song, D. Deng, X. Li, A. Sobrido, Adv. Energy Mater. 10(2020) 2001575, https://doi.org/10.1002/aenm.202001575.

    150. [150]

      Y. Xu, W. Tai, Z. Wang, L. Zhang, D. Wang, J. Liao, Sci. China Mater. 67(2023) 153, https://doi.org/10.1007/s40843-023-2659-9.

    151. [151]

      X. Dang, X. Cui, H. Zhang, X. Chen, H. Zhao, ACS Sustainable Chem. Eng. 11(2023) 13096, https://doi.org/10.1021/acssuschemeng.3c03183.

    152. [152]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57(2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.

    153. [153]

      J. Li, Z. Liu, W. Li, H. Ma, P. Fang, R. Xiong, C. Pan, J. Wei, J. Colloid Interface Sci. 682(2025) 41, https://doi.org/10.1016/j.jcis.2024.11.174.

    154. [154]

      C. Feng, L. Zhang, Mater. Horiz. 11(2024) 1515, https://doi.org/10.1039/d3mh01915b.

    155. [155]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11(2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.

    156. [156]

      Y. Xu, J. Liao, L. Zhang, Z. Sun, C. Ge, J. Colloid Interface Sci. 647(2023) 446, https://doi.org/10.1016/j.jcis.2023.05.140.

    157. [157]

      Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, J. Mater. Sci. Technol. 56(2020) 143, https://doi.org/10.1016/j.jmst.2020.02.062.

    158. [158]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12(2021) 4936, https://doi.org/10.1038/s41467-021-25007-6.

    159. [159]

      T. Bao, Y. Xi, C. Zhang, P. Du, Y. Xiang, J. Li, L. Yuan, C. Yu, C. Liu, Natl. Sci. Rev. 11(2024) nwae093, https://doi.org/10.1093/nsr/nwae093.

    160. [160]

      F. Zhao, L. Shi, J. Cui, Y. Lin, Acta Phys. -Chim. Sin. 32(2016) 2069, https://doi.org/10.3866/PKU.WHXB201604224.

    161. [161]

      C. Li, M. Gu, M. Gao, K. Liu, X. Zhao, N. Cao, J. Feng, Y. Ren, T. Wei, M. Zhang, J. Colloid Interface Sci. 609(2022) 341, https://doi.org/10.1016/j.jcis.2021.11.180.

    162. [162]

      Y. Peng, B. Cheng, L. Zhang, J. Liu, J. Yu, Sens. Actuators B 385(2023) 133700, https://doi.org/10.1016/j.snb.2023.133700.

    163. [163]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40(2024) 2403005, https://doi.org/10.3866/PKU.WHXB202403005.

    164. [164]

      X. Feng, L. Zhang, J. Mater. Sci. Technol. 156(2023) 54, https://doi.org/10.1016/j.jmst.2022.09.040.

    165. [165]

      J. Ye, B. Cheng, J. Yu, W. Ho, S. Wageh, A. Al-Ghamdi, Chem. Eng. J. 430(2022) 132715, https://doi.org/10.1016/j.cej.2021.132715.

    166. [166]

      H. Dai, Z. Liu, L. Ou, Y. Shen, Z. Ning, F. Hu, X. Peng, J. Environ. Chem. Eng. 11(2023) 110797, https://doi.org/10.1016/j.jece.2023.110797.

    167. [167]

      L. Lin, Q. He, Y. Chen, B. Wang, L. Zhang, X. Dai, Y. Jiang, H. Chen, J. Liao, Y. Mao, et al., J. Colloid Interface Sci. 644(2023) 29, https://doi.org/10.1016/j.jcis.2023.04.069.

    168. [168]

      J. Moon, E. Oh, T. Koo, Y. Jeon, Y. Jang, H. Fu, M. Ko, Y. Kim, Adv. Mater. 36(2024) 2312214, https://doi.org/10.1002/adma.202312214.

    169. [169]

      L. Zhou, Q. Fang, M. Liu, S. Farhan, S. Yang, Y. Wu, Inorg. Chem. 63(2024) 21202, https://doi.org/10.1021/acs.inorgchem.4c03502.

    170. [170]

      X. Cai, J. Du, G. Zhong, Y. Zhang, L. Mao, Z. Lou, Acta Phys. -Chim. Sin. 39(2023) 2302017, https://doi.org/10.3866/PKU.WHXB202302017.

    171. [171]

      Y. Wang, B. Zhu, B. Cheng, W. Macyk, P. Kuang, J. Yu, Appl. Catal. B Environ 314(2022) 121503, https://doi.org/10.1016/j.apcatb.2022.121503.

    172. [172]

      N. Kumar, S. Lee, S. Park, Nano Today 56(2024) 102302, https://doi.org/10.1016/j.nantod.2024.102302.

    173. [173]

      A. Raza, S. Farhan, Z. Yu, Y. Wu, Acta Phys. -Chim. Sin. 40(2024) 2406020, https://doi.org/10.3866/PKU.WHXB202406020.

    174. [174]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15(2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.

    175. [175]

      H. Hou, X. Zeng, X. Zhang, Angew. Chem., Int. Ed. 59(2020) 17356, https://doi.org/10.1002/anie.201911609.

    176. [176]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162(2023) 90, https://doi.org/10.1016/j.jmst.2023.03.054.

    177. [177]

      H. Luo, T. Shan, J. Zhou, L. Huang, L. Chen, R. Sa, Y. Yamauchi, J. You, Y. Asakura, Z. Yuan, et al., Appl. Catal. B Environ 337(2023) 122933, https://doi.org/10.1016/j.apcatb.2023.122933.

    178. [178]

      R. Zeng, T. Liu, M. Qiu, H. Tan, Y. Gu, N. Ye, Z. Dong, L. Li, F. Lin, Q. Sun, et al., J. Am. Chem. Soc. 146(2024) 9721, https://doi.org/10.1021/jacs.3c13827.

    179. [179]

      H. Jung, C. Kim, H. Yoo, J. You, J. Kim, A. Jamal, I. Gereige, J. Ager, H. Jung, Energy Environ. Sci. 16(2023) 2869, https://doi.org/10.1039/d3ee00507k.

    180. [180]

      M. Xiao, D. Li, Y. Wei, Y. He, Z. Wang, R. Yu, Chem. Res. Chin. Univ. 40(2024) 513, https://doi.org/10.1007/s40242-024-4051-3.

    181. [181]

      Y. Xu, Y. Ren, X. Liu, H. Li, Z. Lu, Acta Phys. -Chim. Sin. 40(2024) 2403032, https://doi.org/10.3866/PKU.WHXB202403032.

    182. [182]

      S. Wageh, O. Al-Hartomy, M. Alotaibi, L. Liu, Rare Met. 41(2022) 1077, https://doi.org/10.1007/s12598-021-01902-1.

    183. [183]

      Y. Wei, F. You, D. Zhao, J. Wan, L. Gu, D. Wang, Angew. Chem., Int. Ed. 61(2022) e202212049, https://doi.org/10.1002/anie.202212049.

    184. [184]

      P. Chen, W. Ma, W. He, J. Liao, Q. Xia, A. Jiang, Y. Ma, W. Ai, Y. Wang, W. Zhang, J. Catal. 434(2024) 115538, https://doi.org/10.1016/j.jcat.2024.115538.

    185. [185]

      H. Wang, Z. Chen, Y. Shang, C. Lv, X. Zhang, F. Li, Q. Huang, X. Liu, W. Liu, L. Zhao, ACS Catal. 14(2024) 5779, https://doi.org/10.1021/acscatal.3c06169.

    186. [186]

      T. Wang, C. Feng, J. Liu, D. Wang, H. Hu, J. Hu, Z. Chen, G. Xue, Chem. Eng. J. 414(2021) 128827, https://doi.org/10.1016/j.cej.2021.128827.

    187. [187]

      M. Nazemi, M. El-Sayed, Nano Energy 63(2019) 103886, https://doi.org/10.1016/j.nanoen.2019.103886.

    188. [188]

      Q. Han, X. Bai, J. Chen, S. Feng, W. Gao, W. Tu, X. Wang, J. Wang, B. Jia, Q. Shen, et al., Adv. Mater. 33(2021) 2006780, https://doi.org/10.1002/adma.202006780.

    189. [189]

      M. Zhong, Z. Wang, D. Dai, B. Yang, S. Zuo, C. Yao, F. Wu, X. Li, J. Rare Earths 40(2022) 586, https://doi.org/10.1016/j.jre.2021.03.004.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    4. [4]

      Kun Rong Cuilian Wen Jiansen Wen Xiong Li Qiugang Liao Siqing Yan Chao Xu Xiaoliang Zhang Baisheng Sa Zhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-. doi: 10.1016/j.actphy.2025.100053

    5. [5]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    10. [10]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    11. [11]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    12. [12]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    15. [15]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    20. [20]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return