Citation:
Huayan Liu, Yifei Chen, Mengzhao Yang, Jiajun Gu. Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100063.
doi:
10.1016/j.actphy.2025.100063
-
With the profound transformation of the global energy landscape and the rapid advancement of portable electronic devices and electric vehicle industries, there is an increasingly urgent demand for high-performance energy storage devices. Among the available energy storage technologies, supercapacitors stand out due to their rapid charge/discharge capabilities, excellent cycling stability, and high power density, enabling reliable long-term operation as well as efficient energy conversion and storage. A fundamental challenge in contemporary energy storage research remains the enhancement of supercapacitor energy density while maintaining their inherent high power density capabilities. Two-dimensional (2D) materials have emerged as promising candidates for constructing high-performance supercapacitor electrodes. Materials such as graphene, transition metal nitrides and/or carbides (MXenes), and transition metal dichalcogenides possess unique layered structures with atomic thickness, exceptional surface areas, high theoretical capacities, and remarkable mechanical flexibility. These characteristics make them particularly suitable for developing next-generation energy storage devices. However, the inherent van der Waals interactions between nanosheets frequently result in restacking phenomena, significantly impeding ion transport and consequently limiting both practical capacity and rate performance. Thus, rational materials design and precise electrode architecture engineering are imperative for overcoming these performance limitations. This review first explores modification strategies for enhancing the electrochemical performance of 2D materials. Studies have shown that diverse modification approaches, including surface functionalization, defect engineering, and heterogeneous structure construction, can effectively increase active sites, enhance conductivity, and improve pseudocapacitive characteristics. These modifications lead to substantial improvements in both areal and volumetric capacitance of electrode materials. Notably, efforts to increase supercapacitor energy density typically necessitate higher active material mass loading, which inherently results in more complex and extended ion transport pathways within the electrode structure, thereby compromising rate performance. In addressing this challenge, we evaluate conventional methodologies for establishing ion transport channels in high mass loading electrodes, including template-based approaches, external field-induced assembly techniques, and three-dimensional (3D) printing processes. However, these traditional methods typically generate pore structures at the micrometer or sub-micrometer scale, making it challenging to simultaneously achieve optimal rate performance and volumetric capacitance. To concurrently optimize areal capacitance, volumetric capacitance, and rate performance, this review emphasizes recent innovative approaches for constructing nanoscale porous architectures. These include capillary force-driven densification, interlayer insertion strategies, surface etching techniques, and quantum dot methodologies. These advanced approaches aim to establish three-dimensional interconnected networks for efficient ion transport, thereby accelerating the development of miniaturized supercapacitor technologies that simultaneously achieve high energy density and high power density characteristics.
-
-
-
[1]
Liu, H. Q.; Zhou, F.; Shi, X. Y.; Shi, Q.; Wu, Z. S. Acta Phys. -Chim. Sin. 2022, 38, 2204017.
-
[2]
Liu, H.; Ma, Y.; Cao, B.; Zhu, Q. Z.; Xu, B. Acta Phys. -Chim. Sin. 2023, 39, 2210027.
-
[3]
Zhang, J. W.; Ma, H. L.; Ma, J.; Hu, M. X.; Li, Q. H.; Chen, S.; Ning, T. S.; Ge, C. X.; Liu, X.; Xiao, L.; et al. Acta Phys. -Chim. Sin. 2023, 39, 2111037.
-
[4]
Wei, R. F.; Li, D. F.; Yin, H.; Wang, X. L.; Li, C. Acta Phys. -Chim. Sin. 2023, 39, 2207035.
-
[5]
Hu, Y.; Liu, B.; Xu, L. Y.; Dong, Z. Q.; Wu, Y. T.; Liu, J.; Zhong, C.; Hu, W. B. Acta Phys. -Chim. Sin. 2023, 39, 2209004.
-
[6]
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666. doi:10.1126/science.1102896
-
[7]
Xu, Z.; Gao, C. Mater. Today 2015, 18, 480. doi:10.1016/j.mattod.2015.06.009
-
[8]
Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Adv. Mater. 2010, 22, 3906. doi:10.1002/adma.201001068
-
[9]
Sun, Y. Q.; Wu, Q. O.; Shi, G. Q. Energy Environ. Sci. 2011, 4, 1113. doi:10.1039/c0ee00683a
-
[10]
Jamal, F.; Rafique, A.; Moeen, S.; Haider, J.; Nabgan, W.; Haider, A.; Imran, M.; Nazir, G.; Alhassan, M.; Ikram, M.; et al. ACS Appl. Nano Mater. 2023, 6, 7077. doi:10.1021/acsanm.3c00417
-
[11]
Borenstein, A.; Hanna, O.; Attias, R.; Luski, S.; Brousse, T.; Aurbach, D. J. Mater. Chem. A 2017, 5, 12653. doi:10.1039/c7ta00863e
-
[12]
Li, J.; Triana, C. A.; Wan, W.; Saseendran, D. P. A.; Zhao, Y.; Balaghi, S. E.; Heidari, S.; Patzke, G. R. Chem. Soc. Rev. 2021, 50, 2444. doi:10.1039/d0cs00978d
-
[13]
Abdulhameed, M. A.; Othman, M. H. D.; Ismail, A. F.; Matsuura, T.; Harun, Z.; Rahman, M. A.; Puteh, M. H.; Jaafar, J. J. Aust. Ceram. Soc. 2017, 53, 645. doi:10.1007/s41779-017-0076-0
-
[14]
An, C. H.; Zhang, Y.; Guo, H. N.; Wang, Y. J. Nanoscale Adv. 2019, 1, 4644. doi:10.1039/c9na00543a
-
[15]
Ahsan, M. A.; He, T. W.; Eid, K.; Abdullah, A. M.; Curry, M. L.; Du, A. J.; Santiago, A. R. P.; Echegoyen, L.; Noveron, J. C. J. Am. Chem. Soc. 2021, 143, 1203. doi:10.1021/jacs.0c12386
-
[16]
Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E.; et al. Acs Catalysis 2021, 11, 123. doi:10.1021/acscatal.0c04656
-
[17]
Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2009, 110, 132. doi:10.1021/cr900070d
-
[18]
Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. Energy Environ. Sci. 2018, 11, 1595. doi:10.1039/c8ee00160j
-
[19]
Kang, L. P.; Zhang, G. N.; Bai, Y. L.; Wang, H. J.; Lei, Z. B.; Liu, Z. H. Acta Phys. -Chim. Sin. 2020, 36, 1905032.
-
[20]
Jiang, M. H.; Sheng, L. Z.; Wang, C.; Jiang, L. L.; Fan, Z. J. Acta Phys. -Chim. Sin. 2021, 38, 2012085.
-
[21]
Shi, X. Y.; Zheng, S. H.; Wu, Z. S.; Bao, X. H. J. Energy Chem. 2018, 27, 25. doi:10.1016/j.jechem.2017.09.034
-
[22]
Theerthagiri, J.; Senthil, R. A.; Nithyadharseni, P.; Lee, S. J.; Durai, G.; Kuppusami, P.; Madhavan, J.; Choi, M. Y. Ceram. Int. 2020, 46, 14317. doi:10.1016/j.ceramint.2020.02.270
-
[23]
Rasappan, A. S.; Palanisamy, R.; Thangamuthu, V.; Dharmalingam, V. P.; Natarajan, M.; Archana, B.; Velauthapillai, D.; Kim, J. Mater. Lett. 2024, 357, 135640. doi:10.1016/j.matlet.2023.135640
-
[24]
Haider, W. A.; Tahir, M.; He, L.; Yang, W.; Minhas-khan, A.; Owusu, K. A.; Chen, Y.; Hong, X.; Mai, L. J. Alloys Compd. 2020, 823, 151769. doi:10.1016/j.jallcom.2019.151769
-
[25]
Sharma, A.; Kapse, S.; Verma, A.; Bisoyi, S.; Pradhan, G. K.; Thapa, R.; Rout, C. S. ACS Appl. Energy Mater. 2022, 5, 10315. doi:10.1021/acsaem.2c02116
-
[26]
Zhang, M. Y.; Miao, J. Y.; Yan, X. H.; Zhu, Y. H.; Li, Y. L.; Zhang, W. J.; Zhu, W.; Pan, J. M.; Javed, M. S.; Hussain, S. J. Mater. Chem. C 2022, 10, 640. doi:10.1039/d1tc03903b
-
[27]
Bagheri, A.; Bellani, S.; Beydaghi, H.; Eredia, M.; Najafi, L.; Bianca, G.; Zappia, M. I.; Safarpour, M.; Najafi, M.; Mantero, E.; et al. Acs Nano 2022, 16, 16426. doi:10.1021/acsnano.2c05640
-
[28]
Ozturk, O.; Gur, E. Chemelectrochem 2024, 11, e202300575. doi:10.1002/celc.202300575
-
[29]
Jiang, Y. Q.; Chen, L. Y.; Zhang, H. Q.; Zhang, Q.; Chen, W. F.; Zhu, J. K.; Song, D. M. Chem. Eng. J. 2016, 292, 1. doi:10.1016/j.cej.2016.02.009
-
[30]
Xuan, L. Y.; Chen, L. Y.; Yang, Q. Q.; Chen, W. F.; Hou, X. H.; Jiang, Y. Q.; Zhang, Q.; Yuan, Y. J. Mater. Chem. A 2015, 3, 17525. doi:10.1039/c5ta05305f
-
[31]
Zhu, J. K.; Huang, B.; Zhao, C. L.; Xu, H.; Wang, S. N.; Chen, Y. P.; Xie, L.; Chen, L. Y. Electrochim. Acta 2019, 313, 194. doi:10.1016/j.electacta.2019.05.019
-
[32]
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Adv. Mater. 2011, 15. doi:10.1002/adma.201102306
-
[33]
Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Science 2013, 341, 1502. doi:10.1126/science.1241488
-
[34]
De, S.; Acharya, S.; Sahoo, S.; Nayak, G. C. Mater. Chem. Front. 2021, 5, 7134. doi:10.1039/d1qm00556a
-
[35]
Otgonbayar, Z.; Yang, S. H. Y.; Kim, I. J.; Oh, W. C. Nanomaterials 2023, 13, 919. doi:10.3390/nano13050919
-
[36]
Zhi, M.; Xiang, C.; Li, J.; Li, M.; Wu, N. Nanoscale 2013, 5, 72. doi:10.1039/c2nr32040a
-
[37]
Tsai, Y. C.; Yang, W. D.; Lee, K. C.; Huang, C. M. Materials 2016, 9, 246. doi:10.3390/ma9040246
-
[38]
Tao, B. R.; He, J. L.; Miao, F. J.; Zang, Y. Vacuu 2022, 197, 110668. doi:10.1016/j.vacuum.2021.110857
-
[39]
Wang, X. H.; Xia, H. Y.; Wang, X. Q.; Gao, J.; Shi, B.; Fang, Y. J. Alloys Compd. 2016, 686, 969. doi:10.1016/j.jallcom.2016.06.156
-
[40]
Wang, X. H.; Bannenberg, L. MRS Bull. 2021, 46, 755. doi:10.1557/s43577-021-00150-z
-
[41]
Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M.; Simon, P.; Gogotsi, Y. Nat. Energy 2017, 2, 17105. doi:10.1038/nenergy.2017.105
-
[42]
Jayakumar, S.; Santhosh, P. C.; Ramakrishna, S.; Radhamani, A. V. J. Energy Storage 2024, 97, 112741. doi:10.1016/j.est.2024.112741
-
[43]
Zhu, Y. Y.; Wang, S.; Ma, J. X.; Das, P.; Zheng, S. H.; Wu, Z. S. Energy Storage Mater. 2022, 51, 500. doi:10.1016/j.ensm.2022.06.044
-
[44]
Jia, J.; Zhu, Y. Y.; Das, P.; Ma, J. X.; Wang, S.; Zhu, G. S.; Wu, Z. S. J. Materiomics 2023, 9, 1242. doi:10.1016/j.jmat.2023.08.013
-
[45]
Zhu, Y. Y.; Zhang, Q. X.; Ma, J. X.; Das, P.; Zhang, L. Z.; Liu, H. Q.; Wang, S.; Li, H.; Wu, Z. S. Carbon Energy 2024, 6, e481. doi:10.1002/cey2.481
-
[46]
Zhu, Y.; Zheng, S.; Qin, J.; Ma, J.; Das, P.; Zhou, F.; Wu, Z. S. Fundam. Res. 2024, 4, 307. doi:10.1016/j.fmre.2022.03.021
-
[47]
Jiang, X.; Jia, J.; Zhu, Y. Y.; Li, J.; Jia, H. W.; Liu, C. H.; Zhao, G. Z.; Yu, L. H.; Zhu, G. Energy Storage Mater. 2024, 70, 103462. doi:10.1016/j.ensm.2024.103462
-
[48]
Chen, N. J.; Duan, Z. Y.; Cai, W. R.; Wang, Y. B.; Pu, B.; Huang, H. C.; Xie, Y. T.; Tang, Q.; Zhang, H. T.; Yang, W. Q. Nano Energy 2023, 107, 108147. doi:10.1016/j.nanoen.2022.108147
-
[49]
Wang, Y.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q.; Liu, Y.; Yang, W. Adv. Mater. 2024, 36, e2410736. doi:10.1002/adma.202410736
-
[50]
Zhu, Y.; Ma, J.; Das, P.; Wang, S.; Wu, Z. S. Small Methods 2023, 7, e2201609. doi:10.1002/smtd.202201609
-
[51]
Nguyen, T.; Montemor, M. D. Adv. Sci. 2019, 6, 1801797. doi:10.1002/advs.201801797
-
[52]
Hantanasirisakul, K.; Gogotsi, Y. Adv. Mater. 2018, 30, 135. doi:10.1002/adma.201804779
-
[53]
Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Nat. Commun. 2019, 10, 522. doi:10.1038/s41467-018-08169-8
-
[54]
Pomerantseva, E.; Gogotsi, Y. Nat. Energy 2017, 2, 1. doi:10.1038/nenergy.2017.89
-
[55]
Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q. H. Energy Storage Mater. 2019, 20, 299. doi:10.1016/j.ensm.2019.04.029
-
[56]
Wu, Z. T.; Shang, T. X.; Deng, Y. Q.; Tao, Y.; Yang, Q. H. Adv. Sci. 2020, 7, 1903077 doi:10.1002/advs.201903077
-
[57]
Guo, W.; Yu, C.; Li, S. F.; Qiu, J. S. Energy Environ. Sci. 2021, 14, 576. doi:10.1039/d0ee02649b
-
[58]
Tomy, M.; Ambika Rajappan, A.; Vm, V.; Thankappan Suryabai, X. Energy Fuels 2021, 35, 19881. doi:10.1021/acs.energyfuels.1c02743
-
[59]
Simon, P.; Gogotsi, Y. Joule 2022, 6, 28. doi:10.1016/j.joule.2021.12.019
-
[60]
Shang, W. X.; Yu, W. T.; Xiao, X.; Ma, Y. Y.; He, Y.; Zhao, Z. X.; Tan, P. Adv. Powder Mater. 2023, 2, 100075. doi:10.1016/j.apmate.2022.100075
-
[61]
Liu, K. L.; Yu, C.; Guo, W.; Ni, L.; Yu, J. H.; Xie, Y. Y.; Wang, Z.; Ren, Y. W.; Qiu, J. S. J. Energy Chem. 2021, 58, 94. doi:10.1016/j.jechem.2020.09.041
-
[62]
Jagadale, A. D.; Rohit, R. C.; Shinde, S. K.; Kim, D. Y. J. Electrochem. Soc. 2021, 168, 090562. doi:10.1149/1945-7111/ac275d
-
[63]
Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. J. Phys. Chem. C 2009, 113, 13103. doi:10.1021/jp902214f
-
[64]
Zhang, D. C.; Zhang, X.; Chen, Y.; Wang, C. H.; Ma, Y. W. Electrochim. Acta 2012, 69, 364. doi:10.1016/j.electacta.2012.03.024
-
[65]
Wang, Q.; Yan, J.; Fan, Z. J. Energy Environ. Sci. 2016, 9, 729. doi:10.1039/c5ee03109e
-
[66]
Wang, H. B.; Wu, Y. P.; Zhang, J. F.; Li, G. Y.; Huang, H. J.; Zhang, X.; Jiang, Q. G. Mater. Lett. 2015, 160, 537. doi:10.1016/j.matlet.2015.08.046
-
[67]
Zhang, X. F.; Liu, Y.; Dong, S. L.; Yang, J. Q.; Liu, X. D. Electrochim. Acta 2019, 294, 233. doi:10.1016/j.electacta.2018.10.096
-
[68]
Hu, X. W.; Gong, N.; Zhang, Q. C.; Chen, Q. M.; Xie, T. Z.; Liu, H. B.; Li, Y.; Li, Y.; Peng, W. C.; Zhang, F. B.; Fan, X. B. Small 2024, 20, 2306997. doi:10.1002/smll.202306997
-
[69]
Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Science 2020, 369, 979. doi:10.1126/science.aba8311
-
[70]
Anasori, B.; Shi, C. Y.; Moon, E. J.; Xie, Y.; Voigt, C. A.; Kent, P. R. C.; May, S. J.; Billinge, S. J. L.; Barsoum, M. W.; Gogotsi, Y. Nanoscale Horiz. 2016, 1, 227. doi:10.1039/c5nh00125k
-
[71]
Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M.; et al. Nat. Mater. 2020, 19, 894. doi:10.1038/s41563-020-0657-0
-
[72]
Xie, Y.; Dall'Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W.; Zhuang, H. L. L.; Kent, P. R. C. Acs Nano 2014, 8, 9606. doi:10.1021/nn503921j
-
[73]
Wang, X.; Mathis, T. S.; Li, K.; Lin, Z.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A.; et al. Nat. Energy 2019, 4, 241. doi:10.1038/s41560-019-0339-9
-
[74]
Ando, Y.; Okubo, M.; Yamada, A.; Otani, M. Adv. Funct. Mater. 2020, 30, 2000820. doi:10.1002/adfm.202000820
-
[75]
Pu, S.; Wang, Z. X.; Xie, Y. T.; Fan, J. T.; Xu, Z.; Wang, Y. H.; He, H. Y.; Zhang, X.; Yang, W. Q.; Zhang, H. T. Adv. Funct. Mater. 2022, 33, 2208715. doi:10.1002/adfm.202208715
-
[76]
Wang, Z.; Xu, Z.; Huang, H.; Chu, X.; Xie, Y.; Xiong, D.; Yan, C.; Zhao, H.; Zhang, H.; Yang, W. ACS Nano 2020, 14, 4916. doi:10.1021/acsnano.0c01056
-
[77]
Zhuo, Y. L.; Kinloch, I. A.; Bissett, M. A. ACS Appl. Nano Mater. 2023, 6, 18062. doi:10.1021/acsanm.3c03322
-
[78]
Zhang, A.; Liang, Y. X.; Zhang, H.; Geng, Z. G.; Zeng, J. Chem. Soc. Rev. 2021, 50, 9817. doi:10.1039/d1cs00330e
-
[79]
Kumar, R.; Sahoo, S.; Joanni, E.; Pandey, R.; Shim, J. J. Chem. Commun. 2023, 59, 6109. doi:10.1039/d3cc00815k
-
[80]
Shen, J. Q.; Wang, P.; Jiang, H. S.; Wang, H.; Pollet, B. G.; Wang, R. F.; Ji, S. Ionics 2020, 26, 5155. doi:10.1007/s11581-020-03597-3
-
[81]
Ma, Q. H.; Cui, F.; Zhang, J. J.; Qi, X.; Cui, T. Y. Appl. Surf. Sci. 2022, 578, 152001. doi:10.1016/j.apsusc.2021.152001
-
[82]
Wu, Y. D.; Wang, Y.; Zhu, P.; Ye, X. F.; Liu, R. N.; Cai, W. F. Appl. Surf. Sci. 2022, 606, 154863. doi:10.1016/j.apsusc.2022.154863
-
[83]
Kim, H. S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Nat. Mater. 2017, 16, 454. doi:10.1038/Nmat4810
-
[84]
Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. J. Mater. Chem. 2010, 20, 7135. doi:10.1039/c0jm00744g
-
[85]
Huang, L.; Yao, B.; Sun, J. Y.; Gao, X.; Wu, J. B.; Wan, J.; Li, T. Q.; Hu, Z. M.; Zhou, J. J. Mater. Chem. A 2017, 5, 2897. doi:10.1039/c6ta10433a
-
[86]
Huang, L.; Gao, X.; Dong, Q.; Hu, Z. M.; Xiao, X.; Li, T. Q.; Cheng, Y. L.; Yao, B.; Wan, J.; Ding, D.; et al. J. Mater. Chem. A 2015, 3, 17217. doi:10.1039/c5ta05251c
-
[87]
Li, T. Q.; Beidaghi, M.; Xiao, X.; Huang, L.; Hu, Z. M.; Sun, W. M.; Chen, X.; Gogotsi, Y.; Zhou, J. Nano Energy 2016, 26, 100. doi:10.1016/j.nanoen.2016.05.004
-
[88]
Chen, G. L.; Xie, Y. Y.; Tang, Y.; Wang, T. S.; Wang, Z. Y.; Yang, C. H. Small 2024, 20, 2307408. doi:10.1002/smll.202307408
-
[89]
Wen, Y. Y.; Rufford, T. E.; Chen, X. Z.; Li, N.; Lyu, M. Q.; Dai, L. M.; Wang, L. Z. Nano Energy 2017, 38, 368. doi:10.1016/j.nanoen.2017.06.009
-
[90]
Yang, C. H.; Tang, Y.; Tian, Y. P.; Luo, Y. Y.; Din, M. F. U.; Yin, X. T.; Que, W. X. Adv. Energy Mater. 2018, 8, 1802087. doi:10.1002/aenm.201802087
-
[91]
Tao, Q. Z.; Dahlqvist, M.; Lu, J.; Kota, S.; Meshkian, R.; Halim, J.; Palisaitis, J.; Hultman, L.; Barsoum, M. W.; Persson, P. O. Å.; et al. Nat. Commun. 2017, 8, 14949. doi:10.1038/ncomms14949
-
[92]
Li, S. S.; Li, X. H.; Cui, H. L.; Zhang, R. Z. J. Phys. Chem. Solids 2021, 153, 110021. doi:10.1016/j.jpcs.2021.110021
-
[93]
Liu, K. K.; Xia, Q. X.; Si, L. J.; Kong, Y.; Shinde, N.; Wang, L. B.; Wang, J. K.; Hu, Q. K.; Zhou, A. G. Electrochim. Acta 2022, 435, 141372. doi:10.1016/j.electacta.2022.141372
-
[94]
Liu, Z. X.; Tian, Y. P.; Li, S. Q.; Wang, L.; Han, B. X.; Cui, X. W.; Xu, Q. Adv. Funct. Mater. 2023, 33, 2301994. doi:10.1002/adfm.202301994
-
[95]
Zhang, W. Y.; Jin, H. X.; Du, Y. Q.; Chen, G. W.; Zhang, J. X. Electrochim. Acta 2021, 390, 138812. doi:10.1016/j.electacta.2021.138812
-
[96]
Li, Z. Q.; He, W. X.; Wang, X. X.; Wang, X. L.; Song, M.; Zhao, J. L. Int. J. Hydrogen Energy 2020, 45, 112. doi:10.1016/j.ijhydene.2019.10.196
-
[97]
Wang, J.; Ding, B.; Hao, X. D.; Xu, Y. L.; Wang, Y.; Shen, L. F.; Dou, H.; Zhang, X. G. Carbon 2016, 102, 255. doi:10.1016/j.carbon.2016.02.047
-
[98]
Nathabumroong, S.; Poochai, C.; Chanlek, N.; Eknapakul, T.; Sonsupap, S.; Tuichai, W.; Sriprachuabwong, C.; Rujirawat, S.; Songsiriritthigul, P.; Tuantranont, A.; et al. J. Power Sources 2021, 513, 230517. doi:10.1016/j.jpowsour.2021.230517
-
[99]
Luo, W. L.; Sun, Y.; Lin, Z. T.; Li, X.; Han, Y. Q.; Ding, J. X.; Li, T. X.; Hou, C. P.; Ma, Y. J. Energy Storage 2023, 62, 106807. doi:10.1016/j.est.2023.106807
-
[100]
He, Z. Q.; Wang, Y. H.; Li, Y.; Ma, J. J.; Song, Y. M.; Wang, X. X.; Wang, F. P. J. Alloys Compd. 2022, 899, 163241. doi:10.1016/j.jallcom.2021.163241
-
[101]
Yu, Z. L.; Wang, S. X.; Xiao, Z. A.; Xu, F.; Xiang, C. L.; Sun, L. X.; Zou, Y. J. J. Energy Storage 2024, 77, 110009. doi:10.1016/j.est.2023.110009
-
[102]
Shrestha, K. R.; Kandula, S.; Kim, N. H.; Lee, J. H. J. Alloys Compd. 2019, 771, 810. doi:10.1016/j.jallcom.2018.09.032
-
[103]
Lonkar, S. P.; Alhassan, S. M. Sustain. Energy Fuels 2021, 5, 6124. doi:10.1039/d1se01134k
-
[104]
Meng, W.; Zhou, J. J.; Wang, G. J.; Qin, J. L.; Yang, L.; Huang, H. J.; Zhao, Y. X.; He, H. Y. J. Energy Storage 2022, 56, 106105. doi:10.1016/j.est.2022.106105
-
[105]
Zhang, X.; Yang, S. X.; Liu, S. Y.; Che, X. G.; Lu, W.; Tian, Y. H.; Liu, Z. Q.; Zhao, Y. Y.; Yang, J. ACS Appl. Energy Mater. 2023, 6, 636. doi:10.1021/acsaem.2c02442
-
[106]
Ansari, S. A.; Cho, M. H. Sci. Rep. 2017, 7, 43055 doi:10.1038/srep43055
-
[107]
Xu, X. J.; Lai, H. L.; Lu, H. L.; Zhou, P. J.; Ying, Y. L.; Liu, Y. J. Energy Storage 2024, 97, 112919. doi:10.1016/j.est.2024.112919
-
[108]
Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Comput. Mater. Sci. 2018, 143, 418. doi:10.1016/j.commatsci.2017.11.028
-
[109]
Garlapati, K. K.; Martha, S. K.; Panigrahi, B. B. J. Power Sources 2024, 605, 234503. doi:10.1016/j.jpowsour.2024.234503
-
[110]
Wang, X.; Li, H.; Li, H.; Lin, S.; Ding, W.; Zhu, X. G.; Sheng, Z. G.; Wang, H.; Zhu, X. B.; Sun, Y. P. Adv. Funct. Mater. 2020, 30, 0190302. doi:10.1002/adfm.201910302
-
[111]
Hu, R.; Liao, Y. M.; Qiao, H.; Li, J.; Wang, K.; Huang, Z. Y.; Qi, X. Ceram. Int. 2022, 48, 23498. doi:10.1016/j.ceramint.2022.04.345
-
[112]
Krishnamoorthy, K.; Pazhamalai, P.; Mariappan, V. K.; Manoharan, S.; Kesavan, D.; Kim, S. J. Adv. Funct. Mater. 2020, 31, 2008422. doi:10.1002/adfm.202008422
-
[113]
Sun, X.; Sun, H.; Li, H.; Peng, H. Adv. Mater. 2013, 25, 5153. doi:10.1002/adma.201301926
-
[114]
Weiss, N. O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Adv. Mater. 2012, 24, 5782. doi:10.1002/adma.201201482
-
[115]
Huo, P. P.; Zhao, P.; Wang, Y.; Liu, B.; Yin, G. C.; Dong, M. D. Energies 2018, 11, 167. doi:10.3390/en11010167
-
[116]
Novoselov, K. S.; Fal'ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490, 192. doi:10.1038/nature11458
-
[117]
Xu, E. Z.; Zhang, Y.; Wang, H.; Zhu, Z. F.; Quan, J. J.; Chang, Y. J.; Li, P. C.; Yu, D. B.; Jiang, Y. Chem. Eng. J. 2020, 385, 123839. doi:10.1016/j.cej.2019.123839
-
[118]
Wei, Y. Y.; Sun, B.; Su, D. W.; Zhu, J. G.; Wang, G. X. Energy Technol. 2016, 4, 737. doi:10.1002/ente.201500467
-
[119]
Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Nature 2018, 557, 409. doi:10.1038/s41586-018-0109-z
-
[120]
Han, Y.; Li, M. Y.; Jung, G. S.; Marsalis, M. A.; Qin, Z.; Buehler, M. J.; Li, L. J.; Muller, D. A. Nat. Mater. 2018, 17, 129. doi:10.1038/nmat5038
-
[121]
Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. Acs Nano 2020, 14, 867. doi:10.1021/acsnano.9b08030
-
[122]
Aamir, A.; Ahmad, A.; Khan, Y.; Zia-Ur-Rehman; Ul Ain, N.; Shah, S. K.; Mehmood, M.; Zaman, B. Bull. Mater. Sci. 2020, 43, 1. doi:10.1007/s12034-020-02249-6
-
[123]
Tetik, H.; Orangi, J.; Yang, G.; Zhao, K.; Mujib, S. B.; Singh, G.; Beidaghi, M.; Lin, D. Adv. Mater. 2021, 34, 2104980. doi:10.1002/adma.202104980
-
[124]
Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. Adv. Funct. Mater. 2022, 32, 2109593. doi:10.1002/adfm.202109593
-
[125]
Zhou, G. Q.; Liu, X. Y.; Liu, C. Z.; Li, Z. L.; Liu, C. H.; Shi, X. J.; Li, Z. Y.; Mei, C. T.; Li, M. C. J. Mater. Chem. A 2024, 12, 3734. doi:10.1039/d3ta06925g
-
[126]
Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. Adv. Funct. Mater. 2019, 29, 1903960. doi:10.1002/adfm.201903960
-
[127]
Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Nat. Commun. 2014, 5, 4554. doi:10.1038/ncomms5554
-
[128]
Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. Acs Nano 2012, 6, 4020. doi:10.1021/nn3003345
-
[129]
Li, K.; Wang, X.; Li, S.; Urbankowski, P.; Li, J.; Xu, Y.; Gogotsi, Y. Small 2020, 16, 1906851. doi:10.1002/smll.201906851
-
[130]
Chen, C. M.; Zhang, Q.; Huang, C. H.; Zhao, X. C.; Zhang, B. S.; Kong, Q. Q.; Wang, M. Z.; Yang, Y. G.; Cai, R.; Su, D. S. ChCom 2012, 48, 7149. doi:10.1039/c2cc32189k
-
[131]
Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. Adv. Funct. Mater. 2021, 31, 2101087. doi:10.1002/adfm.202101087
-
[132]
Patil, A. M.; Wang, J. J.; Li, S. S.; Hao, X. Q.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Chem. Eng. J. 2021, 421, 127883. doi:10.1016/j.cej.2020.127883
-
[133]
Kong, J.; Yang, H. C.; Guo, X. Z.; Yang, S. L.; Huang, Z. S.; Lu, X. C.; Bo, Z.; Yan, J. H.; Cen, K. F.; Ostrikov, K. K. ACS Energy Lett. 2020, 5, 2266. doi:10.1021/acsenergylett.0c00704
-
[134]
Shao, Y. L.; El-Kady, M. F.; Lin, C. W.; Zhu, G. Z.; Marsh, K. L.; Hwang, J. Y.; Zhang, Q. H.; Li, Y. G.; Wang, H. Z.; Kaner, R. B. Adv. Mater. 2016, 28, 6719. doi:10.1002/adma.201506157
-
[135]
Xia, P.; Zhang, Z.; Tang, Z.; Xue, Y.; Li, J.; Yang, G. Molecules 2022, 27, 376. doi:10.3390/molecules27020376
-
[136]
Mochizuki, D.; Tanaka, R.; Makino, S.; Ayato, Y.; Sugimoto, W. ACS Appl. Energy Mater. 2019, 2, 1033. doi:10.1021/acsaem.8b01478
-
[137]
Qian, O.; Lin, D.; Zhao, X. L.; Han, F. M. Chem. Lett. 2019, 48, 824. doi:10.1246/cl.190218
-
[138]
Yu, Y. F.; Zhang, H. P.; Xie, Y. Q.; Jiang, F.; Gao, X.; Bai, H.; Yao, F.; Yue, H. Y. Chem. Eng. J. 2024, 482, 149063. doi:10.1016/j.cej.2024.149063
-
[139]
Zhang, J. Z.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z. Y.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W. W.; et al. ACS Cent. Sci. 2020, 6, 254. doi:10.1021/acscentsci.9b01217
-
[140]
Lee, C.; Park, S. M.; Kim, S.; Choi, Y. S.; Park, G.; Kang, Y. C.; Koo, C. M.; Kim, S. J.; Yoon, D. K. Nat Commun 2022, 13, 5615. doi:10.1038/s41467-022-33337-2
-
[141]
Jang, G. G.; Song, B.; Li, L. Y.; Keum, J. K.; Jiang, Y. D.; Hunt, A.; Moon, K. S.; Wong, C. P.; Hu, M. Z. Nano Energy 2017, 32, 88. doi:10.1016/j.nanoen.2016.12.016
-
[142]
Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Acs Nano 2018, 12, 3502. doi:10.1021/acsnano.8b00304
-
[143]
Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Mater. Adv. 2021, 2, 540. doi:10.1039/d0ma00753f
-
[144]
Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B.; et al. Adv. Mater. 2020, 32, 1906652. doi:10.1002/adma.201906652
-
[145]
Corker, A.; Ng, H. C.; Poole, R. J.; Garcia-Tunon, E. Soft Matter 2019, 15, 1444. doi:10.1039/c8sm01936c
-
[146]
Yun, X. W.; Lu, B. C.; Xiong, Z. Y.; Jia, B.; Tang, B.; Mao, H. N.; Zhang, T.; Wang, X. G. RSC Advances 2019, 9, 29384. doi:10.1039/c9ra04882k
-
[147]
Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Acs Nano 2021, 15, 15342. doi:10.1021/acsnano.1c06535
-
[148]
Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. Acs Nano 2015, 9, 4636. doi:10.1021/acsnano.5b01179
-
[149]
Zhu, C.; Han, T. Y.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Nat. Commun. 2015, 6, 6962. doi:10.1038/ncomms7962
-
[150]
Zhang, L. L.; Qin, J. Q.; Das, P.; Wang, S.; Bai, T. S.; Zhou, F.; Wu, M. B.; Wu, Z. S. Adv. Mater. 2024, 36, 2313930. doi:10.1002/adma.202313930
-
[151]
Li, K.; Zhao, J.; Zhussupbekova, A.; Shuck, C. E.; Hughes, L.; Dong, Y. Y.; Barwich, S.; Vaesen, S.; Shvets, I. V.; Möbius, M.; Schmitt, W.; et al. Nat. Commun. 2022, 13, 6884. doi:10.1038/s41467-022-34583-0
-
[152]
Xu, Y.; Sheng, K.; Li, C.; Shi, G. ACS nano 2010, 4, 4324. doi:10.1021/nn101187z
-
[153]
Chen, W. F.; Yan, L. F. Nanoscale 2011, 3, 3132. doi:10.1039/c1nr10355e
-
[154]
Tao, Y.; Kong, D.; Zhang, C.; Lv, W.; Wang, M. X.; Li, B. H.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Carbon 2014, 69, 169. doi:10.1016/j.carbon.2013.12.003
-
[155]
Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. J. Power Sources 2017, 364, 234. doi:10.1016/j.jpowsour.2017.08.029
-
[156]
Deng, Y. Q.; Shang, T. X.; Wu, Z. T.; Tao, Y.; Luo, C.; Liang, J. C.; Han, D. L.; Lyu, R. Y.; Qi, C. S.; Lv, W.; et al. Adv. Mater. 2019, 31, e1902432. doi:10.1002/adma.201902432
-
[157]
Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L. B.; Li, D. Science 2013, 341, 534. doi:10.1126/science.123908
-
[158]
Tao, Y.; Xie, X.; Lv, W.; Tang, D. M.; Kong, D.; Huang, Z.; Nishihara, H.; Ishii, T.; Li, B.; Golberg, D.; et al. Sci. Rep. 2013, 3, 2975. doi:10.1038/srep02975
-
[159]
Wu, Z.; Deng, Y.; Yu, J.; Han, J.; Shang, T.; Chen, D.; Wang, N.; Gu, S.; Lv, W.; Kang, F.; et al. Adv. Mater. 2023, 35, 2300580. doi:10.1002/adma.202300580
-
[160]
Wu, Z. T.; Liu, X. C.; Shang, T. X.; Deng, Y. Q.; Wang, N.; Dong, X. M.; Zhao, J.; Chen, D. R.; Tao, Y.; Yang, Q. H. Adv. Funct. Mater. 2021, 31, 2102874. doi:10.1002/adfm.202102874
-
[161]
Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Adv. Funct. Mater. 2017, 27, 1701264. doi:10.1002/adfm.201701264
-
[162]
Wang, H.; Li, J. M.; Kuai, X. X.; Bu, L. M.; Gao, L. J.; Xiao, X.; Gogotsi, Y. Adv. Energy Mater. 2020, 10, 2001411. doi:10.1002/aenm.202001411
-
[163]
Tang, J.; Mathis, T.; Zhong, X.; Xiao, X.; Wang, H.; Anayee, M.; Pan, F.; Xu, B.; Gogotsi, Y. Adv. Energy Mater. 2020, 11, 2003025. doi:10.1002/aenm.202003025
-
[164]
Chen, W. S.; Gu, J. J.; Liu, Q. L.; Yang, M. Z.; Zhan, C.; Zang, X. N.; Pham, T. A.; Liu, G. X.; Zhang, W.; Zhang, D.; et al. Nat. Nanotechnol. 2021, 17, 153. doi:10.1038/s41565-021-01020-0
-
[165]
Xiao, K. F.; Liang, J. X.; Liu, H. B.; Yang, T. M.; Han, J. W.; Fang, R. P.; Xu, H. Y.; Yang, Q. H.; Wang, D. W. ACS Energy Lett. 2024, 9, 2564. doi:10.1021/acsenergylett.4c00770
-
[166]
Du, X. Y.; Jiang, W. J.; Zu, L. H.; Feng, D. S.; Wang, X.; Li, M. G.; Wang, P. Y.; Cao, Y.; Wang, Y. F.; Liang, Q. H.; et al. Energy Storage Mater. 2025, 74, 103969. doi:10.1016/j.ensm.2024.103969
-
[167]
Xu, Y. X.; Chen, C. Y.; Zhao, Z. P.; Lin, Z. Y.; Lee, C.; Xu, X.; Wang, C.; Huang, Y.; Shakir, M. I.; Duan, X. F. Nano Lett. 2015, 15, 4605. doi:10.1021/acs.nanolett.5b01212
-
[168]
Kumar, R.; Oh, J. H.; Kim, H. J.; Jung, J. H.; Jung, C. H.; Hong, W. G.; Kim, H. J.; Park, J. Y.; Oh, I. K. ACS nano 2015, 9, 7343. doi:10.1021/acsnano.5b02337
-
[169]
Villarreal, R.; Lin, P. C.; Zarkua, Z.; Bana, H.; Tsai, H. C.; Auge, M.; Junge, F.; Hofsäss, H.; Tosi, E.; De Feyter, S.; et al. Carbon 2023, 203, 590. doi:10.1016/j.carbon.2022.12.005
-
[1]
-
-
-
[1]
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
-
[2]
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
-
[3]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[4]
Jia Zhou , Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004
-
[5]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009
-
[6]
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
-
[7]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[8]
Mengfei He , Chao Chen , Yue Tang , Si Meng , Zunfa Wang , Liyu Wang , Jiabao Xing , Xinyu Zhang , Jiahui Huang , Jiangbo Lu , Hongmei Jing , Xiangyu Liu , Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029
-
[9]
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
-
[10]
Kuaibing Wang , Honglin Zhang , Wenjie Lu , Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084
-
[11]
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
-
[12]
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
-
[13]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025
-
[14]
Guanghui SUI , Yanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221
-
[15]
Jie WU , Zhihong LUO , Xiaoli CHEN , Fangfang XIONG , Li CHEN , Biao ZHANG , Bin SHI , Quansheng OUYANG , Jiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400
-
[16]
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
-
[17]
Hongyi Zhang , Zhihong Shi , Zhijun Zhang . A New Strategy for “De-formulized” Calculation of Dynamic Buffer Capacity in Analytical Chemistry Education. University Chemistry, 2024, 39(3): 390-394. doi: 10.3866/PKU.DXHX202309030
-
[18]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[19]
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
-
[20]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(42)
- HTML views(14)