Citation:
Yi Yang, Xin Zhou, Miaoli Gu, Bei Cheng, Zhen Wu, Jianjun Zhang. Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100064.
doi:
10.1016/j.actphy.2025.100064
-
Photocatalytic hydrogen peroxide (H2O2) production is a crucial process for clean energy conversion, involving the reduction of O2 through two electrons. However, this process is often hampered by the sluggish water oxidation involving the photogenerated holes. To address this challenge, we have constructed a dual-functional S-scheme ZnO/CdIn2S4 heterojunction systerm coupling the H2O2 generation with a value-added benzylamine (BA) oxidation reaction. In this dual-functional photocatalytic system, photogenerated electrons in CdIn2S4 efficiently reduce O2 to produce H2O2, while photogenerated holes in ZnO selectively oxidize BA to N-benzylidenebenzylamine. Leveraging the advantages of the S-scheme heterojunction, the optimized ZnO/CdIn2S4 photocatalyst displays an enhanced H2O2 production rate (386 μmol·L-1·h-1) and BA oxidation fraction (81%) than pure ZnO or CdIn2S4. Femtosecond transient absorption (fs-TA) spectroscopy confirm the ultrafast S-scheme electron transfer from the ZnO conduction band (CB) to the CdIn2S4 valence band (VB) upon photoexcitation of the ZnO/CdIn2S4 composite. Besides, timely depletion of VB holes in ZnO and CB electrons in CdIn2S4 can accelerate the interfacial electron transfer in the ZnO/CdIn2S4 S-scheme heterojunction. The innovative design of the ZnO/CdIn2S4 S-scheme photocatalyst provides new insights for developing efficient dual-functional heterojunction photocatalytic systems and introduces a novel method for studying S-scheme heterojunctions using fs-TA spectroscopy.
-
-
-
[1]
Das, P.; Roeser, J.; Thomas, A. Angew. Chem. Int. Ed. 2023, 62, e202304349. doi:10.1002/anie.202304349
-
[2]
Shiraishi, Y.; Matsumoto, M.; Ichikawa, S.; Tanaka, S.; Hirai, T. J. Am. Chem. Soc. 2021, 143, 12590. doi:10.1021/jacs.1c04622
-
[3]
Toan, H. P.; Nguyen, D.-V.; Phan, P. D. M.; Anh, N. H.; Ly, P. P.; Pham, M.-T.; Hur, S. H.; Ung, T. D. T.; Bich, D. D.; Nguyen, M. C.; et al. ACS Appl. Mater. Interfaces 2024, 16, 29421. doi:10.1021/acsami.4c04387
-
[4]
Sareshkeh, A. T.; Rasoulifard, M. H.; Abdi, A.; Dorraji, M. S. S.; Hosseini, S. F. J. Alloys Compd. 2024, 1005, 175822. doi:10.1016/j.jallcom.2024.175822
-
[5]
Wu, Y.; Cheng, C.; Qi, K.; Cheng, B.; Zhang, J.; Yu, J.; Zhang, L. Acta Phys. -Chim. Sin. 2024, 40, 2406027. doi:10.3866/PKU.WHXB202406027
-
[6]
Pradhan, S. K.; Bariki, R.; Kumar, A.; Nayak, S. K.; Panda, S.; Das, N. K.; Mishra, B. G. Surfaces and Interfaces 2024, 52, 104824. doi:10.1016/j.surfin.2024.104824
-
[7]
Zhu, B.; Liu, J.; Sun, J.; Xie, F.; Tan, H.; Cheng, B.; Zhang, J. J. Mater. Sci. Technol. 2023, 162, 90. doi:10.1016/j.jmst.2023.03.054
-
[8]
Jiang, Z.; Long, Q.; Cheng, B.; He, R.; Wang, L. J. Mater. Sci. Technol. 2023, 162, 1. doi:10.1016/j.jmst.2023.03.045
-
[9]
Moon, G.-h.; Fujitsuka, M.; Kim, S.; Majima, T.; Wang, X.; Choi, W. ACS Catal. 2017, 7, 2886. doi:10.1021/acscatal.6b03334
-
[10]
Yin, X.; Shi, H.; Wang, Y.; Wang, X.; Wang, P.; Yu, H. Acta Phys. Chim. Sin. 2024, 40, 2312007. doi:10.3866/PKU.WHXB202312007
-
[11]
Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Nat. Commun. 2024, 15, 3212. doi:10.1038/s41467-024-47624-7
-
[12]
Cheng, C.; Yu, J.; Xu, D.; Wang, L.; Liang, G.; Zhang, L.; Jaroniec, M. Nat. Commun. 2024, 15, 1313. doi:10.1038/s41467-024-45604-5
-
[13]
Gu, M.; Yang, Y.; Cheng, B.; Zhang, L.; Xiao, P.; Chen, T. Chin. J. Catal. 2024, 59, 185. doi:10.1016/s1872-2067(23)64610-8
-
[14]
Liu, X.; Dai, D.; Cui, Z.; Zhang, Q.; Gong, X.; Wang, Z.; Liu, Y.; Zheng, Z.; Cheng, H.; Dai, Y.; Huang, B.; Wang, P. ACS Catal. 2022, 12, 12386. doi:10.1021/acscatal.2c03550
-
[15]
Malefane, M. E.; Managa, M.; Nkambule, T. T. I.; Kuvarega, A. T. ChemSusChem 2024, e202401471. doi:10.1002/cssc.202401471
-
[16]
Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem. Int. Ed. 2014, 53, 13454. doi:10.1002/anie.201407938
-
[17]
He, B.; Wang, Z.; Xiao, P.; Chen, T.; Yu, J.; Zhang, L. Adv. Mater. 2022, 34, 2203225. doi:10.1002/adma.202203225
-
[18]
Liu, B.; Cai, J.; Zhang, J.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 51, 204. doi:10.1016/S1872-2067(23)64466-3
-
[19]
Liu, G.; Chen, R.; Xia, B.; Wu, Z.; Liu, S.; Talebian-Kiakalaieh, A.; Ran, J. Chin. J. Catal. 2024, 61, 97. doi:10.1016/s1872-2067(24)60014-8
-
[20]
Kalyakin, A.; Volkov, A.; Vylkov, A.; Gorbova, E.; Medvedev, D.; Demin, A.; Tsiakaras, P. J. Electroanal. Chem. 2018, 808, 133. doi:10.1016/j.jelechem.2017.12.001
-
[21]
He, B.; Zhang, S.; Zhang, Y.; Li, G.; Zhang, B.; Ma, W.; Rao, B.; Song, R.; Zhang, L.; Zhang, Y.; He, G. J. Am. Chem. Soc. 2022, 144, 4422. doi:10.1021/jacs.1c11577
-
[22]
Wang, P.; Li, X.; Fan, S.; Yin, Z.; Wang, L.; Tadé, M. O.; Liu, S. Nano Energy 2021, 83, 105831. doi:10.1016/j.nanoen.2021.105831
-
[23]
He, B.; Xiao, P.; Wan, S.; Zhang, J.; Chen, T.; Zhang, L.; Yu, J. Angew. Chem. Int. Ed. 2023, 62, e202313172. doi:10.1002/anie.202313172
-
[24]
Tian, Z.; Han, C.; Zhao, Y.; Dai, W.; Lian, X.; Wang, Y.; Zheng, Y.; Shi, Y.; Pan, X.; Huang, Z.; et al. Nat. Commun. 2021, 12, 2039. doi:10.1038/s41467-021-22394-8
-
[25]
Bariki, R.; Pradhan, S. K.; Panda, S.; Nayak, S. K.; Pati, A. R.; Mishra, B. G. Langmuir 2023, 39, 7707. doi:10.1021/acs.langmuir.3c00519
-
[26]
Yang, Y.; Liu, J.; Gu, M.; Cheng, B.; Wang, L.; Yu, J. Appl. Catal. B-Environ. 2023, 333, 122780. doi:10.1016/j.apcatb.2023.122780
-
[27]
Sahoo, S. K.; Acharya, L.; Biswal, L.; Priyadarshini, P.; Parida, K. Inorg. Chem. Front. 2024, 11, 4914. doi:10.1039/d4qi00950a
-
[28]
Sun, T.; Li, C.; Bao, Y.; Fan, J.; Liu, E. Acta Phys. Chim. Sin. 2023, 39, 2212009. doi:10.3866/PKU.WHXB202212009
-
[29]
Wu, X.; Chen, G.; Wang, J.; Li, J.; Wang, G. Acta Phys. Chim. Sin. 2023, 39, 2212016. doi:10.3866/PKU.WHXB202212016
-
[30]
He, R.; Xu, D.; Li, X. J. Mater. Sci. Technol. 2023, 138, 256. doi:10.1016/j.jmst.2022.09.002
-
[31]
Mansingh, S.; Das, K. K.; Priyadarshini, N.; Sahoo, D. P.; Prusty, D.; Sahu, J.; Mohanty, U. A.; Parida, K. Energy Fuels 2023, 37, 9873. doi:10.1021/acs.energyfuels.3c00717
-
[32]
Zhang, X.; Yu, J.; Macyk, W.; Wageh, S.; Al-Ghamdi, A. A.; Wang, L. Adv. Sustain. Syst. 2023, 7, 2200113. doi:10.1002/adsu.202200113
-
[33]
Ma, Y.; Wang, S.; Zhang, Y.; Cheng, B.; Zhang, L. J. Materiomics 2025, 11, 100978. doi:10.1016/j.jmat.2024.100978
-
[34]
Oyegbeda, O.; Akpotu, S. O.; Moodley, B. Environ. Res. 2025, 266, 120501. doi:10.1016/j.envres.2024.120501
-
[35]
Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi:10.1002/adma.202310600
-
[36]
Wu, Y.; Yang, Y.; Gu, M.; Bie, C.; Tan, H.; Cheng, B.; Xu, J. Chin. J. Catal. 2023, 53, 123. doi:10.1016/S1872-2067(23)64514-0
-
[37]
Jiang, Z.; Cheng, B.; Zhang, L.; Zhang, Z.; Bie, C. Chin. J. Catal. 2023, 52, 32. doi:10.1016/S1872-2067(23)64502-4
-
[38]
Jiang, Z.; Cheng, B.; Zhang, Y.; Wageh, S.; Al-Ghamdi, A. A.; Yu, J.; Wang, L. J. Mater. Sci. Technol. 2022, 124, 193. doi:10.1016/j.jmst.2022.01.029
-
[39]
Ghoreishian, S. M.; Ranjith, K. S.; Park, B.; Hwang, S.-K.; Hosseini, R.; Behjatmanesh-Ardakani, R.; Pourmortazavi, S. M.; Lee, H. U.; Son, B.; Mirsadeghi, S.; et al. Chem. Eng. J. 2021, 419, 129530. doi:10.1016/j.cej.2021.129530
-
[40]
Sayed, M.; Xu, F.; Kuang, P.; Low, J.; Wang, S.; Zhang, L.; Yu, J. Nat. Commun. 2021, 12, 4936. doi:10.1038/s41467-021-25007-6
-
[41]
Li, K.; Mei, J.; Li, J.; Liu, Y.; Wang, G.; Hu, D.; Yan, S.; Wang, K. Sci. China Mater. 2024, 67, 484. doi:10.1007/s40843-023-2717-0
-
[42]
Xu, Q.; Wageh, S.; Al-Ghamdi, A. A.; Li, X. J. Mater. Sci. Technol. 2022, 124, 171. doi:10.1016/j.jmst.2022.02.016
-
[43]
Yang, Y.; Cheng, B.; Yu, J.; Wang, L.; Ho, W. Nano Res. 2023, 16, 4506. doi:10.1007/s12274-021-3733-0
-
[44]
Sun, J.; Liu, H.; Wang, S.; Zhang, Y.; Bie, C.; Zhang, L. J. Materiomics 2025, 11, 100975. doi:10.1016/j.jmat.2024.100975
-
[45]
Tahir, M.; Tahir, B. J. Mater. Sci. Technol. 2022, 106, 195. doi:10.1016/j.jmst.2021.08.019
-
[46]
Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016
-
[47]
Zhang, J.; Zhang, L.; Wang, W.; Yu, J. J. Phys. Chem. Lett. 2022, 13, 8462. doi:10.1021/acs.jpclett.2c02125
-
[48]
Ghalehsefid, E. S.; Jahani, Z. G.; Aliabadi, A.; Ghodrati, M.; Khamesan, A.; Parsaei-Khomami, A.; Mousavi, M.; Hosseini, M.-A.; Ghasemi, J. B.; Li, X. J. Environ. Chem. Eng. 2023, 11, 110160. doi:10.1016/j.jece.2023.110160
-
[49]
Sharma, K.; Sudhaik, A.; Raizada, P.; Thakur, P.; Pham, X. M.; Van Le, Q.; Nguyen, V.-H.; Ahamad, T.; Thakur, S.; Singh, P. Environ. Sci. Pollut. Res. 2023, 30, 124902. doi:10.1007/s11356-022-24940-3
-
[50]
Das, K. K.; Mansingh, S.; Mohanty, R.; Sahoo, D. P.; Priyadarshini, N.; Parida, K. J. Phys. Chem. C 2022, 127, 22. doi:10.1021/acs.jpcc.2c06369
-
[51]
Khamesan, A.; Esfahani, M. M.; Ghasemi, J. B.; Farzin, F.; Parsaei-Khomami, A.; Mousavi, M. Adv. Powder Technol. 2022, 33, 103777. doi:10.1016/j.apt.2022.103777
-
[52]
Cai, C.; Teng, Y.; Wu, J. H.; Li, J. Y.; Chen, H. Y.; Chen, J. H.; Dai-Bin, K. Adv. Funct. Mater. 2020, 30, 2001478. doi:10.1002/adfm.202001478
-
[53]
Cheng, C.; Zhu, B.; Cheng, B.; Macyk, W.; Wang, L.; Yu, J. ACS Catal. 2023, 13, 459. doi:10.1021/acscatal.2c05001
-
[54]
Zhu, J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi:10.1016/S1872-2067(23)64438-9
-
[55]
Gao, R.; Bai, J.; Shen, R.; Hao, L.; Huang, C.; Wang, L.; Liang, G.; Zhang, P.; Li, X. J. Mater. Sci. Technol. 2023, 137, 223. doi:10.1016/j.jmst.2022.09.001
-
[56]
Li, Y.; Ma, J.; Xu, L.; Liu, T.; Xiao, T.; Chen, D.; Song, Z.; Qiu, J.; Yueli, Z. Adv. Sci. 2023, 10, 2207514. doi:10.1002/advs.202207514
-
[57]
Zhang, Y.; Qiu, J.; Zhu, B.; Fedin, M. V.; Cheng, B.; Yu, J.; Zhang, L. Chem. Eng. J. 2022, 444, 136584. doi:10.1016/j.cej.2022.136584
-
[58]
Luo, C.; Long, Q.; Cheng, B.; Zhu, B.; Wang, L. Acta Phys. -Chim. Sin. 2023, 39, 2212026. doi:10.3866/PKU.WHXB202212026
-
[59]
Lin, M.; Luo, M.; Liu, Y.; Shen, J.; Long, J.; Zhang, Z. Chin. J. Catal. 2023, 50, 239. doi:10.1016/S1872-2067(23)64477-8
-
[60]
Wang, L.; Sun, J.; Cheng, B.; He, R.; Yu, J. J. Phys. Chem. Lett. 2023, 14, 4803. doi:10.1021/acs.jpclett.3c00811
-
[61]
He, G.; Lai, Y.; Guo, Y.; Yin, H.; Chang, B.; Liu, M.; Zhang, S.; Yang, B.; Wang, J. ACS Appl. Mater. Interfaces 2022, 14, 53724. doi:10.1021/acsami.2c14554
-
[62]
Zhang, H.; Liu, J.; Zhang, Y.; Cheng, B.; Zhu, B.; Wang, L. J. Mater. Sci. Technol. 2023, 166, 241. doi:10.1016/j.jmst.2023.05.030
-
[63]
Lei, M.; Gao, M.; Yang, X.; Zou, Y.; Alghamdi, A.; Ren, Y.; Deng, Y. ACS Appl. Mater. Interfaces 2021, 13, 51933. doi:10.1021/acsami.1c07322
-
[64]
Wang, H.; Song, Y.; Xiong, J.; Bi, J.; Li, L.; Yu, Y.; Liang, S.; Wu, L. Appl. Catal. B-Environ. 2018, 224, 394. doi:10.1016/j.apcatb.2017.10.069
-
[65]
Wei, S.; Zhong, H.; Wang, H.; Song, Y.; Jia, C.; Anpo, M.; Wu, L. Appl. Catal. B-Environ. 2022, 305, 121032. doi:10.1016/j.apcatb.2021.121032
-
[66]
Xu, J.; Li, X.; Ju, Z.; Sun, Y.; Jiao, X.; Wu, J.; Wang, C.; Yan, W.; Ju, H.; Zhu, J.; Xie, Y. Angew. Chem. Int. Ed. 2019, 58, 3032. doi:10.1002/anie.201807332
-
[1]
-
-
-
[1]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[2]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[3]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[4]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[5]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[6]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[7]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[8]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[9]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[10]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[11]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[12]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[13]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[14]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[15]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[16]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[17]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[18]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[19]
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(2)
- Abstract views(83)
- HTML views(14)