Citation: Liuyun Chen,  Wenju Wang,  Tairong Lu,  Xuan Luo,  Xinling Xie,  Kelin Huang,  Shanli Qin,  Tongming Su,  Zuzeng Qin,  Hongbing Ji. Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100054. doi: 10.1016/j.actphy.2025.100054 shu

Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME

  • Received Date: 22 December 2024
    Revised Date: 21 January 2025
    Accepted Date: 21 January 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (22078074, 22208065) and the Key Projects of Guangxi Science and Technology (Guike AA24263003).

  • Plasma-activated heterogeneous catalysis is a promising strategy for catalytic CO2 hydrogenation under mild conditions. In this study, pore structures with deep pore channels were constructed on Al2O3-x via a soft template method, and Cu/Al2O3-x was prepared by an impregnation method, with Al2O3-x serving as the support for plasma-catalyzed CO2 hydrogenation to dimethyl ether (DME). Cu/Al2O3-0.75/HZSM-5 demonstrated a high performance and discharge efficiency for plasma-catalyzed CO2 hydrogenation. The CO2 conversion and DME yield for plasma-catalyzed CO2 hydrogenation on Cu/Al2O3-0.75/HZSM-5 reached 21.98% and 9.83%, respectively, with selectivities for CO, CH3OH, and DME on Cu/Al2O3-0.75/HZSM-5 of 25.39%, 29.89%, and 44.72%, respectively. The deep pore structures on Al2O3-x serve as Cu loading sites, and the confinement effect of the pores enhances the metal-support interaction and Cu metal dispersion. More abundant and stronger Brønsted basic and Lewis acidic sites facilitate the activation and hydrogenation of CO2. Notably, the electric field formed by Cu sites anchored in the deep pore channel structures is conducive to guiding the activated plasma CO2 intermediates into the difficult-to-access pores for hydrogenation. Hydrogenation of the plasma-activated CO2 intermediates in the deep pore channels is crucial for improving plasma-catalyzed CO2 hydrogenation to DME.
  • 加载中
    1. [1]

      Zhang, L.; Zhao, Z.-J.; Wang, T.; Gong, J. Chem. Soc. Rev. 2018, 47, 5423. doi:10.1039/C8CS00016F

    2. [2]

      Gómez-Bravo, E.; González-Marcos, J. A.; González-Velasco, J. R.; Pereda-Ayo, B. Chem. Eng. Sci. 2024, 297, 120312. doi:10.1016/j.ces.2024.120312

    3. [3]

      Lv, J.; Xie, J.; Mohamed, A. G. A.; Zhang, X.; Feng, Y.; Jiao, L.; Zhou, E.; Yuan, D.; Wang, Y. Nat. Rev. Chem. 2023, 7, 91. doi:10.1038/s41570-022-00448-9

    4. [4]

      Deng, X.; Zhang, J.; Qi, K.; Liang, G.; Xu, F.; Yu, J. Nat. Commun. 2024, 15, 4807. doi:10.1038/s41467-024-49004-7

    5. [5]

      Guo, W.; Li, G.; bai, C.; Liu, Q.; Chen, F.; Chen, R. Nat. Commun. 2024, 15, 1573. doi:10.1038/s41467-024-46072-7

    6. [6]

      She, X.; Zhai, L.; Wang, Y.; Xiong, P.; Li, M. M.-J.; Wu, T.-S.; Wong, M. C.; Guo, X.; Xu, Z.; Li, H.; et al. Nat. Energy 2024, 9, 81. doi:10.1038/s41560-023-01415-4

    7. [7]

      Chen, C.; Zhang, Z.; Li, G.; Li, L.; Lin, Z. Energy Fuels 2021, 35, 7485. doi:10.1021/acs.energyfuels.1c00448

    8. [8]

      Hasan, M. M. F.; Rossi, L. M.; Debecker, D. P.; Leonard, K. C.; Li, Z.; Makhubela, B. C. E.; Zhao, C.; Kleij, A. ACS Sustainable Chem. Eng. 2021, 9, 12427. doi:10.1021/acssuschemeng.1c06008

    9. [9]

      Chen, X.; Su, T.; Luo, X.; Xie, X.; Qin, Z.; Ji, H. Surf. Interfaces 2024, 48, 104346. doi:10.1016/j.surfin.2024.104346

    10. [10]

      Kubas, D.; Gierse, M.; Salem, O.; Krossing, I. ACS Catal. 2023, 13, 3960. doi:10.1021/acscatal.2c06207

    11. [11]

      Le, N.; Fong, Y. J. Ind. Eng. Chem. 2024, 140, 88. doi:10.1016/j.jiec.2024.05.058

    12. [12]

      Chen, H.; Goodarzi, F.; Mu, Y.; Chansai, S.; Mielby, J. J.; Mao, B.; Sooknoi, T.; Hardacre, C.; Kegnæs, S.; Fan, X. Appl. Catal.b:Environ. 2020, 272, 119013. doi:10.1016/j.apcatb.2020.119013

    13. [13]

      Neyts, E. C.; Ostrikov, K.; Sunkara, M. K.; Bogaerts, A. Chem. Rev. 2015, 115, 13408. doi:10.1021/acs.chemrev.5b00362

    14. [14]

      Ciocarlan, R. G.; Blommaerts, N.; Lenaerts, S.;COol, P.; Verbruggen, S. W. ChemSusChem 2023, 16, 25. doi:10.1002/cssc.202201647

    15. [15]

      Joshi, N.; Loganathan, S. Plasma Process. Polym. 2021, 18, 11. doi:10.1002/ppap.202000104

    16. [16]

      Su, T.; Zhou, X.; Qin, Z.; Ji, H. ChemPhysChem 2017, 18, 299. doi:10.1002/cphc.201601283

    17. [17]

      Whitehead, J. C. Front. Chem. Sci. Eng. 2019, 13, 264. doi:10.1007/s11705-019-1794-3

    18. [18]

      Wang, J.; Zhang, K.; Bogaerts, A.; Meynen, V. Chem. Eng. J. 2023, 464, 142574. doi:10.1016/j.cej.2023.142574

    19. [19]

      Tedeeva, M. A.; Kustov, A. L.; Pribytkov, P. V.; Kapustin, G. I.; Leonov, A. V.; Tkachenko, O. P.; Tursunov, O. B.; Evdokimenko, N. D.; Kustov, L. M. Fuel 2022, 313, 122698. doi:10.1016/j.fuel.2021.122698

    20. [20]

      Kuwahara, Y.; Fujie, Y.; Mihogi, T.; Yamashita, H. ACS Catal. 2020, 10, 6356. doi:10.1021/acscatal.0c01505

    21. [21]

      Xu, L.; Song, H.; Chou, L. Int. J. Hydrog. Energy 2013, 38, 7307. doi:10.1016/j.ijhydene.2013.04.034

    22. [22]

      Guo, X.; Liu, F.; Hua, Y.; Xue, H.; Yu, J.; Mao, D.; Rempel, G. L.; Ng, F. T. T. Catal. Today 2023, 407, 125. doi:10.1016/j.cattod.2022.02.004

    23. [23]

      Ai, X.; Xie, H.; Chen, S.; Zhang, G.; Xu, B.; Zhou, G. Int. J. Hydrog. Energy 2022, 47, 14884. doi:10.1016/j.ijhydene.2022.03.002

    24. [24]

      Zafar, F.; Zhao, R.; Ali, M.; Min Park, Y.; Roh, H.-S.; Gao, X.; Tian, J.; Wookbae, J. Chem. Eng. J. 2022, 439, 135649. doi:10.1016/j.cej.2022.135649

    25. [25]

      Guo, Y.; Feng, L.; Liu, Y.; Zhao, Z. Chin. Chem. Lett. 2022, 33, 2906. doi:10.1016/j.cclet.2021.10.031

    26. [26]

      Qin, Z.-Z.; Su, T.-M.; Ji, H.-B.; Jiang, Y.-X.; Liu, R.-W.; Chen, J.-H. AIChE J. 2015, 61, 1613. doi:10.1002/aic.14743

    27. [27]

      Yang, Y.; Su, T.; Xie, X.; Luo, X.; Ji, H.; Sin, J.-C.; Lam, S.-M.; Qin, Z. Catal. Lett. 2024, 154, 6454. doi:10.1007/s10562-024-04828-2

    28. [28]

      Zhou, X.; Su, T.; Jiang, Y.; Qin, Z.; Ji, H.; Guo, Z. Chem. Eng. Sci. 2016, 153, 10. doi:10.1016/j.ces.2016.07.007

    29. [29]

      Su, T.; Zhou, X.; Qin, Z.; Ji, H. ChemPhysChem 2017, 18, 299. doi:10.1002/cphc.201601283

    30. [30]

      Chen, T.; Chen, J.; Wu, J.; Song, W.; Hu, S.; Feng, X.; Chen, Z.; Yuan, E.; Ji, W.; Au, C.-T. ACS Catal. 2023, 13, 887. doi:10.1021/acscatal.2c04784

    31. [31]

      Li, B.-H.; Zhang, K.-H.; Wang, X.-J.; Li, Y.-P.; Liu, X.; Han, B.-H.; Li, F.-T. J. Coll. Interf. Sci. 2024, 660, 961. doi:10.1016/j.jcis.2024.01.159

    32. [32]

      Zhang, P.; Shi, Y.; Zhang, Y.; Feng, S.; Shi, L.; Pan, J.; Cao, J.; Li, C. Chem. Eng. J. 2024, 487, 150727. doi:10.1016/j.cej.2024.150727

    33. [33]

      Fang, M.-J.; Lin, Y.-C.; Jan, J.-Y.; Lai, T.-H.; Hsieh, P.-Y.; Kuo, M.-Y.; Chiu, Y.-H.; Tsao, C.-W.; Chen, Y.-A.; Wang, Y.-T.; et al. Appl. Catal. B:Environ. 2023, 324, 122198. doi:10.1016/j.apcatb.2022.122198

    34. [34]

      Deng, K.; Chen, X.; Moncada, J.; Salvatore, K. L.; Rui, N.; Xu, W.; Xiang, S.; Marinkovic, N.; Frenkel, A. I.; Zhou, G.; et al. ACS Catal. 2024, 14, 11832. doi:10.1021/acscatal.4c02694

    35. [35]

      Sing, K. S. W. Pure Appl. Chem. 1985, 57, 603. doi:10.1351/pac198557040603

    36. [36]

      Chen, L.; Sun, M.; Meng, J.; Chu,b.; Xie, X.; Luo, X.; Ji, H.; Su, T.; Qin, Z. Appl. Surf. Sci. 2023, 637, 157948. doi:10.1016/j.apsusc.2023.157948

    37. [37]

      Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B.; et al. Nano Energy 2018, 53, 97. doi:10.1016/j.nanoen.2018.08.040

    38. [38]

      Dai, J.; Zhang, H. Small 2021, 17, 2005334. doi:10.1002/smll.202005334

    39. [39]

      Luo, Y.; Su, T.; Song, P.; Chen, L.; Xie, X.; Luo, X.; Ji, H.; Qin, Z. Mol. Catal. 2024, 562, 114226. doi:10.1016/j.mcat.2024.114226

    40. [40]

      Khalakhan, I.; Vorokhta, M.; Xie, X.; Piliai, L.; Matolínová, I. J. Electron Spectrosc. 2021, 246, 147027. doi:10.1016/j.elspec.2020.147027

    41. [41]

      Tanos, F.; Makhoul, E.; Nada, A. A.; Bekheet, M. F.; Riedel, W.; Kawrani, S.; Belaid, H.; Petit, E.; Viter, R.; Fedorenko, V.; et al. Appl. Surf. Sci. 2024, 656, 159698. doi:10.1016/j.apsusc.2024.159698

    42. [42]

      Oh, Y.; Theerthagiri, J.; ArunaKumari, M. L.; Min, A.; Moon, C. J.; Choi, M. Y. J. Energy Chem. 2024, 91, 145. doi:10.1016/j.jechem.2023.12.023

    43. [43]

      Zhang, K.; Lu, J.; Li, J.; Zhang, D.; Gao, L.; Zhou, H. Corros. Sci. 2020, 164, 108352. doi:10.1016/j.corsci.2019.108352

    44. [44]

      Li, M.; Ma, Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. Angew. Chem. Int. Ed. 2021, 60, 11487. doi:10.1002/anie.202102606

    45. [45]

      Wang, C.; Su, T.; Qin, Z.; Ji, H. Catal. Sci. Technol. 2022, 12, 4826. doi:10.1039/D2CY00582D

    46. [46]

      Lo, A.-Y.; Chung, Y.-C.; Xie, P.-J.; Delbari, H.; Yang, Z.-H.; Taghipour, F. Appl. Mater. Today 2023, 32, 101811. doi:10.1016/j.apmt.2023.101811

    47. [47]

      Li, H.; Zhao, S.; Zhang, W.; Du, H.; Yang, X.; Peng, Y.; Han, D.; Wang, B.; Li, Z. Fuel 2023, 342, 127786. doi:10.1016/j.fuel.2023.127786

    48. [48]

      Chong, R.; Su, C.; Du, Y.; Fan, Y.; Ling, Z.; Chang, Z.; Li, D. J. Catal. 2018, 363, 92. doi:10.1016/j.jcat.2018.04.020

    49. [49]

      Li, D.; Sun, Y.; Yang, Y.-L.; Shi, X.-L.; Xie, D.-A.; Nie, L.; Chen, J.-G.; Luo, Z.; Chen, H.-J.; Yang, C.-A.; et al. Sustain. Materi. Techno. 2024, 39, e00834. doi:10.1016/j.susmat.2024.e00834

    50. [50]

      Kostyniuk, A.; Key, D.; Mdleleni, M. J. Saudi Chem. Soc. 2019, 23, 612. doi:10.1016/j.jscs.2018.11.001

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    13. [13]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    14. [14]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(0)
  • Abstract views(30)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return