Citation: Jun Huang,  Pengfei Nie,  Yongchao Lu,  Jiayang Li,  Yiwen Wang,  Jianyun Liu. Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization[J]. Acta Physico-Chimica Sinica, ;2025, 41(7): 100066. doi: 10.1016/j.actphy.2025.100066 shu

Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization

  • Received Date: 18 December 2024
    Revised Date: 25 January 2025
    Accepted Date: 12 February 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (21776045) and the Natural Science Foundation of Shanghai (23ZR1401200).

  • Water hardness, predominantly due to the presence of Ca2+ and Mg2+ ions, presents significant challenges to water quality and public health. Addressing this issue necessitates effective water softening, which remains a pivotal task in water treatment. Capacitive deionization (CDI) has emerged as a promising technology for selective hardness removal, leveraging the low-cost, non-toxic and environmentally friendly selective electrode materials. Electrospun nanofibers, characterized by their three-dimensional porous structure, offer good flexibility, high specific surface area and excellent electrical conductivity. Their components can be tailored to meet the specific requirements. In this study, we incorporated mordenite (MOR), noted for its excellent ion-exchange capacity, into self-supporting nitrogen-doped carbon nanofibers (N-CNF) via electrospinning a blend of polyacrylonitrile (PAN), urea, and MOR, followed by carbonization. The resulting mordenite-loaded N-CNF composite (MOR@N-CNF) exhibited good flexibility and high conductivity. Scanning electron microscopy and X-ray diffraction analysis confirmed the presence and uniform distribution of MOR within the CNF matrix. X-ray photo spectroscopy demonstrated an increase in nitrogen content in MOR@N-CNF. In addition, the MOR@N-CNF composite displayed enhanced hydrophilicity and an increased specific surface area. When used as a self-supporting electrode, MOR@N-CNF exhibited the electrochemical specific capacitance of 162.7 F·g-1, with the specific capacitance retention of 60% in a CaCl2 solution. In an asymmetric CDI setup with activated carbon (AC) as the anode, the MOR@N-CNF cathode demonstrated outstanding adsorption capacities of 1501 and 1416 μmol·g-1 for Mg2+ and Ca2+, respectively. The composite electrode exhibited high selectivity for Mg2+ and Ca2+ over Na+ with a selectivity factor of 9.7 and 8.9, respectively. These attributes endow the material with exceptional ability to discriminate between divalent and monovalent ions, thereby enhancing its potential for hardness removal. Furthermore, the electrode retained 78% of its adsorption capacity after 40 cycles, demonstrating robust cyclic stability, and ensuring long-term CDI operation. This work provides a new strategy for preparing ion-exchange material-based composite electrodes and highlights the potential of CDI technology in hard water softening.
  • 加载中
    1. [1]

      Ayaz, M.; Namazi, M. A.; Din, M. A. U.; Ershath, M. I. M.; Mansour, A.; Aggoune, E.-H. M. Desalination 2022, 540, 116022. doi: 10.1016/j.desal.2022.116022

    2. [2]

      Egbueri, J. C. Environ. Sci. Pollut. Res. Int. 2023, 30 (22), 61626. doi: 10.1007/s11356-023-26396-5

    3. [3]

      Gitis, V.; Hankins, N. J. Water Process Eng. 2018, 25, 34. doi: 10.1016/j.jwpe.2018.06.003

    4. [4]

      Wu, Q.; Liang, D.; Lu, S.; Wang, H.; Xiang, Y.; Aurbach, D.; Avraham, E.; Cohen, I. Desalination 2022, 542, 116043. doi: 10.1016/j.desal.2022.116043

    5. [5]

      Alaei Shahmirzadi, M. A.; Hosseini, S. S.; Luo, J.; Ortiz, I. J. Environ. Manage. 2018, 215, 324. doi: 10.1016/j.jenvman.2018.03.040

    6. [6]

      Dou, W.; Zhou, Z.; Jiang, L. M.; Jiang, A.; Huang, R.; Tian, X.; Zhang, W.; Chen, D. J. Environ. Manage. 2017, 196, 518. doi: 10.1016/j.jenvman.2017.03.054

    7. [7]

      Afsari, M.; Shon, H. K.; Tijing, L. D. Adv. Colloid Interface Sci. 2021, 289, 102362. doi: 10.1016/j.cis.2021.102362

    8. [8]

      Xiong, Y.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2022, 38 (5), 2006037.

    9. [9]

      Wang, L.; Yu, F.; Ma, J. Acta Phys. Chim. Sin. 2017, 33 (7), 1338.

    10. [10]

      Sivasubramanian, P.; Kumar, M.; Kirankumar, V. S.; Samuel, M. S.; Dong, C.-D.; Chang, J.-H. Desalination 2023, 559, 116652. doi: 10.1016/j.desal.2023.116652

    11. [11]

      Zhao, X.; He, Z.; Li, M.; He, C.; Xu, Y.; Wang, Y.; Ma, J.; Yang, H. Y. Desalination 2025, 597, 118377. doi: 10.1016/j.desal.2024.118377

    12. [12]

      Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M. Prog. Mater Sci. 2013, 58 (8), 1388. doi: 10.1016/j.pmatsci.2013.03.005

    13. [13]

      Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Water Res. 2019, 150, 225. doi: 10.1016/j.watres.2018.11.064

    14. [14]

      Lu, M.; Liu, J. Y.; Cheng, J.; Wang, S. P.; Yang, J. M. Acta Phys. Chim. Sin. 2014, 30 (12), 2263.

    15. [15]

      Wang, D.; Zhang, Y.; Dong, H.; Chen, H.; SenGupta, A. Environ. Sci. Water Res. Technol. 2024, 10 (6), 1319. doi: 10.1039/d4ew00125g

    16. [16]

      Sharma, V.; Mishra, S.; raj, S. K.; Upadhyay, P.; Kulshrestha, V. Colloids Surf. A 2023, 676, 132064. doi: 10.1016/j.colsurfa.2023.132064

    17. [17]

      Li, J.; Corma, A.; Yu, J. Chem. Soc. Rev. 2015, 44 (20), 7112. doi: 10.1039/c5cs00023h

    18. [18]

      Gao, S.; Wang, S.; Sun, Y.; Wang, J.; Hu, P.; Shang, J.; Ma, Z.; Liang, Y. Renewable Energy 2023, 215, 119033. doi: 10.1016/j.renene.2023.119033

    19. [19]

      Nakamoto, K.; Ohshiro, M.; Kobayashi, T. J. Environ. Chem. Eng. 2017, 5 (1), 513. doi: 10.1016/j.jece.2016.12.031

    20. [20]

      Liu, Y.; Ma, W.; Cheng, Z.; Xu, J.; Wang, R.; Gang, X. Desalination 2013, 326, 109. doi: 10.1016/j.desal.2013.07.022

    21. [21]

      Kim, C.; Lee, J.; Kim, S.; Yoon, J. Desalin. Water Treat. 2016, 57 (51), 24682. doi: 10.1080/19443994.2016.1152638

    22. [22]

      Nie, P.; Hu, B.; Shang, X.; Xie, Z.; Huang, M.; Liu, J. Sep. Purif. Technol. 2020, 250, 117240. doi: 10.1016/j.seppur.2020.117240

    23. [23]

      Liu, J.; Wang, S.; Yang, J.; Liao, J.; Lu, M.; Pan, H.; An, L. Desalination 2014, 344, 446. doi: 10.1016/j.desal.2014.04.015

    24. [24]

      Pan, H.; Yang, J.; Wang, S.; Xiong, Z.; Cai, W.; Liu, J. J. Mater. Chem. A 2015, 3 (26), 13827. doi: 10.1039/c5ta02954f

    25. [25]

      Wang, R.; Hu, D.; Du, P.; Weng, X.; Tang, H.; Zhang, R.; Song, W.; Lin, S.; Huang, K.; Zhang, R.; et al. Front. Chem. 2021, 9, 812375. doi: 10.3389/fchem.2021.812375

    26. [26]

      Xu, Z.; Ye, J.; Pan, Y.; Liu, K.; Liu, X.; Shui, J. Energy Technol. 2022, 10 (4), 2101024. doi: 10.1002/ente.202101024

    27. [27]

      Zhang, H.; Xie, Z.; Wang, Y.; Shang, X.; Nie, P.; Liu, J. RSC Adv. 2017, 7 (87), 55224. doi: 10.1039/c7ra12001j

    28. [28]

      Nie, P.; Wang, S.; Shang, X.; Hu, B.; Huang, M.; Yang, J.; Liu, J. Desalination 2021, 520, 115340. doi: 10.1016/j.desal.2021.115340

    29. [29]

      Luo, M.; Chen, J.; Li, Q.; Wang, Y. Industrial & Engineering Chemistry Research 2023, 62 (22), 8744. doi: 10.1021/acs.iecr.3c00807

    30. [30]

      Zhou, Q.; Lv, G.; Li, H.; Hu, S.; Liu, H.; Li, L.; He, L.; Li, H.; Hu, P.; Wang, J. J. Power Sources 2024, 623, 235509. doi: 10.1016/j.jpowsour.2024.235509

    31. [31]

      Lankapati, H. M.; Lathiya, D. R.; Choudhary, L.; Dalai, A. K.; Maheria, K. C. ChemistrySelect 2020, 5 (3), 1193. doi: 10.1002/slct.201903715

    32. [32]

      Kalijadis, A.; Gavrilov, N.; Jokić, B.; Gilić, M.; Krstić, A.; Pašti, I.; Babić, B. Mater. Chem. Phys. 2020, 239, 122120. doi: 10.1016/j.matchemphys.2019.122120

    33. [33]

      Ajravat, K.; Rajput, S.; Brar, L. K. Diamond Relat. Mater. 2022, 129, 109373. doi: 10.1016/j.diamond.2022.109373

    34. [34]

      Tan, B.; Li, H.; Yuan, Q.; An, F. Mater. Today Commun. 2024, 41, 110459. doi: 10.1016/j.mtcomm.2024.110459

    35. [35]

      Zheng, Y.; Chen, K.; Jiang, K.; Zhang, F.; Zhu, G.; Xu, H. J. Energy Storage. 2022, 56, 105995. doi: 10.1016/j.est.2022.105995

    36. [36]

      Abbas, Q.; Mirzaeian, M.; Ogwu, A. A.; Mazur, M.; Gibson, D. Int. J. Hydrogen Energy 2020, 45 (25), 13586. doi: 10.1016/j.ijhydene.2018.04.099

    37. [37]

      Hou, C.-H.; Huang, C.-Y. Desalination 2013, 314, 124. doi: 10.1016/j.desal.2012.12.029

    38. [38]

      Yoon, H.; Lee, J.; Kim, S.-R.; Kang, J.; Kim, S.; Kim, C.; Yoon, J. Desalination 2016, 392, 46. doi: 10.1016/j.desal.2016.03.019

    39. [39]

      Leong, Z. Y.; Zhang, J.; Vafakhah, S.; Ding, M.; Guo, L.; Yang, H. Y. Desalination 2021, 520, 115374. doi: 10.1016/j.desal.2021.115374

    40. [40]

      Xu, Y.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2020, 12 (37), 41437. doi: 10.1021/acsami.0c11233

    41. [41]

      Xu, Y.; Xiang, S.; Zhou, H.; Wang, G.; Zhang, H.; Zhao, H. ACS Appl. Mater Interfaces 2021, 13 (32), 38886. doi: 10.1021/acsami.1c09996

    42. [42]

      Gao, F.; Du, X.; Hao, X.; Ma, X.; Chang, L.; Han, N.; Guan, G.; Tang, K. Chem. Eng. J. 2020, 380, 122413. doi: 10.1016/j.cej.2019.122413

    43. [43]

      Niu, Y.; Meng, K.; Ming, S.; Chen, H.; Yu, X.; Rong, J.; Li, X. Diamond Relat. Mater. 2023, 136, 109925. doi: 10.1016/j.diamond.2023.109925

    44. [44]

      Wang, B.; Koike, N.; Iyoki, K.; Chaikittisilp, W.; Wang, Y.; Wakihara, T.; Okubo, T. Phys. Chem. Chem. Phys. 2019, 21 (7), 4015. doi: 10.1039/c8cp06975a

    45. [45]

      Huyskens, C.; Helsen, J.; de Haan, A. B. Desalination 2013, 328, 8. doi: 10.1016/j.desal.2013.07.002

  • 加载中
    1. [1]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    10. [10]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    17. [17]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    20. [20]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

Metrics
  • PDF Downloads(0)
  • Abstract views(22)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return