Citation:
Liuyun Chen, Wenju Wang, Tairong Lu, Xuan Luo, Xinling Xie, Kelin Huang, Shanli Qin, Tongming Su, Zuzeng Qin, Hongbing Ji. Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100054.
doi:
10.1016/j.actphy.2025.100054
-
Plasma-activated heterogeneous catalysis is a promising strategy for catalytic CO2 hydrogenation under mild conditions. In this study, pore structures with deep pore channels were constructed on Al2O3-x via a soft template method, and Cu/Al2O3-x was prepared by an impregnation method, with Al2O3-x serving as the support for plasma-catalyzed CO2 hydrogenation to dimethyl ether (DME). Cu/Al2O3-0.75/HZSM-5 demonstrated a high performance and discharge efficiency for plasma-catalyzed CO2 hydrogenation. The CO2 conversion and DME yield for plasma-catalyzed CO2 hydrogenation on Cu/Al2O3-0.75/HZSM-5 reached 21.98% and 9.83%, respectively, with selectivities for CO, CH3OH, and DME on Cu/Al2O3-0.75/HZSM-5 of 25.39%, 29.89%, and 44.72%, respectively. The deep pore structures on Al2O3-x serve as Cu loading sites, and the confinement effect of the pores enhances the metal-support interaction and Cu metal dispersion. More abundant and stronger Brønsted basic and Lewis acidic sites facilitate the activation and hydrogenation of CO2. Notably, the electric field formed by Cu sites anchored in the deep pore channel structures is conducive to guiding the activated plasma CO2 intermediates into the difficult-to-access pores for hydrogenation. Hydrogenation of the plasma-activated CO2 intermediates in the deep pore channels is crucial for improving plasma-catalyzed CO2 hydrogenation to DME.
-
Keywords:
- Plasma catalysis,
- CO2 hydrogenation,
- Dimethyl ether,
- Al2O3,
- Pore channel
-
-
-
[1]
Zhang, L.; Zhao, Z.-J.; Wang, T.; Gong, J. Chem. Soc. Rev. 2018, 47, 5423. doi:10.1039/C8CS00016F
-
[2]
Gómez-Bravo, E.; González-Marcos, J. A.; González-Velasco, J. R.; Pereda-Ayo, B. Chem. Eng. Sci. 2024, 297, 120312. doi:10.1016/j.ces.2024.120312
-
[3]
Lv, J.; Xie, J.; Mohamed, A. G. A.; Zhang, X.; Feng, Y.; Jiao, L.; Zhou, E.; Yuan, D.; Wang, Y. Nat. Rev. Chem. 2023, 7, 91. doi:10.1038/s41570-022-00448-9
-
[4]
Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7
-
[5]
Guo, W.; Li, G.; bai, C.; Liu, Q.; Chen, F.; Chen, R. Nat. Commun. 2024, 15, 1573. doi:10.1038/s41467-024-46072-7
-
[6]
She, X.; Zhai, L.; Wang, Y.; Xiong, P.; Li, M. M.-J.; Wu, T.-S.; Wong, M. C.; Guo, X.; Xu, Z.; Li, H.; et al. Nat. Energy 2024, 9, 81. doi:10.1038/s41560-023-01415-4
-
[7]
Chen, C.; Zhang, Z.; Li, G.; Li, L.; Lin, Z. Energy Fuels 2021, 35, 7485. doi:10.1021/acs.energyfuels.1c00448
-
[8]
Hasan, M. M. F.; Rossi, L. M.; Debecker, D. P.; Leonard, K. C.; Li, Z.; Makhubela, B. C. E.; Zhao, C.; Kleij, A. ACS Sustainable Chem. Eng. 2021, 9, 12427. doi:10.1021/acssuschemeng.1c06008
-
[9]
Chen, X.; Su, T.; Luo, X.; Xie, X.; Qin, Z.; Ji, H. Surf. Interfaces 2024, 48, 104346. doi:10.1016/j.surfin.2024.104346
-
[10]
Kubas, D.; Gierse, M.; Salem, O.; Krossing, I. ACS Catal. 2023, 13, 3960. doi:10.1021/acscatal.2c06207
-
[11]
Le, N.; Fong, Y. J. Ind. Eng. Chem. 2024, 140, 88. doi:10.1016/j.jiec.2024.05.058
-
[12]
Chen, H.; Goodarzi, F.; Mu, Y.; Chansai, S.; Mielby, J. J.; Mao, B.; Sooknoi, T.; Hardacre, C.; Kegnæs, S.; Fan, X. Appl. Catal.b:Environ. 2020, 272, 119013. doi:10.1016/j.apcatb.2020.119013
-
[13]
Neyts, E. C.; Ostrikov, K.; Sunkara, M. K.; Bogaerts, A. Chem. Rev. 2015, 115, 13408. doi:10.1021/acs.chemrev.5b00362
-
[14]
Ciocarlan, R. G.; Blommaerts, N.; Lenaerts, S.;COol, P.; Verbruggen, S. W. ChemSusChem 2023, 16, 25. doi:10.1002/cssc.202201647
-
[15]
Joshi, N.; Loganathan, S. Plasma Process. Polym. 2021, 18, 11. doi:10.1002/ppap.202000104
-
[16]
Su, T.; Zhou, X.; Qin, Z.; Ji, H. ChemPhysChem 2017, 18, 299. doi:10.1002/cphc.201601283
-
[17]
Whitehead, J. C. Front. Chem. Sci. Eng. 2019, 13, 264. doi:10.1007/s11705-019-1794-3
-
[18]
Wang, J.; Zhang, K.; Bogaerts, A.; Meynen, V. Chem. Eng. J. 2023, 464, 142574. doi:10.1016/j.cej.2023.142574
-
[19]
Tedeeva, M. A.; Kustov, A. L.; Pribytkov, P. V.; Kapustin, G. I.; Leonov, A. V.; Tkachenko, O. P.; Tursunov, O. B.; Evdokimenko, N. D.; Kustov, L. M. Fuel 2022, 313, 122698. doi:10.1016/j.fuel.2021.122698
-
[20]
Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. ACS Catal. 2020, 10, 6356. doi:10.1021/acscatal.0c01505
-
[21]
Xu, L.; Song, H.; Chou, L. Int. J. Hydrog. Energy 2013, 38, 7307. doi:10.1016/j.ijhydene.2013.04.034
-
[22]
Guo, X.; Liu, F.; Hua, Y.; Xue, H.; Yu, J.; Mao, D.; Rempel, G. L.; Ng, F. T. T. Catal. Today 2023, 407, 125. doi:10.1016/j.cattod.2022.02.004
-
[23]
Ai, X.; Xie, H.; Chen, S.; Zhang, G.; Xu, B.; Zhou, G. Int. J. Hydrog. Energy 2022, 47, 14884. doi:10.1016/j.ijhydene.2022.03.002
-
[24]
Zafar, F.; Zhao, R.; Ali, M.; Min Park, Y.; Roh, H.-S.; Gao, X.; Tian, J.; Wookbae, J. Chem. Eng. J. 2022, 439, 135649. doi:10.1016/j.cej.2022.135649
-
[25]
Guo, Y.; Feng, L.; Liu, Y.; Zhao, Z. Chin. Chem. Lett. 2022, 33, 2906. doi:10.1016/j.cclet.2021.10.031
-
[26]
Qin, Z.-Z.; Su, T.-M.; Ji, H.-B.; Jiang, Y.-X.; Liu, R.-W.; Chen, J.-H. AIChE J. 2015, 61, 1613. doi:10.1002/aic.14743
-
[27]
Yang, Y.; Su, T.; Xie, X.; Luo, X.; Ji, H.; Sin, J.-C.; Lam, S.-M.; Qin, Z. Catal. Lett. 2024, 154, 6454. doi:10.1007/s10562-024-04828-2
-
[28]
Zhou, X.; Su, T.; Jiang, Y.; Qin, Z.; Ji, H.; Guo, Z. Chem. Eng. Sci. 2016, 153, 10. doi:10.1016/j.ces.2016.07.007
-
[29]
Su, T.; Zhou, X.; Qin, Z.; Ji, H. ChemPhysChem 2017, 18, 299. doi:10.1002/cphc.201601283
-
[30]
Chen, T.; Chen, J.; Wu, J.; Song, W.; Hu, S.; Feng, X.; Chen, Z.; Yuan, E.; Ji, W.; Au, C.-T. ACS Catal. 2023, 13, 887. doi:10.1021/acscatal.2c04784
-
[31]
Li, B.-H.; Zhang, K.-H.; Wang, X.-J.; Li, Y.-P.; Liu, X.; Han, B.-H.; Li, F.-T. J. Coll. Interf. Sci. 2024, 660, 961. doi:10.1016/j.jcis.2024.01.159
-
[32]
Zhang, P.; Shi, Y.; Zhang, Y.; Feng, S.; Shi, L.; Pan, J.; Cao, J.; Li, C. Chem. Eng. J. 2024, 487, 150727. doi:10.1016/j.cej.2024.150727
-
[33]
Fang, M.-J.; Lin, Y.-C.; Jan, J.-Y.; Lai, T.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chiu, Y.-H.; Tsao, C.-W.; Chen, Y.-A.; Wang, Y.-T.; et al. Appl. Catal. B:Environ. 2023, 324, 122198. doi:10.1016/j.apcatb.2022.122198
-
[34]
Deng, K.; Chen, X.; Moncada, J.; Salvatore, K. L.; Rui, N.; Xu, W.; Xiang, S.; Marinkovic, N.; Frenkel, A. I.; Zhou, G.; et al. ACS Catal. 2024, 14, 11832. doi:10.1021/acscatal.4c02694
-
[35]
Sing, K. S. W. Pure Appl. Chem. 1985, 57, 603. doi:10.1351/pac198557040603
-
[36]
Chen, L.; Sun, M.; Meng, J.; Chu,b.; Xie, X.; Luo, X.; Ji, H.; Su, T.; Qin, Z. Appl. Surf. Sci. 2023, 637, 157948. doi:10.1016/j.apsusc.2023.157948
-
[37]
Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B.; et al. Nano Energy 2018, 53, 97. doi:10.1016/j.nanoen.2018.08.040
-
[38]
Dai, J.; Zhang, H. Small 2021, 17, 2005334. doi:10.1002/smll.202005334
-
[39]
Luo, Y.; Su, T.; Song, P.; Chen, L.; Xie, X.; Luo, X.; Ji, H.; Qin, Z. Mol. Catal. 2024, 562, 114226. doi:10.1016/j.mcat.2024.114226
-
[40]
Khalakhan, I.; Vorokhta, M.; Xie, X.; Piliai, L.; Matolínová, I. J. Electron Spectrosc. 2021, 246, 147027. doi:10.1016/j.elspec.2020.147027
-
[41]
Tanos, F.; Makhoul, E.; Nada, A. A.; Bekheet, M. F.; Riedel, W.; Kawrani, S.; Belaid, H.; Petit, E.; Viter, R.; Fedorenko, V.; et al. Appl. Surf. Sci. 2024, 656, 159698. doi:10.1016/j.apsusc.2024.159698
-
[42]
Oh, Y.; Theerthagiri, J.; ArunaKumari, M. L.; Min, A.; Moon, C. J.; Choi, M. Y. J. Energy Chem. 2024, 91, 145. doi:10.1016/j.jechem.2023.12.023
-
[43]
Zhang, K.; Lu, J.; Li, J.; Zhang, D.; Gao, L.; Zhou, H. Corros. Sci. 2020, 164, 108352. doi:10.1016/j.corsci.2019.108352
-
[44]
Li, M.; Ma, Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. Angew. Chem. Int. Ed. 2021, 60, 11487. doi:10.1002/anie.202102606
-
[45]
Wang, C.; Su, T.; Qin, Z.; Ji, H. Catal. Sci. Technol. 2022, 12, 4826. doi:10.1039/D2CY00582D
-
[46]
Lo, A.-Y.; Chung, Y.-C.; Xie, P.-J.; Delbari, H.; Yang, Z.-H.; Taghipour, F. Appl. Mater. Today 2023, 32, 101811. doi:10.1016/j.apmt.2023.101811
-
[47]
Li, H.; Zhao, S.; Zhang, W.; Du, H.; Yang, X.; Peng, Y.; Han, D.; Wang, B.; Li, Z. Fuel 2023, 342, 127786. doi:10.1016/j.fuel.2023.127786
-
[48]
Chong, R.; Su, C.; Du, Y.; Fan, Y.; Ling, Z.; Chang, Z.; Li, D. J. Catal. 2018, 363, 92. doi:10.1016/j.jcat.2018.04.020
-
[49]
Li, D.; Sun, Y.; Yang, Y.-L.; Shi, X.-L.; Xie, D.-A.; Nie, L.; Chen, J.-G.; Luo, Z.; Chen, H.-J.; Yang, C.-A.; et al. Sustain. Materi. Techno. 2024, 39, e00834. doi:10.1016/j.susmat.2024.e00834
-
[50]
Kostyniuk, A.; Key, D.; Mdleleni, M. J. Saudi Chem. Soc. 2019, 23, 612. doi:10.1016/j.jscs.2018.11.001
-
[1]
-
-
-
[1]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[2]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[3]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[4]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[5]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
-
[6]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[7]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[8]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[9]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[10]
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
-
[11]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[12]
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
-
[13]
Honghong Zhang , Zhen Wei , Derek Hao , Lin Jing , Yuxi Liu , Hongxing Dai , Weiqin Wei , Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073
-
[14]
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
-
[15]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[16]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[17]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[18]
Xueqi Yang , Juntao Zhao , Jiawei Ye , Desen Zhou , Tingmin Di , Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074
-
[19]
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
-
[20]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(30)
- HTML views(4)