Citation: Peng Li,  Yuanying Cui,  Zhongliao Wang,  Graham Dawson,  Chunfeng Shao,  Kai Dai. Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100065. doi: 10.1016/j.actphy.2025.100065 shu

Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction

  • Received Date: 14 January 2025
    Revised Date: 13 February 2025
    Accepted Date: 13 February 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (22278169), the Excellent Scientific Research and Innovation Team of Education Department of Anhui Province (2022AH010028) and Anhui Provincial Quality Engineering Project (2022sx134).

  • Improving the separation efficiency of photogenerated charge carriers to significantly enhance the redox capability of photocatalysts remains a major challenge in the field of photocatalysis. To address this issue, this study successfully synthesized a CeO2/Bi19Br3S27 S-scheme heterojunction catalyst using a hydrothermal method, aiming to enhance the photocatalytic performance of the catalyst. The synthesis of the CeO2/Bi19Br3S27 composite not only improved the separation efficiency of photogenerated charge carriers but also endowed the catalyst with stronger redox capabilities and greater driving force, significantly boosting its photocatalytic performance. Experimental results showed that the CO production rate of the CeO2/Bi19Br3S27 composite catalyst reached 13.5 μmol g-1 h-1, which is 5.19 times higher than that of the pure Bi19Br3S27 catalyst and 2.81 times higher than that of the pure CeO2 catalyst. This significant enhancement indicates that the CeO2/Bi19Br3S27 composite catalyst exhibited stronger catalytic performance in CO generation reactions. Furthermore, CeO2/Bi19Br3S27 catalyst achieved a CH4 production rate of 4.3 μmol g-1 h-1, which is 3.1 times higher than that of the CeO2 catalyst and 2.7 times higher than that of the Bi19Br3S27 catalyst, further confirming its superior performance in CH4 generation reactions. These results demonstrate that the CeO2/Bi19Br3S27 composite catalyst not only shows significant improvements in CO and CH4 production rates but also exhibits excellent photocatalytic performance, highlighting its potential application in the field of photocatalysis. This study provides new insights into improving the separation efficiency of photogenerated charges and offers valuable references for the future development of highly efficient photocatalytic materials. By constructing the S-scheme heterojunction structure, the recombination of photogenerated charge carriers can be effectively suppressed, thereby enhancing the efficiency of photocatalytic reactions and providing a new solution for sustainable energy utilization.
  • 加载中
    1. [1]

      Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat Commun. 2024, 15, 1313. doi:10.1038/s41467-024-45604-5

    2. [2]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 34, 2315426. doi:10.1002/adfm.202315426

    3. [3]

      Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi:10.1016/j.jmst.2023.03.054

    4. [4]

      Zhu, C.-Z.; Tian, Q.-H.; Wang, B.-H.; Xu, M.-T.; Jin, Q.-J.; Zhang, Z.-Y.; Le, S.-K.; Wu, Y.; Wei, Y.-C.; Xu, H.-T. Rare Met. 2024, 43, 5473. doi:10.1007/s12598-024-02746-1

    5. [5]

      Xu, F.; He, Y.; Zhang, J.; Liang, G.; Liu, C.; Yu, J. Angew. Chem. Int. Ed. 2025, 64, e202414672. doi:10.1002/anie.202414672

    6. [6]

      Zhao, X.; Li, J.; Kong, X.; Li, C.; Lin, B.; Dong, F.; Yang, G.; Shao, G.; Xue, C. Small. 2022, 18, 2204154. doi:10.1002/smll.202204154

    7. [7]

      Zhang, H.; Shao, C.; Wang, Z.; Zhang, J.; Dai, K. J. Mater. Sci. Technol. 2024, 195, 146. doi:10.1016/j.jmst.2023.11.081

    8. [8]

      Wang, J.; Wang, Z.; Zhang, J.; Mamatkulov, S.; Dai, K.; Ruzimuradov, O.; Low, J. ACS Nano 2024, 18, 20740. doi:10.1021/acsnano.4c06954

    9. [9]

      Ding, S.; Duan, J.; Chen, S. EcoEnergy. 2024, 2, 45. doi:10.1002/ece2.26

    10. [10]

      He, Y.; Hu, P.; Zhang, J.; Liang, G.; Yu, J.; Xu, F. ACS Catal. 2024, 14, 1951. doi:10.1021/acscatal.4c00026

    11. [11]

      Wang, X.; Liu, B.; Zhang, Y.; Butburee, T.; Ostrikov, K.; Wang, S.; Huang, W. EcoEnergy 2023, 1, 108. doi:10.1002/ece2.11

    12. [12]

      Ding, H.; Shen, R.; Huang, K.; Huang, C.; Liang, G.; Zhang, P.; Li, X. Adv. Funct. Mater.. 2024, 34, 2400065. doi:10.1002/adfm.202400065

    13. [13]

      Zhang, B.; Cao, X.; Suo, C.; Cui, J.; Duan, X.; Guo, S.; Zhang, X.-M. Sci. China. Mater. 2024, 67, 3151. doi:10.1007/s40843-024-3021-1

    14. [14]

      Zhou, S.; Wen D.; Zhong W.; Zhang J.; Su Y.; Meng, A. J. Mater. Sci. Technol. 2024, 199, 53. doi:10.1016/j.jmst.2024.02.048

    15. [15]

      Sun, P.; Zhang, J.; Song, Y.; Mo, Z.; Chen, Z.; Xu, H. Acta Phys. -Chim. Sin. 2024, 40, 2311001. doi:10.3866/PKU.WHXB202311001

    16. [16]

      Rabiee, H.; Yan, P.; Wang, H.; Zhu, Z.; Ge, L. EcoEnergy 2024, 2, 3. doi:10.1002/ece2.23

    17. [17]

      Yang, H.; Wang, Z.; Zhang, J.; Dai, K.; Low, J. J. Materiomics 2025, 11, 100996. doi:10.1016/j.jmat.2024.100996

    18. [18]

      Verma, P.; Rahimi, F. A.; Samanta, D.; Kundu, A.; Dasgupta, J.; Maji, T. K. Angew. Chem. Int. Ed. 2022, 61, e202116094. doi:10.1002/anie.202116094

    19. [19]

      Xiao, Y.; Yao, C.; Su, C.; Liu, B. EcoEnergy. 2023, 1, 60. doi:10.1002/ece2.6

    20. [20]

      Chen, C.; Zhang, J.; Chu, H.; Sun, L.; Dawson, G.; Dai, K. Chin. J. Catal. 2024, 63, 81. doi:10.1016/s1872-2067(24)60072-0

    21. [21]

      Meng A.; Yang P.; Fu D.; Peng W.; Zhong W.; Su, Y. J. Colloid Interface Sci. 2025, 684, 148. doi:10.1016/j.jcis.2024.12.241

    22. [22]

      Cui, Y.; Zhang, J.; Chu, H.; Sun, L.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2405016. doi:10.3866/PKU.WHXB202405016

    23. [23]

      Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin J Catal. 2023, 52, 32. doi:10.1016/s1872-2067(23)64502-4

    24. [24]

      Wu, R.; Gao, S.; Jones, C.; Sun, M.; Guo, M.; Tai, R.; Chen, S.; Wang, Q. Adv. Funct. Mater. 2024, 34, 2314051. doi:10.1002/adfm.202314051

    25. [25]

      Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi:10.1016/j.jmst.2023.05.030

    26. [26]

      Wen, D.; Zhao, J.; You, Y.; Huang, L.; Zhu, H.; Zhang, C.; Bu, D.; Huang, S. Energ. Environ. Sci. 2024, 17, 6245. doi:10.1039/d4ee02356k

    27. [27]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi:10.3866/PKU.WHXB202309031

    28. [28]

      Zhao, Z.; Li, X.; Dai, K.; Zhang, J.; Dawson, G. J. Mater. Sci. Technol. 2022, 117, 109. doi:10.1016/j.jmst.2021.11.046

    29. [29]

      Bian, Y.; He, H.; Dawson, G.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 514. doi:10.1007/s40843-023-2725-y

    30. [30]

      Song, P.; Du, J.; Ma, X.; Shi, Y.; Fang, X.; Liu, D.; Wei, S.; Liu, Z.; Cao, Y.; Lin, B.; et al. EcoEnergy 2023, 1, 197. doi:10.1002/ece2.8

    31. [31]

      Li, S.; Yan, R.; Cai, M.; Jiang, W.; Zhang, M.; Li, X. J. Mater. Sci. Technol. 2023, 164, 59. doi:10.1016/j.jmst.2023.05.009

    32. [32]

      Li, S.; Cai, M.; Liu, Y.; Wang, C.; Lv, K.; Chen, X. Chin J Catal. 2022, 43, 2652. doi:10.1016/s1872-2067(22)64106-8

    33. [33]

      Yu, W.; Bie, C. Acta Phys. -Chim. Sin. 2024, 40, 2307022. doi:10.3866/PKU.WHXB202307022

    34. [34]

      Yang, T.; Wang, J.; Wang, Z.; Zhang, J.; Dai, K. Chin. J. Catal. 2024, 58, 157. doi:10.1016/s1872-2067(23)64607-8

    35. [35]

      Cai, J.; Liu, B.; Zhang, S.; Wang, L.; Wu, Z.; Zhang, J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi:10.1016/j.jmst.2024.02.012

    36. [36]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    37. [37]

      Dong, Y.; Wang, B.; Xie, D.; Lv, J.; Cui, J.; Bao, Z.; Xu, G.; Shen, W. EcoEnergy 2024, 2, 489. doi:10.1002/ece2.54

    38. [38]

      Xu, Q.-J.; Jiang, J.-W.; Wang, X.-F.; Duan, L.-Y.; Guo, H. Rare Met. 2023, 42, 1888. doi:10.1007/s12598-022-02244-2

    39. [39]

      Xiao, Z.; Do, H.; Yusuf, A.; Jia, H.; Ma, H.; Jiang, S.; Li, J.; Sun, Y.; Wang, C.; Ren, Y.; et al. J. Hazard. Mater. 2024, 462, 132744. doi:10.1016/j.jhazmat.2023.132744

    40. [40]

      Wang, Y.; Bai, X.; Wang, F.; Kang, S.; Yin, C.; Li, X. J. Hazard. Mater. 2019, 372, 69. doi:10.1016/j.jhazmat.2017.10.007

    41. [41]

      Cao, S.; Zhong, B.; Bie, C.; Cheng, B.; Xu, F. Acta Phys. -Chim. Sin. 2024, 40, 2307016. doi:10.3866/PKU.WHXB202307016

    42. [42]

      Wang, J.; Niu, X.; Hao, Q.; Zhang, K.; Shi, X.; Yang, L.; Yang, H. Y.; Ye, J.; Wu, Y. Chem. Eng. J. 2024, 493, 152534. doi:10.1016/j.cej.2024.152534

    43. [43]

      Doustkhah, E.; Hassandoost, R.; Yousef Tizhoosh, N.; Esmat, M.; Guselnikova, O.; Hussein, N. A. M.; Khataee, A. Ultrason. Sonochem. 2023, 92, 106245. doi:10.1016/j.ultsonch.2022.106245

    44. [44]

      Choudhary, S.; Sahu, K.; Bisht, A.; Singhal, R.; Mohapatra, S. Appl. Surf. Sci. 2020, 503, 144102. doi:10.1016/j.apsusc.2019.144102

    45. [45]

      Zhang, S.; Han, D.; Wang, Z.; Gu, F. Small 2024, 20, 2309656. doi:10.1002/smll.202309656

    46. [46]

      Zou, W.; Shao, Y.; Pu, Y.; Luo, Y.; Sun, J.; Ma, K.; Tang, C.; Gao, F.; Dong, L. Appl. Catal. B:Envir. 2017, 218, 51. doi:10.1016/j.apcatb.2017.03.085

    47. [47]

      Guan, X.; Zhang, X.; Zhang, C.; Li, R.; Liu, J.; Wang, Y.; Wang, Y.; Fan, C.; Li, Z. Solar RRL. 2022, 6, 2200346. doi:10.1002/solr.202200346

    48. [48]

      Zhu, L.; Li, H.; Xia, P.; Liu, Z.; Xiong, D. ACS Appl. Mater. Inter. 2018, 10, 39679. doi:10.1021/acsami.8b13782

    49. [49]

      He, H.; Wang, Z.; Dai, K.; Li, S.; Zhang, J. Chin. J. Catal. 2023, 48, 267. doi:10.1016/s1872-2067(23)64420-1

    50. [50]

      Chen, L.; Wang, J.; Li, X.; Zhao, C.; Hu, X.; Wu, Y.; He, Y. Inorg. Chem. Front. 2022, 9, 2714. doi:10.1039/d2qi00175f

    51. [51]

      Wang, B.; Zhang, W.; Liu, G.; Chen, H.; Weng, Y. X.; Li, H.; Chu, P. K.; Xia, J. Adv. Funct. Mater. 2022, 32, 2202885. doi:10.1002/adfm.202202885

    52. [52]

      Zhao, Z.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K.; Liang, C. Adv. Funct. Mater. 2023, 33, 2214470. doi:10.1002/adfm.202214470

    53. [53]

      Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat Commun. 2024, 15, 3212. doi:10.1038/s41467-024-47624-7

    54. [54]

      He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172

    55. [55]

      Cheng, C.; Zhang, J.; Zhu, B.; Liang, G.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi:10.1002/anie.202218688

    56. [56]

      Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/s1872-2067(23)64514-0

    57. [57]

      Ding, G.; Wang, Z.; Zhang, J.; Wang, P.; Chen, L.; Liao, G. EcoEnergy 2024, 2, 22. doi:10.1002/ece2.25

    58. [58]

      Yang, C.; Li, Q.; Xia, Y.; Lv, K.; Li, M. Appl. Surf. Sci. 2019, 464, 388. doi:10.1016/j.apsusc.2018.09.099

    59. [59]

      Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6

    60. [60]

      Zhou, Z.; Yao, H.; Wu, Y.; Li, T.; Tsubaki, N.; Jin, Z. Acta Phys. -Chim. Sin. 2024, 40, 2312010. doi:10.3866/PKU.WHXB202312010

    61. [61]

      Qiu, J.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J.; Wang, L.; Yu, J. Adv. Mater. 2024, 36, 2400288. doi:10.1002/adma.202400288

    62. [62]

      Huang, Y.; Dai, K.; Zhang, J.; Dawson, G. Chin J. Catal. 2022, 43, 2539. doi:10.1016/s1872-2067(21)64024-x

    63. [63]

      Meng, K.; Zhang, J.; Cheng, B.; Ren, X.; Xia, Z.; Xu, F.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2406460. doi:10.1002/adma.202406460

    64. [64]

      Cheng, K.; Hua, J.; Zhang, J.; Shao, C.; Dawson, G.; Liu, Q.; Yin, D.; Dai, K. ACS Appl. Nano Mater. 2024, 7, 7978. doi:10.1021/acsanm.4c00576

    65. [65]

      Liu, L.; Wang, Z.; Zhang, J.; Ruzimuradov, O.; Dai, K.; Low, J. Adv. Mater. 2023, 35, 2300643. doi:10.1002/adma.202300643

    66. [66]

      Huang, K.; Liang, G.; Sun, S.; Hu, H.; Peng, X.; Shen, R.; Li, X. J. Mater. Sci. Technol. 2024, 193, 98. doi:10.1016/j.jmst.2024.01.034

    67. [67]

      Nie, C.; Wang, X.; Lu, P.; Zhu, Y.; Li, X.; Tang, H. J. Mater. Sci. Technol. 2024, 169, 182. doi:10.1016/j.jmst.2023.06.011

    68. [68]

      Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi:10.3866/PKU.WHXB202212026

    69. [69]

      Huang, K.; Chen, D.; Zhang, X.; Shen, R.; Zhang, P.; Xu, D.; Li, X. Acta Phys. -Chim. Sin. 2024, 40, 2407020. doi:10.3866/PKU.WHXB202407020

  • 加载中
    1. [1]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    2. [2]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    3. [3]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    6. [6]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    7. [7]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    8. [8]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    9. [9]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    10. [10]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    15. [15]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1)
  • Abstract views(73)
  • HTML views(15)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return