Citation: Xianghai Song, Xiaoying Liu, Zhixiang Ren, Xiang Liu, Mei Wang, Yuanfeng Wu, Weiqiang Zhou, Zhi Zhu, Pengwei Huo. Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100055. doi: 10.1016/j.actphy.2025.100055 shu

Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction

  • Corresponding author: Mei Wang, 1000004927@ujs.edu.cn Pengwei Huo, huopw@ujs.edu.cn
  • Received Date: 26 November 2024
    Revised Date: 23 January 2025
    Accepted Date: 23 January 2025

    Fund Project: the National Natural Science Foundation of China 22108102the National Natural Science Foundation of China 22078131the Fundamental Research Funds for the Universities of Henan Province NSFRF240609the GHfund B 202302026857the Science and Technology Planning Social Development Project of Zhenjiang City SH2023102

  • Photocatalytic carbon dioxide (CO2) reduction represents a hopeful approach to addressing global energy and environmental issues. The quest for catalysts that demonstrate both high activity and selectivity for CO2 conversion has attracted significant attention. In this study, ultrathin N-doped BiOBr was synthesized using a simple straightforward method. Systematic experimental results indicated that N-doping reduced the thickness of the BiOBr nanosheets and increased their specific surface area. Moreover, the efficiency of photogenerated charge carrier migration and the CO2 adsorption capacity were significantly enhanced, contributing to improved CO2 photoreduction performance. Experimental results showed that the 2N-BiOBr exhibited the best catalytic performance, with a CO evolution rate of 18.28 μmol·g−1·h−1 and nearly 100% CO selectivity in water, which was three times higher than that of pure BiOBr. The potential photocatalytic mechanism was investigated using in situ FTIR analysis and DFT simulations. Mechanistic studies revealed that N atoms replaced O atoms as adsorption centers, enhancing the strong adsorption selectivity towards CO2 over O―H in BiOBr and facilitating the formation of key reaction intermediates. This study provides new perspectives on the creation and development of effective photocatalytic materials, offering theoretical support for the application of photocatalytic technology in energy and environmental science.
  • 加载中
    1. [1]

      Chen, K.; Jiang, T.; Liu, T.; Yu, J.; Zhou, S.; Ali, A.; Wang, S.; Liu, Y.; Zhu, L.; Xu, X. Adv. Funct. Mater. 2021, 32, 2109336. doi: 10.1002/adfm.202109336  doi: 10.1002/adfm.202109336

    2. [2]

      Qian, Z.; Zhang, L.; Zhang, Y.; Cui, H. Sep. Purif. Technol. 2023, 324, 124581. doi: 10.1016/j.seppur.2023.124581  doi: 10.1016/j.seppur.2023.124581

    3. [3]

      Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Appl. Catal. B 2020, 279, 119344. doi: 10.1016/j.apcatb.2020.119344  doi: 10.1016/j.apcatb.2020.119344

    4. [4]

      Sun, W.; Zhu, J.; Zhang, M.; Meng, X.; Chen, M.; Feng, Y.; Chen, X.; Ding, Y. Chin. J. Catal. 2022, 43, 2273. doi: 10.1016/s1872-2067(21)63939-6  doi: 10.1016/s1872-2067(21)63939-6

    5. [5]

      Yin, S.; Zhao, X.; Jiang, E.; Yan, Y.; Zhou, P.; Huo, P. Energy Environ. Sci. 2022, 15, 1556. doi: 10.1039/d1ee03764a  doi: 10.1039/d1ee03764a

    6. [6]

      Kong, X. Y.; Lee, W. P. C.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. R. ChemCatChem. 2016, 8, 3074. doi: 10.1002/cctc.201600782  doi: 10.1002/cctc.201600782

    7. [7]

      Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Appl. Catal., B. 2021, 286, 119832. doi: 10.1016/j.apcatb.2020.119832  doi: 10.1016/j.apcatb.2020.119832

    8. [8]

      Hua, J.; Wang, Z.; Zhang, J.; Dai, K.; Shao, C.; Fan, K. J. Mater. Sci. Technol. 2023, 156, 64. doi: 10.1016/j.jmst.2023.03.003  doi: 10.1016/j.jmst.2023.03.003

    9. [9]

      Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Appl. Catal. B 2020, 268, 118736. doi: 10.1016/j.apcatb.2020.118736  doi: 10.1016/j.apcatb.2020.118736

    10. [10]

      Di, J.; Zhao, X.; Lian, C.; Ji, M.; Xia, J.; Xiong, J.; Zhou, W.; Cao, X.; She, Y.; Liu, H.; et al. Nano Energy 2019, 61, 54. doi: 10.1016/j.nanoen.2019.04.029  doi: 10.1016/j.nanoen.2019.04.029

    11. [11]

      Xu, L.; Iqbal, R.; Wang, Y.; Taimoor, S.; Hao, L.; Dong, R.; Liu, K.; Texter, J.; Sun, Z. Innova. Mater. 2024, 2, 100060. doi: 10.59717/j.xinn-mater.2024.100060

    12. [12]

      Yang, C.; Zhang, Q.; Wang, W.; Cheng, B.; Yu, J.; Cao, S. Sci. China Mater. 2024, 67, 1830. doi: 10.1007/s40843-024-2789-0  doi: 10.1007/s40843-024-2789-0

    13. [13]

      Dong, J.; Ji, S.; Zhang, Y.; Ji, M.; Wang, B.; Li, Y.; Chen, Z.; Xia, J.; Li, H. Acta Phys. -Chim. Sin. 2023, 39, 2212011. doi: 10.3866/PKU.WHXB202212011  doi: 10.3866/PKU.WHXB202212011

    14. [14]

      Duo, F.; Wang, Y.; Fan, C.; Zhang, X.; Wang, Y. J. Alloy. Compd. 2016, 685, 34. doi: 10.1016/j.jallcom.2016.05.259  doi: 10.1016/j.jallcom.2016.05.259

    15. [15]

      Zhao, H. j.; Yu, Z.; Wu, R. J.; Yi, M.; Zhang, G. h.; Zhou, Y.; Han, Z. b.; Li, X.; Ma, F. J. Chin. Chem. Soc. 2022, 69, 925. doi: 10.1002/jccs.202200016  doi: 10.1002/jccs.202200016

    16. [16]

      Zhao, J. Z.; Xue, M.; Ji, M. X.; Wang, B.; Wang, Y.; Li, Y. J.; Chen, Z. R.; Li, H. M.; Xia, J. X. Chin. J. Catal. 2022, 43, 1324. doi: 10.1016/s1872-2067(21)64037-8  doi: 10.1016/s1872-2067(21)64037-8

    17. [17]

      Li, T.; Zhang, L.; Gao, Y.; Xing, X.; Zhang, X.; Li, F.; Hu, C. Appl. Catal., B. 2022, 307, 121192. doi: 10.1016/j.apcatb.2022.121192  doi: 10.1016/j.apcatb.2022.121192

    18. [18]

      Jiang, Z.; Yang, F.; Yang, G. D.; Kong, L. A.; Jones, M. O.; Xiao, T. C.; Edwards, P. P. J. Photochem. Photobiol. A-Chem. 2010, 212, 8. doi: 10.1016/j.jphotochem.2010.03.004  doi: 10.1016/j.jphotochem.2010.03.004

    19. [19]

      Xu, X.; Shao, C.; Zhang, J.; Wang, Z.; Dai, K. Acta Phys. -Chim. Sin. 2024, 40, 2309031. doi: 10.3866/PKU.WHXB202309031  doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Yan, C.; Xu, M.; Cao, W.; Chen, Q.; Song, X.; Huo, P.; Zhou, W.; Wang, H. J. Environ. Chem. Eng. 2023, 11, 111479. doi: 10.1016/j.jece.2023.111479  doi: 10.1016/j.jece.2023.111479

    21. [21]

      Wan, S.-J.; Hou, Y.-T.; Wang, W.; Luo, G.-Q.; Wang, C.-B.; Tu, R.; Cao, S.-W. Rare Met. 2024, 43, 5880. doi: 10.1007/s12598-024-02861-z  doi: 10.1007/s12598-024-02861-z

    22. [22]

      Jo, W.-K.; Kumar, S.; Eslava, S.; Tonda, S. Appl. Catal. B 2018, 239, 586. doi: 10.1016/j.apcatb.2018.08.056  doi: 10.1016/j.apcatb.2018.08.056

    23. [23]

      Pan, J.; Guan, Z.; Yang, J.; Li, Q. Chin. J. Catal. 2020, 41, 200. doi: 10.1016/s1872-2067(19)63422-4  doi: 10.1016/s1872-2067(19)63422-4

    24. [24]

      Li, X.; Jiang, H.; Ma, C.; Zhu, Z.; Song, X.; Wang, H.; Huo, P.; Li, X. Appl. Catal. B 2021, 283, 119638. doi: 10.1016/j.apcatb.2020.119638  doi: 10.1016/j.apcatb.2020.119638

    25. [25]

      Bárdos, E.; Márta, V.; Baia, L.; Todea, M.; Kovács, G.; Baán, K.; Garg, S.; Pap, Z.; Hernadi, K. Appl. Surf. Sci. 2020, 518, 146184. doi: 10.1016/j.apsusc.2020.146184  doi: 10.1016/j.apsusc.2020.146184

    26. [26]

      Shi, J.; Meng, X.; Hao, M.; Cao, Z.; He, W.; Gao, Y.; Liu, J. J. Phys. Chem. Solids. 2018, 113, 142. doi: 10.1016/j.jpcs.2017.10.031  doi: 10.1016/j.jpcs.2017.10.031

    27. [27]

      Guan, C.; Hou, T.; Nie, W.; Zhang, Q.; Duan, L.; Zhao, X. J. Colloid Interface Sci. 2023, 633, 177. doi: 10.1016/j.jcis.2022.11.106  doi: 10.1016/j.jcis.2022.11.106

    28. [28]

      Qu, J.; Du, Y.; Ji, P.; Li, Z.; Jiang, N.; Sun, X.; Xue, L.; Li, H.; Sun, G. J. Alloy. Compd. 2021, 881, 160391. doi: 10.1016/j.jallcom.2021.160391  doi: 10.1016/j.jallcom.2021.160391

    29. [29]

      Andrade, Ó.; Rodríguez, V.; Camarillo, R.; Martínez, F.; Jiménez, C.; Rincón, J. Nanomaterials 2022, 12, 111793. doi: 10.3390/nano12111793  doi: 10.3390/nano12111793

    30. [30]

      Li, Y. Q.; Luo, S. L.; Sun, L.; Kong, D. Z.; Sheng, J. G.; Wang, K.; Dong, C. W. Food Anal. Methods. 2019, 12, 1658. doi: 10.1007/s12161-019-01505-8  doi: 10.1007/s12161-019-01505-8

    31. [31]

      Yu, X.; Chen, Y.; Sun, D.; Yin, Y.; Zhang, Q.; Ru, Y.; Tian, G. ACS Appl. Nano Mater. 2024, 7, 17406. doi: 10.1021/acsanm.4c02400  doi: 10.1021/acsanm.4c02400

    32. [32]

      Wang, F.; Yu, Z.; Shi, K.; Li, X.; Lu, K.; Huang, W.; Yu, C.; Yang, K. Molecules 2023, 28, 062435. doi: 10.3390/molecules28062435  doi: 10.3390/molecules28062435

    33. [33]

      Jia, Z. W.; Ning, S. B.; Tong, Y. X.; Chen, X.; Hu, H. L.; Liu, L. Q.; Ye, J. H.; Wang, D. F. ACS Appl. Nano Mater. 2021, 4, 10485. doi: 10.1021/acsanm.1c01991  doi: 10.1021/acsanm.1c01991

    34. [34]

      Zhang, N.; Li, J.; Sun, X.; Ma, J.; Li, S. J. Environ. Chem. Eng. 2024, 12, 113212. doi: 10.1016/j.jece.2024.113212  doi: 10.1016/j.jece.2024.113212

    35. [35]

      Dong, Z.; Wang, Y.; Zhang, X.; Guan, X.; Zhang, C.; Wu, W.; Fan, C. Mater. Lett. 2024, 358, 135887. doi: 10.1016/j.matlet.2024.135887  doi: 10.1016/j.matlet.2024.135887

    36. [36]

      Wen, M.; Benabdesselam, M.; Beauger, C. J. CO2 Util. 2024, 81, 102719. doi: 10.1016/j.jcou.2024.102719  doi: 10.1016/j.jcou.2024.102719

    37. [37]

      Yan, X.; Gao, B.; Zheng, X.; Cheng, M.; Zhou, N.; Liu, X.; Du, L.; Yuan, F.; Wang, J.; Cui, X.; et al. Appl. Catal., B. 2024, 343, 123484. doi: 10.1016/j.apcatb.2023.123484  doi: 10.1016/j.apcatb.2023.123484

    38. [38]

      Yu, X.; Chen, Y.; Zhang, Q.; Yin, Y.; Sun, D.; Ru, Y.; Tian, G. Surf. Interfaces. 2023, 38, 102789. doi: 10.1016/j.surfin.2023.102789  doi: 10.1016/j.surfin.2023.102789

    39. [39]

      Song, T.; Zhang, X.; Xie, C.; Yang, P. Carbon. 2023, 210, 118052. doi: 10.1016/j.carbon.2023.118052  doi: 10.1016/j.carbon.2023.118052

    40. [40]

      Chen, J.; Guan, M.; Cai, W.; Guo, J.; Xiao, C.; Zhang, G. PCCP. 2014, 16, 20909. doi: 10.1039/c4cp02972k  doi: 10.1039/c4cp02972k

    41. [41]

      Wang, H.; Yong, D.; Chen, S.; Jiang, S.; Zhang, X.; Shao, W.; Zhang, Q.; Yan, W.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2018, 140, 1760. doi: 10.1021/jacs.7b10997  doi: 10.1021/jacs.7b10997

    42. [42]

      Zhu, Z.; Ye, J.; Tang, X.; Chen, Z.; Yang, J.; Huo, P.; Ng, Y. H.; Crittenden, J. Environ. Sci. Technol. 2023, 57, 16131. doi: 10.1021/acs.est.3c03037  doi: 10.1021/acs.est.3c03037

    43. [43]

      Li, J.; Sun, X.; Duan, Y.; Ma, J.; He, C.; Li, S. Chem. Eng. J. 2023, 473, 145383. doi: 10.1016/j.cej.2023.145383  doi: 10.1016/j.cej.2023.145383

    44. [44]

      Chao, Y. H.; Pang, J. Y.; Bai, Y.; Wu, P. W.; Luo, J.; He, J.; Jin, Y.; Li, X. W.; Xiong, J.; Li, H. M.; et al. Food Chem. 2020, 320, 126666. doi: 10.1016/j.foodchem.2020.126666  doi: 10.1016/j.foodchem.2020.126666

    45. [45]

      Yang, D.; Wang, W.; An, K.; Chen, Y.; Zhao, Z.; Gao, Y.; Jiang, Z. Appl. Surf. Sci. 2021, 562, 150256. doi: 10.1016/j.apsusc.2021.150256  doi: 10.1016/j.apsusc.2021.150256

    46. [46]

      Wu, D.; Ye, L.; Yip, H. Y.; Wong, P. K. Catal. Sci. Technol. 2017, 7, 265. doi: 10.1039/c6cy02040b  doi: 10.1039/c6cy02040b

    47. [47]

      Liu, G.; Xu, H.; Li, D.; Zou, Z.; Li, Q.; Xia, D. Eur. J. Inorg. Chem. 2019, 2019, 4887. doi: 10.1002/ejic.201900948  doi: 10.1002/ejic.201900948

    48. [48]

      Ma, Y. B.; Xu, X. Y.; Yang, T. Y.; Shen, Y. Y.; Jiang, F.; Zhang, Y. W.; Lv, X. T.; Liu, Y. M.; Feng, B.; Che, G. B.; et al. J. Alloy. Compd. 2024, 970, 172663. doi: 10.1016/j.jallcom.2023.172663  doi: 10.1016/j.jallcom.2023.172663

    49. [49]

      He, L.; Zhang, W.; Liu, S.; Zhao, Y. Appl. Catal. B 2021, 298, 120546doi: 10.1016/j.apcatb.2021.120546  doi: 10.1016/j.apcatb.2021.120546

    50. [50]

      You, X.; Liu, F.; Jiang, G.; Chen, S.; An, B.; Cui, R. ChemistrySelect. 2022, 7, 203024. doi: 10.1002/slct.202203024  doi: 10.1002/slct.202203024

    51. [51]

      Zhu, Z.; Xing, X.; Qi, Q.; Shen, W.; Wu, H.; Li, D.; Li, B.; Liang, J.; Tang, X.; Zhao, J.; et al. Chin. J. Struct. Chem. 2023, 42, 100194. doi: 10.1016/j.cjsc.2023.100194  doi: 10.1016/j.cjsc.2023.100194

    52. [52]

      Li, C.; Zhang, P.; Gu, F.; Tong, L.; Jiang, J.; Zuo, Y.; Dong, H. Chem. Eng. J. 2023, 476, 146514. doi: 10.1016/j.cej.2023.146514  doi: 10.1016/j.cej.2023.146514

    53. [53]

      Dong, H.; Xiao, M.; Zhu, D.; Zuo, Y.; Cheng, S.; Han, Z.; Li, C. Int. J. Hydrog. Energy 2021, 46, 32044. doi: 10.1016/j.ijhydene.2021.06.222  doi: 10.1016/j.ijhydene.2021.06.222

    54. [54]

      Xu, D.; Zhang, S.; Yu, Y.; Zhang, S.; Ding, Q.; Lei, Y.; Shi, W. Fuel. 2023, 351, 128774. doi: 10.1016/j.fuel.2023.128774  doi: 10.1016/j.fuel.2023.128774

    55. [55]

      Du, X. J.; Du, W. H.; Sun, J.; Jiang, D. Food Chem. 2022, 385, 132731. doi: 10.1016/j.foodchem.2022.132731  doi: 10.1016/j.foodchem.2022.132731

    56. [56]

      Yang, N.; Zhou, X.; Yu, D. F.; Jiao, S. Y.; Han, X.; Zhang, S. L.; Yin, H.; Mao, H. P. J. Food Process Eng. 2020, 43, e13544. doi: 10.1111/jfpe.13544  doi: 10.1111/jfpe.13544

    57. [57]

      Yan, M.; Jiang, F.; Wu, Y. Int. J. Hydrog. Energy 2023, 48, 8867. doi: 10.1016/j.ijhydene.2022.12.002  doi: 10.1016/j.ijhydene.2022.12.002

    58. [58]

      Du, J.; Ma, Y. Y.; Tan, H.; Kang, Z. H.; Li, Y. Chin. J. Catal. 2021, 42, 920. doi: 10.1016/S1872‐2067(20)63718‐4  doi: 10.1016/S1872‐2067(20)63718‐4

    59. [59]

      Li, C.; Liu, X.; Ding, G.; Huo, P.; Yan, Y.; Yan, Y.; Liao, G. Inorg. Chem. 2022, 61, 4681. doi: 10.1021/acs.inorgchem.1c03936  doi: 10.1021/acs.inorgchem.1c03936

    60. [60]

      Zhang, Y.; Gao, M.; Chen, S.; Wang, H.; Huo, P. Acta Phys. -Chim. Sin. 2023, 39, 2211051. doi: 10.3866/PKU.WHXB202211051  doi: 10.3866/PKU.WHXB202211051

    61. [61]

      Pan, Y.; Liang, W.; Wang, Z.; Gong, J.; Wang, Y.; Xu, A.; Teng, Z.; Shen, S.; Gu, L.; Zhong, W.; et al. Interdiscip. Mater. 2024, 3, 935. doi: 10.1002/idm2.12203  doi: 10.1002/idm2.12203

    62. [62]

      Zhou, T.; Zhang, P.; Zhu, D.; Cheng, S.; Dong, H.; Wang, Y.; Che, G.; Niu, Y.; Yan, M.; Li, C. Chem. Eng. J. 2022, 442, 136190. doi: 10.1016/j.cej.2022.136190  doi: 10.1016/j.cej.2022.136190

    63. [63]

      Dao, X.-Y.; Guo, J.-H.; Wei, Y.-P.; Guo, F.; Liu, Y.; Sun, W.-Y. Inorg. Chem. 2019, 58, 8517. doi: 10.1021/acs.inorgchem.9b00824  doi: 10.1021/acs.inorgchem.9b00824

    64. [64]

      Guo, J.; Wang, K.; Wang, X. Catal. Sci. Technol. 2017, 7, 6013. doi: 10.1039/c7cy01869j  doi: 10.1039/c7cy01869j

    65. [65]

      Jia, Y.; Zhang, W.; Do, J. Y.; Kang, M.; Liu, C. Chem. Eng. J. 2020, 402, 126193. doi: 10.1016/j.cej.2020.126193  doi: 10.1016/j.cej.2020.126193

    66. [66]

      Han, Q.; Li, L.; Gao, W.; Shen, Y.; Wang, L.; Zhang, Y.; Wang, X.; Shen, Q.; Xiong, Y.; Zhou, Y.; Zou, Z. ACS Appl. Mater. Interfaces. 2021, 13, 15092. doi: 10.1021/acsami.0c21266  doi: 10.1021/acsami.0c21266

    67. [67]

      Zhu, J.-Y.; Li, Y.-P.; Wang, X.-J.; Zhao, J.; Wu, Y.-S.; Li, F.-T. ACS Sustain. Chem. Eng. 2019, 7, 14953. doi: 10.1021/acssuschemeng.9b03196  doi: 10.1021/acssuschemeng.9b03196

    68. [68]

      Xie, Y.; Yiqiao, W.; Yipeng, Z.; Fahui, W.; Yang, X.; Senlin, R.; Jingshen, Z. Appl. Catal. A Gen. 2024, 669, 119504. doi: 10.1016/j.apcata.2023.119504  doi: 10.1016/j.apcata.2023.119504

    69. [69]

      Yu, H.; Huang, J.; Jiang, L.; Leng, L.; Yi, K.; Zhang, W.; Zhang, C.; Yuan, X. Appl. Catal. B 2021, 298, 120618. doi: 10.1016/j.apcatb.2021.120618  doi: 10.1016/j.apcatb.2021.120618

    70. [70]

      Gao, M. C.; Yang, J. X.; Sun, T.; Zhang, Z. Z.; Zhang, D. F.; Huang, H. J.; Lin, H. X.; Fang, Y.; Wang, X. X. Appl. Catal. B 2019, 243, 734. doi: 10.1016/j.apcatb.2018.11.020  doi: 10.1016/j.apcatb.2018.11.020

    71. [71]

      Liu, G.; Wang, L.; Wang, B.; Zhu, X.; Yang, J.; Liu, P.; Zhu, W.; Chen, Z.; Xia, J. Chin. Chem. Lett. 2023, 34, 107962. doi: 10.1016/j.cclet.2022.107962  doi: 10.1016/j.cclet.2022.107962

    72. [72]

      Zhao, M.; Qin, J.; Wang, N.; Zhang, Y.; Cui, H. Sep. Purif. Technol. 2024, 329, 125179. doi: 10.1016/j.seppur.2023.125179  doi: 10.1016/j.seppur.2023.125179

    73. [73]

      Meng, J.; Duan, Y.; Jing, S.; Ma, J.; Wang, K.; Zhou, K.; Ban, C.; Wang, Y.; Hu, B.; Yu, D.; Gan, L.; Zhou, X. Nano Energy. 2022, 92, 106671. doi: 10.1016/j.nanoen.2021.106671  doi: 10.1016/j.nanoen.2021.106671

    74. [74]

      Fang, R.; Yang, Z.; Sun, J.; Zhu, C.; Chen, Y.; Wang, Z.; Xue, C. J. Mater. Chem. A 2024, 12, 3398. doi: 10.1039/d3ta07006a  doi: 10.1039/d3ta07006a

    75. [75]

      Shi, W.; Zhang, R.; Wang, J.-C.; Li, W.; Guo, X.; Guo, J.; Li, R.; Hou, Y.; Zhang, W.; Gao, H.-L. J. Catal. 2024, 429, 115235. doi: 10.1016/j.jcat.2023.115235  doi: 10.1016/j.jcat.2023.115235

    76. [76]

      Fang, X.; Wang, C.-Y.; Zhou, L.-P.; Zeng, Q.; Zhou, H.-D.; Wang, Q.; Zhu, G. J. Environ. Chem. Eng. 2023, 11, 109986. doi: 10.1016/j.jece.2023.109986  doi: 10.1016/j.jece.2023.109986

    77. [77]

      Li, H.; Song, Q.; Wan, S.; Tung, C. W.; Liu, C.; Pan, Y.; Luo, G.; Chen, H. M.; Cao, S.; Yu, J.; Zhang, L. Small 2023, 19, 301711. doi: 10.1002/smll.202301711  doi: 10.1002/smll.202301711

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    3. [3]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    4. [4]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 100024-0. doi: 10.3866/PKU.WHXB202404012

    5. [5]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    6. [6]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Xiaofan ZHANGYu DUANMeijie SHINan LURenhong LIXiaoqing YAN . Z-scheme Co3O4/BiOBr heterojunction for efficient photoreduction CO2 reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1878-1888. doi: 10.11862/CJIC.20250079

    10. [10]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Tengyue ZHANGJingjing FENGZili LIANGJia′nan DAIJing MA . Optimization of C-doped BiVO4 performance for tetracycline degradation using response surface methodology-assisted orthogonal experiments. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2561-2574. doi: 10.11862/CJIC.20250104

    12. [12]

      Xian-Wei LvXinyuan DingJiaxing GongXuhuan YanDayong HuangJianxin GengZhong-Yong Yuan . Research progress on orbital hybridization in photocatalysis and electrocatalysis. Acta Physico-Chimica Sinica, 2026, 42(2): 100151-0. doi: 10.1016/j.actphy.2025.100151

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Tong WUYi ZHONGWeimin ZHAOHong XUZhiping MAOLinping ZHANG . BiOBr/NH2-MIL-101(Fe): Preparation and performance on photocatalytic reduction of CO2. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1765-1775. doi: 10.11862/CJIC.20250103

    17. [17]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    19. [19]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 100019-0. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(1)
  • Abstract views(135)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return