Citation: Jingzhuo Tian,  Chaohong Guan,  Haobin Hu,  Enzhou Liu,  Dongyuan Yang. Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100068. doi: 10.1016/j.actphy.2025.100068 shu

Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction

  • Received Date: 15 January 2025
    Revised Date: 16 February 2025
    Accepted Date: 18 February 2025

    Fund Project: The project was supported by the Local Science and Development Fund Project Guided by the Central Government (24ZYQM001), the National Natural Science Foundation of China (22378326, 11974276, 22078261), the Natural Science Basic Research Program of Shaanxi Province (2023-JC-YB-115), the Shaanxi Key Science and Technology Innovation Team Project (2022TD-33), the Excellent Doctoral Dissertation Cultivation Program at Northwestern University (YB2024012), and the Program of China Scholarship Council (202406970056).

  • The simultaneous enhancement of separation and utilization of bulk and surface charges is crucial for achieving efficient photocatalytic H2 evolution reactions. In this study, NiCr2O4/T-CZS composites were fabricated by incorporating NiCr2O4 nanosheets onto the surface of twinned Cd0.5Zn0.5S (T-CZS) nanoparticles using a solvent evaporation strategy. After optimization, the 6% NiCr2O4/T-CZS exhibited an impressive hydrogen (H2) evolution rate (rH2) of 81.4 mmol·h-1·g-1 when employing polylactic acid (PLA) plastic as a sacrificial agent in NaOH solution. The reason behind this can be mainly attributed to the fact that T-CZS consists of wurtzite Cd0.5Zn0.5S (WZ-CZS) and zinc blende Cd0.5Zn0.5S (ZB-CZS) with slight band structure differences, thereby facilitating rapid bulk phase and interface charge separation due to the S-scheme charge transfer routes between WZ-CZS and ZB-CZS, as well as T-CZS and NiCr2O4. Moreover, this system can effectively retain electrons with strong reducing ability for efficient H2 evolution reaction (HER) and generate hot electrons through the localized surface plasmon resonance (LSPR) effect of NiCr2O4, which enhances the absorption of UV-Vis-NIR light energy, thereby facilitating the HER process. What’s more, NaOH solution can indirectly promote the HER kinetics by enhancing the oxidative driving force of holes. Additionally, other metal chromates (MCrxOy), such as CoCr2O4, AgCrO2, Bi6CrO12, BaCrO4, ZnCr2O4, CdCr2O4, CuCr2O4 etc., were employed to enhance the activity of T-CZS too. The results show that above homo-heterojunction composites can integrate waste plastic degradation and photocatalytic H2 evolution effectively based on their S-scheme bulk phase and interface charge separation mechanisms. This work provides new insights into energy and environmental challenges.
  • 加载中
    1. [1]

      Wang, Y.; Zhang, Y.; Xin, X.; Yang, J.; Wang, M.; Wang, R.; Guo, P.; Huang, W.; Sobrido, A.; Wei, B.; Li, X. Science 2024, 381, 291. doi:10.1126/science.adg0164

    2. [2]

      Li, X.; Li, C.; Xu, Y.; Liu, Q.; Bahri, M.; Zhang, L.; Browning, N.; Cowan, A.; Tang, J. Nat. Energy 2023, 8, 1013. doi:10.1038/s41560-023-01317-5

    3. [3]

      Wu, X.; Tan, L.; Chen, G.; Kang, J.; Wang, G. Sci. China Mater. 2024, 67, 444. doi:10.1007/s40843-023-2755-2

    4. [4]

      Ruan, X.; Huang, C.; Cheng, H.; Zhang, Z.; Cui, Y.; Li, Z.; Xie, T.; Ba, K.; Zhang, H.; Zhang, L.; et al. Adv. Mater. 2023, 35, 2209141. doi:10.1002/adma.202209141

    5. [5]

      Wu, C.; Lv, K.; Li, X.; Li, Q. Chin. J. Catal. 2023, 54, 137. doi:10.1016/S1872-2067(23)64542-5

    6. [6]

      Yang, C.; Cheng, B.; Xu, J.; Yu, J.; Cao, S. EnergyChem 2024, 6, 100116. doi:10.1016/j.enchem.2023.100116

    7. [7]

      Yang, W.; Zhang, J.; Xu, Q.; Yang, Y.; Zhang, L. Acta Phys. -Chim. Sin. 2024, 40, 2312014.

    8. [8]

      Fujishima, A.; Honda, K. Nature 1972, 238, 37. doi:10.1038/238037a0

    9. [9]

      Zhang, X.; Zhao, G.; Li, Z.; Zhu, L.; Cheng, Y.; Du, H.; Zhu, C.; Dang, Y.; Jiang, D.; Yuan, Y. Chin. J. Struct. Chem. 2022, 41, 2209105. doi:10.14102/j.cnki.0254-5861

    10. [10]

      Xin, X.; Li, Y.; Zhang, Y.; Wang, Y.; Chi, X.; Wei, Y.; Diao, C.; Su, J.; Wang, R.; Guo, P.; et al. Nat. Commun. 2024, 15, 337. doi:10.1038/s41467-024-44725-1

    11. [11]

      Wang, Y.; Liu, M.; Wu, C.; Gao, J.; Li, M.; Xing, Z.; Li, Z.; Zhou, W. Small 2022, 18, 2202544. doi:10.1002/smll.202202544

    12. [12]

      Li, H.; Tao, S.; Wan, S.; Qiu, G.; Long, Q.; Yu, J.; Cao, S. Chin. J. Catal. 2023, 46, 167. doi:10.1016/S1872-2067(22)64201-3

    13. [13]

      Ding, J.; Wang, J.; Zhang, J.; Wang, P.; Chen, L.; Liao, G. EcoEnergy 2024, 2, 22. doi:10.1002/ece2.25

    14. [14]

      Zhang, J.; Li, L.; Du, M.; Cui, Y.; Li, Y.; Yan, W.; Huang, H.; Li, X.; Zhu, X. Small 2023, 19, 2300402. doi:10.1002/smll.202300402

    15. [15]

      Sun, G.; Tai, Z.; Zhang, J.; Cheng, B.; Yu, H.; Yu, J. Appl. Catal. B:Environ. 2024, 358, 124459. doi:10.1016/j.apcatb.2024.124459

    16. [16]

      Huang, M.; Kong, Z.; Ai, Z.; Shi, D.; Yang, M.; Yao, X.; Shao, Y.; Wu, Y.; Hao, X. Small 2023, 20, 2304784. doi:10.1002/smll.202304784

    17. [17]

      Yu, J.; Su, P.; Zhang, D.; Zhao, H.; Yang, N.; Liang, T.; Zhang, D.; Pu, X. Sep. Purif. Technol. 2025, 354, 128694. doi:10.1016/j.seppur.2024.128694

    18. [18]

      Li, Z.; Wang, R.; Wen, M.; Wang, G.; Xie, G.; Liu, X.; Jiang, L. J. Phys. Chem. Solids 2023, 178, 111351. doi:10.1016/j.jpcs.2023.111351

    19. [19]

      Liu, M.; Wang, L.; Lu, G.; Yao, X.; Guo, L. Energy Environ. Sci. 2011, 4, 1372. doi:10.1039/c0ee00604a

    20. [20]

      Liu, F.; Fu, Y.; Lu, K.; Wang, S.; Wang, B.; Huang, J.; Yan, X.; Zheng, Y.; Guo, L.; Liu, M. ACS Catal. 2023, 13, 15591. doi:10.1021/acscatal.3c03786

    21. [21]

      Dong, W.; Cai, T.; Wang, L.; Liu, C.; Chen, H.; Li, W.; Liu, Y.; Xia, X. J. Environ. Chem. Eng. 2022, 10, 108624. doi:10.1016/j.jece.2022.108624

    22. [22]

      Liu, D.; Jiang, L.; Chen, D.; Hao, Z.; Deng, B.; Sun, Y.; Liu, X.; Jia, B.; Chen, L.; Liu, H. ACS Catal. 2024, 14, 5326. doi:10.1021/acscatal.4c00409

    23. [23]

      Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Appl. Catal. B:Environ. 2019, 243, 556. doi:10.1016/j.apcatb.2018.11.011

    24. [24]

      Nie, C.; Wang, X.; Lu, P.; Zhu, Y.; Li, X.; Tang, H. J. Mater. Sci. Technol. 2024, 169, 182. doi:10.1016/j.jmst.2023.06.011

    25. [25]

      Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. -Chim. Sin. 2023, 39, 2212009.

    26. [26]

      Wang, J.; Wang, Z.; Dai, K.; Zhang, J. J. Mater. Sci. Technol. 2023, 165, 187. doi:10.1016/j.jmst.2023.03.067

    27. [27]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172

    28. [28]

      Wang, F.; Li, X.; Lu, K.; Zhou, M.; Yu, C.; Yang, K. Chin. J. Catal. 2024, 63, 190. doi:10.1016/S1872-2067(24)60066-5

    29. [29]

      Zhang, B.; Sun, B.; Liu, F.; Gao, T.; Zhou, G. Sci. China Mater. 2024, 67, 424. doi:10.1007/s40843-023-2754-8

    30. [30]

      Wu, Y.; Cheng, C.; Qi, K.; Cheng, B.; Zhang, J.; Yu, J.; Zhang, L, Acta Phys. -Chim. Sin. 2024, 40, 2406027.

    31. [31]

      Hu, P.; Liang, G.; Zhu, B.; Macyk, W.; Yu, J.; Xu, F. ACS Catal. 2023, 13, 12623. doi:10.1021/acscatal.3c03095

    32. [32]

      Lei, Z.; Wang, W.; Sun, T.; Liu, E.; Gao, T. J. Mater. Sci. Technol. 2025, 216, 81. doi:10.1016/j.jmst.2024.07.034

    33. [33]

      Xue, W.; Tian, J.; Hu, X.; Fan, J.; Sun, T.; Liu, E. Chem. Eng. J. 2022, 443, 136427. doi:10.1016/j.cej.2022.136427

    34. [34]

      Kao, C.; Chen, T.; Shen, S. Chem. Res. Chin. Univ. 2023, 978, 307. doi:10.1007/978-3-031-42588-2_25

    35. [35]

      Xiong, J.; Huang, H.; Lin, B.; Xia, J.; Di, J. Chin. Chem. Lett. 2023, 34, 107844. doi:10.1016/j.jmst.2019.05.036

    36. [36]

      Li, L.; Su, J.; Qiu, Y.; Gao, Y.; Li, N.; Ge, L. Chin. J. Struct. Chem. 2024, 43, 100472. doi:10.1016/j.cjsc.2024.100472

    37. [37]

      Huang, Z.; Guo, C.; Zheng, Q.; Lu, H.; Ma, P.; Fang, Z.; Sun, P.; Yi, X.; Chen, Z. Chin. Chem. Lett. 2024, 35, 109580. doi:10.1016/j.cclet.2024.109580

    38. [38]

      Li, Q.; Yang, S.; Huang, Y.; Liang, Y.; Hu, C.; Wang, M.; Liu, Z.; Tai, Y.; Liu, J.; Li, Y. J. Mater. Sci. Technol. 2025, 204, 152. doi:10.1016/j.jmst.2024.01.104

    39. [39]

      Nadeem, K.; Kamran, M.; Khokhar, H. Z.; Ahmed, I.; Zeb, F.; Noshahi, N. A. Ceram. Int. 2022, 48, 17270. doi:10.1016/j.ceramint.2022.02.288

    40. [40]

      Liu, Q.; Du, X.; Li, W.; Dai, W.; Liu, B. Acta Phys. -Chim. Sin. 2024, 40, 2311016.

    41. [41]

      Xiang, Y.; Zhang, J.; Huang, F.; Xiao, N.; Fan, Y.; Zhang, J.; Zheng, H.; Chen, J.; Zhang, F. Chin. J. Catal. 2024, 59, 149. doi:10.1016/S1872-2067(23)64638-8

    42. [42]

      Zheng, K.; Wu, Y.; Hu, Z.; Wang, S.; Jiao, X.; Zhu, J.; Sun, Y.; Xie, Y. Chem. Soc. Rev. 2023, 52, 8. doi:10.1039/D2CS00688J

    43. [43]

      Tian, J.; Cao, X.; Sun, T.; Fan, J.; Miao, H.; Chen, Z.; Li, D.; Liu, E.; Zhu, Y. Chem. Eng. J. 2023, 471, 144587. doi:10.1016/j.cej.2023.144587

    44. [44]

      Feng, K.; Wu, K.; Li, K.; Wang, W.; Gao, S.; Fan, J.; Sun, T.; Liu, E. J. Colloid Interface Sci. 2024, 676, 795. doi:10.1016/j.jcis.2024.07.169

    45. [45]

      Song, S.; Wen, M.; Zhao, W.; Kong, J.; Li, G.; An, T. Appl. Catal. B:Environ. 2024, 354, 124120. doi:10.1016/j.apcatb.2024.124120

    46. [46]

      Tian, J.; Cao, X.; Sun, T.; Miao, H.; Chen, Z.; Xue, W.; Fan, J.; Liu, E. Compos. Part B-Eng. 2024, 277, 111389. doi:10.1016/j.compositesb.2024.111389

    47. [47]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/S1872-2067(23)64514-0

    48. [48]

      Zhang, Q.; Wang, Z.; Song, Y.; Fan, J.; Sun, T.; Liu, E. J. Mater. Sci. Technol. 2024, 169, 148. doi:10.1016/j.jmst.2023.05.066

    49. [49]

      Xue, W.; Sun, H.; Hu, X.; Bai, X.; Fan, J.; Liu, E. Chin. J. Catal. 2022, 43, 234. doi:10.1016/S1872-2067(20)63783-4

    50. [50]

      Wei, T.; Jin, Z.; Wang, Y.; Li, F.; Xu, L. Int. J. Hydrogen Energy 2021, 46, 14236. doi:10.1016/j.ijhydene.2021.01.159

    51. [51]

      Song, J.; Huang, S.; Su, Y. ACS Appl. Energy Mater. 2022, 5, 1414. doi:10.1021/acsaem.1c02365

    52. [52]

      Gao, L.; Weng, C.; Wang, Y.; Lv, X.; Ren, J.; Yuan, Z. J. Colloid Interface Sci. 2022, 606, 544. doi:10.1016/j.jcis.2021.08.041

    53. [53]

      Khudhair, E.; Khudhair, W.; Ammar, S.; Mahdi, A. Inorg. Chem. Commun. 2022, 142, 109639. doi:10.1016/j.inoche.2022.109639

    54. [54]

      Yu, T.; Lv, Z.; Wang, K.; Sun, K.; Liu, X.; Wang, G.; Jiang, L.; Xie, G. J. Power Sources 2019, 438, 227014. doi:10.1016/j.jpowsour.2019.227014

    55. [55]

      Xin, L.; Qin, L.; Zhang, T.; Li, X.; Kang, S. Inorg. Chem. Commun. 2024, 160, 111868. doi:10.1016/j.inoche.2023.111868

    56. [56]

      Tao, J.; Wang, M.; Liu, G.; Liu, Q.; Lu, L.; Wan, N.; Tang, H.; Qiao, G. J. Adv. Ceram. 2022, 11, 1117. doi:10.1007/s40145-022-0598-y

    57. [57]

      Shen, L.; Qi, S.; Jin, Y.; Li, C.; Cheng, J.; Wang, H.; Ma, H.; Li, L. New J. Chem. 2022, 46, 17469. doi:10.1039/D2NJ03338K

    58. [58]

      Du, H.; Guo, H.; Liu, Y.; Xie, X.; Liang, K.; Zhou, X.; Wang, X.; Xu, A. ACS Appl. Mater. Interfaces 2016, 8, 4023. doi:10.1021/acsami.5b11377

    59. [59]

      Uekert, T.; Kasap, H.; Reisner, E. J. Am. Chem. Soc. 2019, 141, 15201. doi:10.1021/jacs.9b06872

    60. [60]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016.

    61. [61]

      Tian, J.; Guan, C.; Liu, C.; Fan, J.; Zhu, Y.; Sun, T.; Liu, E. J. Colloid Interface Sci. 2024, 666, 481. doi:10.1016/j.jcis.2024.04.014

    62. [62]

      Xiang, X.; Zhang, L.; Luo, C.; Zhang, J.; Cheng, B.; Liang, G.; Zhang, Z.; Yu, J. Appl. Catal. B:Environ. 2024, 340, 123196. doi:10.1016/j.apcatb.2023.123196

    63. [63]

      Su, P.; Yu, J.; Deng, P.; Qu, D.; Liang, T.; Zhao, H.; Yang, N.; Zhang, D. F.; Ge, B.; Pu, X. J. Liaocheng Univ. (Nat. Sci. Ed.) 2024, 37, 123. doi:10.19728/j.issn1672-6634.2024010012

    64. [64]

      Wang, L.; Fei, X.; Zhang, L.; Yu, J.; Cheng, B.; Ma, Y. J. Mater. Sci. Technol. 2022, 112, doi:10.1016/j.jmst.2021.10.016

  • 加载中
    1. [1]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    2. [2]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    17. [17]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(0)
  • Abstract views(83)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return