Citation:
Yuchen Zhou, Huanmin Liu, Hongxing Li, Xinyu Song, Yonghua Tang, Peng Zhou. Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100067.
doi:
10.1016/j.actphy.2025.100067
-
The intrinsic surface atomic configuration of photocatalyst without unstable or difficult-to-generate atomic vacancies often limits the formation of effective interaction between metal single atom (MSA) cocatalyst and photocatalyst, thus inhibiting the stability and performance improvement of single-atom photocatalysts. In this study, we present a convenient and cost-effective photochemical oxygen reduction reaction (ORR) mechanism to prepare thermodynamically stable noble metal single-atom cocatalysts on TiO2 photocatalyst under mild condition (only consuming water and oxygen at 101325 Pa and 25 °C). The first-principles simulation firstly theoretically reveals that the intrinsic surface configuration of TiO2 can only produce unstable Pt―O2 structure. However, ORR occurring on TiO2 can not only provide one foreign oxygen to coordinate with Pt single atom (PtSA), but also induce one surface lattice oxygen to move toward PtSA, promoting the formation of one thermodynamically stable Pt―O4 species, demonstrated by the experimental synthesis of PtSA on TiO2 in oxygen atmosphere instead of inert atmosphere. The obtained stable PtSA-TiO2 photocatalysts exhibit a photocatalytic rate of 320.4 mmol·g-1·h-1 for the coproduction of high-purity hydrogen and value-added acetaldehyde with a selectivity of 99.65%, three-fold higher than the activity of Pt nanoparticles-loaded TiO2. This strategy is further extended to other noble metals, such as Rh and Pd.
-
-
-
[1]
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2(2018) 65, https://doi.org/10.1038/s41570-018-0010-1
-
[2]
H. Yan, H. Cheng, H. Yi, Y. Lin, T. Yao, C. L. Wang, J. J. Li, S. Q. Wei, J. L. Lu, J. Am. Chem. Soc. 137(2015) 10484, https://doi.org/10.1021/jacs.5b06485
-
[3]
Y. Zhang, J. Zhao, H. Wang, B. Xiao, W. Zhang, X. Zhao, T. Lv, M. Thangamuthu, J. Zhang, Y. Guo, J. Ma, L. Lin, J. Tang, R. Huang, Q. Liu, Nat. Commun. 13(2022) 58, https://doi.org/10.1038/s41467-022-29799-z
-
[4]
Q. W. Song, G. C. He, H. L. Fei, Acta Phys. -Chim. Sin. 39(2023) 2212038, https://doi.org/10.3866/PKU.WHXB202212038
-
[5]
R. J. Zhu, L. L. Kang, L. Li, X. L. Pan, H. Wang, Y. Su, G. Y. Li, H. K. Cheng, R. G. Li, X. Y. Liu, A. Q. Wang, Acta Phys. -Chim. Sin. 40(2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003
-
[6]
Z.-Y. Wu, P. Zhu, D. A. Cullen, Y. Hu, Q.-Q. Yan, S.-C. Shen, F.-Y. Chen, H. Yu, M. Shakouri, J. D. Arregui-Mena, A. Ziabari, A. R. Paterson, H.-W. Liang, H. Wang, Nat. Syn. 1(2022) 658, https://doi.org/10.1038/s44160-022-00129-x
-
[7]
J. Chang, W. Jing, X. Yong, A. Cao, J. Yu, H. Wu, C. Wan, S. Wang, G. I. N. Waterhouse, B. Yang, Z. Tang, X. Duan, S. Lu, Nat. Syn. (2024) 1, https://doi.org/10.1038/s44160-024-00607-4
-
[8]
X. Chen, S. Guan, J. Zhou, H. Shang, J. Zhang, F. Lv, H. Yu, H. Li, Z. Bian, Angew. Chem. Int. Ed. 62(2023) e202312734, https://doi.org/10.1002/anie.202312734
-
[9]
Z. H. Xue, D. Y. Luan, H. B. Zhang, X. W. Lou, Joule 6(2022) 92, https://doi.org/10.1016/j.joule.2021.12.011
-
[10]
X. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 28(2016) 2427, https://doi.org/10.1002/adma.201505281
-
[11]
H. B. Zhang, C. F. Shao, Z. L. Wang, J. F. Zhang, K. Dai, J. Mater. Sci. Technol. 195(2024) 146, https://doi.org/10.1016/j.jmst.2023.11.081
-
[12]
C. G. Chen, J. F. Zhang, H. L. Chu, L. X. Sun, G. Dawson, K. Dai, Chinese J. Catal. 63(2024) 81, https://doi.org/10.1016/s1872-2067(24)60072-0
-
[13]
H. B. Zhang, Z. L. Wang, J. F. Zhang, K. Dai, Chinese J. Catal. 49(2023) 42, https://doi.org/10.1016/s1872-2067(23)64444-4
-
[14]
J. Wang, Z. L. Wang, K. Dai, J. F. Zhang, J. Mater. Sci. Technol. 165(2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067
-
[15]
J. Wang, Z. L. Wang, J. F. Zhang, K. Dai, Chin. J. Struct. Chem. 42(2023) 100202, https://doi.org/10.1016/j.cjsc.2023.100202
-
[16]
S. Abbet, A. Sanchez, U. Heiz, W. D. Schneider, A. M. Ferrari, G. Pacchioni, N. Rösch, J. Am. Chem. Soc. 122(2000) 3453, https://doi.org/10.1021/ja9922476
-
[17]
A. W. Peters, Z. Li, O. K. Farha, J. T. Hupp, ACS Nano 9(2015) 8484, https://doi.org/10.1021/acsnano.5b03429
-
[18]
L. Lin, W. Zhou, R. Gao, S. Yao, X. Zhang, W. Xu, S. Zheng, Z. Jiang, Q. Yu, Y.-W. Li, C. Shi, X.-D. Wen, D. Ma, Nature 544(2017) 80, https://doi.org/10.1038/nature21672
-
[19]
P. Liu, Y. Zhao, R. Qin, S. Mo, G. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. Zang, B. Wu, G. Fu, N. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251
-
[20]
P. X. Liu, Y. Zhao, R. X. Qin, S. G. Mo, G. X. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. D. Zang, B. H. Wu, G. Fu, N. F. Zheng, Science 352(2016) 797, https://doi.org/10.1126/science.aaf5251
-
[21]
S. Kaushik, D. Wu, Z. Zhang, X. Xiao, C. Zhen, W. Wang, N. Y. Huang, M. Gu, Q. Xu, Adv. Mater. 36(2024) 2401163, https://doi.org/10.1002/adma.202401163
-
[22]
H. H. Wei, K. Huang, D. Wang, R. Y. Zhang, B. H. Ge, J. Y. Ma, B. Wen, S. Zhang, Q. Y. Li, M. Lei, C. Zhang, J. Irawan, L. M. Liu, H. Wu, Nat. Commun. 8(2017) 1490, https://doi.org/ARTN 149010.1038/s41467-017-01521-4
-
[23]
Y. Y. Cui, J. F. Zhang, H. L. Chu, L. X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2405016, https://doi.org/10.3866/pku.Whxb202405016
-
[24]
Y. Q. Bian, H. W. He, G. Dawson, J. F. Zhang, K. Dai, Sci. China-Mater. 67(2024) 514, https://doi.org/10.1007/s40843-023-2725-y
-
[25]
X. T. Xu, C. F. Shao, J. F. Zhang, Z. L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40(2024) 2309031, https://doi.org/10.3866/pku.Whxb202309031
-
[26]
W. Xu, Y. Wang, H. He, J. Yang, Y. Yang, J. Ma, C. Li, T. Zhu, Appl. Catal. B-Environ. 345(2024) 123684, https://doi.org/10.1016/j.apcatb.2023.123684
-
[27]
Y. J. Zhang, Z. F. Xu, G. Y. Li, X. J. Huang, W. C. Hao, Y. P. Bi, Angew. Chem. Int. Ed. 58(2019) 14229, https://doi.org/10.1002/anie.201907954
-
[28]
I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, E. Takeuchi, J. Mol. Catal. a-Chem. 161(2000) 205, https://doi.org/10.1016/s1381-1169(00)00362-9
-
[29]
Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan, Z. Yang, C. Zhao, J. Wang, C. Zhao, X. Wang, F. Zhou, Z. Zhuang, Y. Wu, Y. Li, Nat. Catal. 1(2018) 781, https://doi.org/10.1038/s41929-018-0146-x
-
[30]
C. Yuan, Y. Shen, C. Zhu, P. Zhu, F. Yang, J. Liu, C. An, ACS Sustainable Chem. Eng. 10(2022) 10311, https://doi.org/10.1021/acssuschemeng.2c02740
-
[31]
X. Tang, A. Yu, Q. Yang, H. Yuan, Z. Wang, J. Xie, L. Zhou, Y. Guo, D. Ma, S. Dai, J. Am. Chem. Soc. 146(2024) 3764, https://doi.org/10.1021/jacs.3c10659
-
[32]
A. S. Aricò, A. K. Shukla, H. Kim, S. Park, M. Min, V. Antonucci, Appl. Surf. Sci. 172(2001) 33, https://doi.org/10.1016/s0169-4332(00)00831-x
-
[33]
P. Zhou, Y. Chao, F. Lv, K. Wang, W. Zhang, J. Zhou, H. Chen, L. Wang, Y. Li, Q. Zhang, L. Gu, S. Guo, ACS Catal. 10(2020) 9109, https://doi.org/10.1021/acscatal.0c01192
-
[34]
P. Zhou, F. Lv, N. Li, Y. Zhang, Z. Mu, Y. Tang, J. Lai, Y. Chao, M. Luo, F. Lin, J. Zhou, D. Su, S. Guo, Nano Energy 56(2019) 127, https://doi.org/10.1016/j.nanoen.2018.11.033
-
[35]
Z. Yu, S. Chuang, J. Catal. 246(2007) 118, https://doi.org/10.1016/j.jcat.2006.11.022
-
[36]
A. Rismanchian, Y.-W. Chen, S. S. C. Chuang, Catal. Today 264(2016) 16, https://doi.org/10.1016/j.cattod.2015.07.038
-
[37]
J. J. Murcia, M. C. Hidalgo, J. A. Navío, J. Araña, J. M. Doña-Rodríguez, Appl. Catal. B-Environ. 142(2013) 205, https://doi.org/10.1016/j.apcatb.2013.05.022
-
[38]
K. Ding, A. Gulec, A. M. Johnson, N. M. Schweitzer, G. D. Stucky, L. D. Marks, P. C. Stair, Science 350(2015) 189, https://doi.org/10.1126/science.aac6368
-
[1]
-
-
-
[1]
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
-
[2]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[3]
Xuewei BA , Cheng CHENG , Huaikang ZHANG , Deqing ZHANG , Shuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7∶xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096
-
[4]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[5]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[6]
Heng Chen , Longhui Nie , Kai Xu , Yiqiong Yang , Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[9]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[10]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[13]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[14]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[15]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[16]
Jingyu Cai , Xiaoyu Miao , Yulai Zhao , Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[19]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[20]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(120)
- HTML views(23)