Citation: Kun Rong,  Cuilian Wen,  Jiansen Wen,  Xiong Li,  Qiugang Liao,  Siqing Yan,  Chao Xu,  Xiaoliang Zhang,  Baisheng Sa,  Zhimei Sun. Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100053. doi: 10.1016/j.actphy.2025.100053 shu

Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation

  • Received Date: 26 November 2024
    Revised Date: 7 January 2025
    Accepted Date: 21 January 2025

    Fund Project: The project was supported by the National Key Research and Development Program of China (2022YFB3807200), the National Natural Science Foundation of China (52332005), and the Natural Science Foundation of Fujian Province (2024J01262).

  • Metallic 1T Molybdenum disulfide (1T-MoS2) exhibits enhanced full spectral light absorption and prominent electrical conductivity, making it ideal for photothermal applications in conjunction with Ti3C2Tx MXene. Despite the challenges in increasing the 1T-MoS2 proportion within MoS2/Ti3C2Tx heterostructures and the incomplete understanding of the mechanisms governing their formation and properties, herein, a combined theoretical and experimental framework has been established, suggesting that the metallic characteristics of Ti3C2Tx and 1T-MoS2 could significantly improve photothermal performance through strong interlayer interactions and efficient electron transport. The hierarchical MoS2/Ti3C2Tx heterostructure has been fabricated through a one-step hydrothermal synthesis method with enhanced 1T-MoS2 proportion, which achieves multilayered wrinkled architecture resulting from the in-situ growth of MoS2 on Ti3C2Tx nanosheets. Notably, a remarkable peak photoheating temperature of 107 °C under an 808 nm laser with an intensity of 0.5 W·cm-2 is realized, demonstrating its exceptional photothermal conversion capability. By incorporated into a polyvinylidene difluoride membrane, the MoS2/Ti3C2Tx heterostructure functions as an efficient self-floating solar-driven steam generator, reaching an evaporation rate of 1.79 kg·m-2·h-1 and an evaporation efficiency of 96.4% under one solar irradiance. This study proposes a versatile strategy for the MoS2/Ti3C2Tx heterostructure, offering the potential for sustainable solar-driven vapor generation technologies.
  • 加载中
    1. [1]

      Wang, H.; Li, Q.; Chen, J.; Chen, J.; Jia, H. Adv. Sci. 2023, 10, 2304406. doi:10.1002/advs.202304406

    2. [2]

      Li, J.; Wang, J.; Zhang, J.; Han, T.; Hu, X.; Lee, M. M. S.; Wang, D.; Tang, B. Z. Adv. Mater. 2021, 33, 2105999. doi:10.1002/adma.202105999

    3. [3]

      Chen, X.; Yang, N.; Wang, Y.; He, H.; Wang, J.; Wan, J.; Jiang, H.; Xu, B.; Wang, L.; Yu, R.; et al. Adv. Mater. 2022, 34, 2107400. doi:10.1002/adma.202107400

    4. [4]

      Sun, C.-Y.; Zhao, Z.-W.; Liu, H.; Wang, H.-Q. Rare Met. 2022, 41, 1403. doi:10.1007/s12598-021-01906-x

    5. [5]

      Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys.-Chim. Sin. 2022, 38, 2101020.

    6. [6]

      Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. Nat. Photonics 2016, 10, 393. doi:10.1038/nphoton.2016.75

    7. [7]

      Yang, M. Q.; Tan, C. F.; Lu, W. H.; Zeng, K. Y.; Ho, G. W. Adv. Funct. Mater. 2020, 30, 2004460. doi:10.1002/adfm.202004460

    8. [8]

      Wang, L.; Li, Y.; Ai, Y.; Fan, E.; Zhang, F.; Zhang, W.; Shao, G.; Zhang, P. Adv. Funct. Mater. 2023, 33, 2306466. doi:10.1002/adfm.202306466

    9. [9]

      Zhu, H. W.; Ge, J.; Zhao, H. Y.; Shi, L. A.; Huang, J.; Xu, L.; Yu, S. H. Sci. China Mater. 2020, 63, 1957. doi:10.1007/s40843-020-1446-5

    10. [10]

      Chen, G.; Jiang, Z.; Li, A.; Chen, X.; Ma, Z.; Song, H. ACS Sustainable Chem. Eng. 2022, 10, 4013. doi:10.1021/acssuschemeng.2c00331

    11. [11]

      Cai, Z.; Ma, Y.-F.; Wang, M.; Qian, A. N.; Tong, Z.-M.; Xiao, L.-T.; Jia, S.-T.; Chen, X.-Y. Rare Met. 2022, 41, 2084. doi:10.1007/s12598-021-01935-6

    12. [12]

      Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Rare Met. 2022, 41, 3268. doi:10.1007/s12598-022-02058-2

    13. [13]

      Zou, L.-R.; Sang, D.-D.; Yao, Y.; Wang, X.-T.; Zheng, Y.-Y.; Wang, N.-Z.; Wang, C.; Wang, Q.-L. Rare Met. 2023, 42, 17. doi:10.1007/s12598-022-02113-y

    14. [14]

      Guo, Z.; Chen, Z.; Shi, Z.; Qian, J.; Li, J.; Mei, T.; Wang, J.; Wang, X.; Shen, P. Sol. Energy Mater. Sol. Cells 2020, 204, 110227. doi:10.1016/j.solmat.2019.110227

    15. [15]

      Ghim, D.; Jiang, Q. S.; Cao, S. S.; Singamaneni, S.; Jun, Y. S. Nano Energy 2018, 53, 949. doi:10.1016/j.nanoen.2018.09.038

    16. [16]

      Zheng, H.; Fan, J.; Chen, A.; Li, X.; Xie, X.; Liu, Y.; Ding, Z. ACS Nano 2024, 18, 3115. doi:10.1021/acsnano.3c08648

    17. [17]

      Zeng, W.; Ye, X.; Dong, Y.; Zhang, Y.; Sun, C.; Zhang, T.; Guan, X.; Guo, L. Coord. Chem. Rev. 2024, 508, 215753. doi:10.1016/j.ccr.2024.215753

    18. [18]

      Xu, D.; Li, Z.; Li, L.; Wang, J. Adv. Funct. Mater. 2020, 30, 2070314. doi:10.1002/adfm.202070314

    19. [19]

      Li, Y.; Zhang, Y.; Hou, R.; Ai, Y.; Cai, M.; Shi, Z.; Zhang, P.; Shao, G. Appl. Catal. B:Environ. Energy 2024, 356, 124223. doi:10.1016/j.apcatb.2024.124223

    20. [20]

      Wang, Z.; Tan, G.; Zhang, B.; Yang, Q.; Feng, S.; Liu, Y.; Liu, T.; Guo, L.; Zeng, C.; Liu, W.; et al. Adv. Mater. 2024, 36, 2307795. doi:10.1002/adma.202307795

    21. [21]

      Zhang, B.; Gu, Q.; Wang, C.; Gao, Q.; Guo, J.; Wong, P. W.; Liu, C. T.; An, A. K. ACS Appl. Mater. Interfaces 2021, 13, 3762. doi:10.1021/acsami.0c16054

    22. [22]

      Wang, Z.; Yu, K.; Gong, S.; Mao, H.; Huang, R.; Zhu, Z. ACS Appl. Mater. Interfaces 2021, 13, 16246. doi:10.1021/acsami.0c22761

    23. [23]

      Wu, Y.; Song, X.; Zhou, X.; Song, R.; Tang, W.; Yang, D.; Wang, Y.; Lv, Z.; Zhong, W.; Cai, H. L.; et al. Small. 2023, 19, 2205053. doi:10.1002/smll.202205053

    24. [24]

      Li, Y.; Wang, L.; Zhang, F.; Zhang, W.; Shao, G.; Zhang, P. Adv. Sci. 2023, 10, 2205020. doi:10.1002/advs.202205020

    25. [25]

      Zhang, P.; Zhao, Y.; Li, Y.; Li, N.; Silva, S. R. P.; Shao, G.; Zhang, P. Adv. Sci. 2023, 10, 2206786. doi:10.1002/advs.202206786

    26. [26]

      Yang, Y.; Bo, X.; Hongxiang, Z. J. Mater. Inf. 2023, 3, 23. doi:10.20517/jmi.2023.31

    27. [27]

      van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.; Rignanese, G. M. Comput. Phys. Commun. 2018, 226, 39. doi:10.1016/j.cpc.2018.01.012

    28. [28]

      Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Comput. Phys. Commun. 2009, 180, 2175. doi:10.1016/j.cpc.2009.06.022

    29. [29]

      Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 19. doi:10.1063/1.3382344

    30. [30]

      Wang, Y.; Nie, J.; He, Z.; Zhi, Y.; Ma, X.; Zhong, P. ACS Appl. Mater. Interfaces 2022, 14, 5876. doi:10.1021/acsami.1c22952

    31. [31]

      Xu, T.; Tan, S.; Li, S.; Chen, T.; Wu, Y.; Hao, Y.; Liu, C.; Ji, G. Adv. Funct. Mater. 2024, 34, 2400424. doi:10.1002/adfm.202400424

    32. [32]

      Shu, Y.; Liu, Y. Q.; Cui, Z.; Xiong, R.; Zhang, Y. G.; Xu, C.; Zheng, J. Y.; Wen, C. L.; Wu, B.; Sa, B. Adv. Electron. Mater. 2023, 9, 11. doi:10.1002/aelm.202201056

    33. [33]

      Zhang, T.; Zhu, L.; Liu, H.; Zhou, J.; Sun, Z. MGE Adv. 2023, 1, e7. doi:10.1002/mgea.7

    34. [34]

      Wen, J.; Cai, Q.; Xiong, R.; Cui, Z.; Zhang, Y.; He, Z.; Liu, J.; Lin, M.; Wen, C.; Wu, B.; et al. Molecules 2023, 28, 3525. doi:10.3390/molecules28083525

    35. [35]

      Liu, Y.; Zhang, Q.; Zhang, W.; Zhang, R.; Wang, B.; Ji, C.; Pei, Z.; Sang, S. J. Phys. Chem. C 2021, 125, 16200. doi:10.1021/acs.jpcc.1c03286

    36. [36]

      Kaixiong, T.; Jinxing, G.; Linguo, L.; Shijun, Y.; Long, Z.; Zhongfang, C. J. Mater. Inf. 2022, 2, 13. doi:10.20517/jmi.2022.10

    37. [37]

      Wang, Y.; Lin, Y.; Zha, F.; Li, Y. J. Colloid Interface Sci. 2023, 652, 936. doi:10.1016/j.jcis.2023.08.127

    38. [38]

      Xiong, R.; Shu, Y.; Yang, X.; Zhang, Y.; Wen, C.; Anpo, M.; Wu, B.; Sa, B. Catal. Sci. Technol. 2022, 12, 3272. doi:10.1039/d2cy00107a

    39. [39]

      Mannan, S.; Bihani, V.; Krishnan, N. M. A.; Mauro, J. C. MGE Adv. 2024, 2, e25. doi:10.1002/mgea.25

    40. [40]

      Wen, J.; Xie, M.; Sa, B.; Miao, N.; Wen, C.; Wu, B.; Zhou, J.; Sun, Z. Surf. Interfaces 2024, 48, 104311. doi:10.1016/j.surfin.2024.104311

    41. [41]

      Zhu, W.; Huang, X.; Cai, W.; Huang, T.; Wu, G.; Huang, X. MGE Adv. 2023, 1, e19. doi:10.1002/mgea.19

    42. [42]

      Liu, D.; Liu, Z.; Zhu, J.; Zhang, M. Mater. Horiz. 2023, 10, 5621. doi:10.1039/D3MH00736G

    43. [43]

      Li, J.; Peng, H.; Luo, B.; Cao, J.; Ma, L.; Jing, D. J. Colloid Interface Sci. 2023, 641, 309. doi:10.1016/j.jcis.2023.03.015

    44. [44]

      Huang, X.; Xiong, R.; Hao, C.; Beck, P.; Sa, B.; Wiebe, J.; Wiesendanger, R. Adv. Mater. 2024, 36, 2308007. doi:10.1002/adma.202308007

    45. [45]

      Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828. doi:10.1103/PhysRevB.62.8828

    46. [46]

      Liu, H.; Cui, Z.; Luo, L. J.; Liao, Q. G.; Xiong, R.; Xu, C.; Wen, C. L.; Sa, B. Chem. Eng. J. 2023, 454, 14. doi:10.1016/j.cej.2022.140288

    47. [47]

      Wen, C.; Liao, Q.; Cui, Z.; Chen, Z.; Liu, H.; Xiong, R.; Sa, B. Chem. Eng. J. 2023, 472, 144921. doi:10.1016/j.cej.2023.144921

    48. [48]

      Thanh Hoai Ta, Q.; Ngoc Tri, N.; Noh, J.-S. Appl. Surf. Sci. 2022, 604, 154624. doi:10.1016/j.apsusc.2022.154624

    49. [49]

      Liu, H.; Wu, R.; Zhang, H.; Ma, M. ChemCatChem 2020, 12, 893. doi:10.1002/cctc.201901569

    50. [50]

      Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.; Sun, Z.; Yang, Y.; et al. Adv. Funct. Mater. 2018, 28, 1707578. doi:10.1002/adfm.201707578

    51. [51]

      Liao, Q.; Liu, H.; Chen, Z.; Zhang, Y.; Xiong, R.; Cui, Z.; Wen, C.; Sa, B. Front. Phys. 2023, 18, 33300. doi:10.1007/s11467-022-1234-6

    52. [52]

      Xu, Y. Y.; Zhang, Z. Y.; Cui, Z.; Luo, L. J.; Lin, P.; Xie, M. J.; Zhang, Q. Y.; Sa, B.; Wen, C. L. Chem. Eng. J. 2024, 488, 14. doi:10.1016/j.cej.2024.151078

    53. [53]

      Tian, X.; Yao, L.; Cui, X.; Zhao, R.; Chen, T.; Xiao, X.; Wang, Y. J. Mater. Chem. A 2022, 10, 5505. doi:10.1039/D1TA10773A

    54. [54]

      Yang, J.; Zhu, Q.; Xie, Z.; Wang, Y.; Wang, J.; Peng, Y.; Fang, Y.; Deng, L.; Xie, T.; Xu, L. J. Alloys Compd. 2021, 887, 161411. doi:10.1016/j.jallcom.2021.161411

    55. [55]

      Wang, H. Q.; Wang, J. W.; Wang, X. Z.; Gao, X. H.; Zhuang, G. C.; Yang, J. B.; Ren, H. Chem. Eng. J. 2022, 437, 135431. doi:10.1016/j.cej.2022.135431

    56. [56]

      Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. ACS Appl. Mater. Interfaces 2017, 9, 37184. doi:10.1021/acsami.7b11055

    57. [57]

      Fang, Y.; Pan, J.; He, J.; Luo, R.; Wang, D.; Che, X.; Bu, K.; Zhao, W.; Liu, P.; Mu, G.; et al. Angew. Chem. Int. Ed. 2018, 57, 1232. doi:10.1002/anie.201710512

    58. [58]

      Wang, X.; Shen, X.; Gao, Y.; Wang, Z.; Yu, R.; Chen, L. J. Am. Chem. Soc. 2015, 137, 2715. doi:10.1021/ja512820k

    59. [59]

      Lv, Y.; Pan, H.; Lin, J.; Chen, Z.; Li, Y.; Li, H.; Shi, M.; Yin, R.; Zhu, S. Chem. Eng. J. 2022, 428, 132072. doi:10.1016/j.cej.2021.132072

    60. [60]

      Li, Z.; Li, C.; Chen, J.; Xing, X.; Wang, Y.; Zhang, Y.; Yang, M.; Zhang, G. J. Energy Chem. 2022, 70, 18. doi:10.1016/j.jechem.2022.01.001

    61. [61]

      Ma, C. H.; Zhu, H. Y.; Zhou, J.; Cui, Z. W.; Liu, T.; Wang, Y. C.; Wang, Y.; Zou, Z. G. Dalton Trans. 2017, 46, 3877. doi:10.1039/c6dt04916h

    62. [62]

      Zhou, R.; Yang, S.; E, T.; Liu, L.; Qian, J. J. Cleaner Prod. 2022, 337, 130511. doi:10.1016/j.jclepro.2022.130511

    63. [63]

      Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Nature 2014, 516, 78. doi:10.1038/nature13970

    64. [64]

      Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Appl. Surf. Sci. 2011, 257, 2717. doi:10.1016/j.apsusc.2010.10.051

    65. [65]

      Wang, B.; Wang, M.; Liu, F.; Zhang, Q.; Yao, S.; Liu, X.; Huang, F. Angew. Chem. Int. Ed. 2020, 59, 1914. doi:10.1002/anie.201913095

    66. [66]

      Tian, X.; Yao, L. J.; Cui, X. X.; Zhao, R. J.; Chen, T.; Xiao, X. C.; Wang, Y. D. J. Mater. Chem. A 2022, 10, 5505. doi:10.1039/d1ta10773a

    67. [67]

      Huang, Z. C.; Qi, Y. F.; Yu, D. X.; Zhan, J. H. RSC Adv. 2016, 6, 31031. doi:10.1039/c6ra03226e

    68. [68]

      Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. Adv. Funct. Mater. 2020, 30, 21. doi:10.1002/adfm.202000712

    69. [69]

      Ju, J.; Chen, Y.; Huang, Y.; Zhang, Y.; Cheng, B.; Kang, W. J. Membr. Sci. 2024, 690, 122237. doi:10.1016/j.memsci.2023.122237

    70. [70]

      Xu, Q. L.; Zhang, L.; Liu, Y. H.; Cai, L.; Zhou, L. Z.; Jiang, H. J.; Chen, J. J. Nanostruct. Chem. 2022, 14, 137. doi:10.1007/s40097-022-00494-1

    71. [71]

      Zhou, S. Y.; Jiao, X. D.; Jiang, Y.; Zhao, Y. N.; Xue, P.; Liu, Y. S.; Liu, J. Appl. Surf. Sci. 2021, 552, 9. doi:10.1016/j.apsusc.2021.149498

    72. [72]

      Park, C. H.; Lee, S.; Pornnoppadol, G.; Nam, Y. S.; Kim, S. H.; Kim, B. J. ACS Appl. Mater. Interfaces 2018, 10, 9023. doi:10.1021/acsami.7b19468

    73. [73]

      Sun, L.; Bai, H. F.; Jiang, H. J.; Zhang, P.; Li, J.; Qiao, W. D.; Wang, D.; Liu, G. S.; Wang, X. L. Colloids Surf B:Biointerfaces 2022, 214, 8. doi:10.1016/j.colsurfb.2022.112462

    74. [74]

      Wang, Y. L.; Jiang, B.; Sun, T.; Wang, S.; Jin, Y. C. J. Mater. Chem. C 2022, 10, 8043. doi:10.1039/d2tc00571a

    75. [75]

      Han, X. H.; Ding, S. Q.; Fan, L. W.; Zhou, Y. H.; Wang, S. R. J. Mater. Chem. A 2021, 9, 18614. doi:10.1039/d1ta04991g

    76. [76]

      Niu, C.; Yang, L.; Sun, H.; Zhu, Z.; Liang, W.; Li, J.; Li, A. Chem. Eng. J. 2023, 476, 146522. doi:10.1016/j.cej.2023.146522

    77. [77]

      Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L.; et al. ACS Nano 2021, 15, 8439. doi:10.1021/acsnano.0c10666

    78. [78]

      He, G.; Ning, F.; Liu, X.; Meng, Y.; Lei, Z.; Ma, X.; Tian, M.; Liu, X.; Zhang, X.; Zhang, X.; et al. Adv. Fiber Mater. 2024, 6, 367. doi:10.1007/s42765-023-00348-7

    79. [79]

      Cai, C. Y.; Wang, Y. Q.; Wei, Z. C.; Fu, Y. Sol. RRL. 2021, 5, 12. doi:10.1002/solr.202100593

    80. [80]

      Zhang, Y.; Wang, W.; Xie, J.; Dai, K.; Zhang, F.; Zheng, Q. Carbon 2022, 200, 491. doi:10.1016/j.carbon.2022.08.040

    81. [81]

      Liu, P.; Li, Y.; Tang, Z.; Lv, J.; Cheng, P.; Diao, X.; Jiang, Y.; Chen, X.; Wang, G. J. Energy Chem. 2023, 84, 41. doi:10.1016/j.jechem.2023.04.048

    82. [82]

      Ying, P. J.; Ai, B.; Hu, W.; Geng, Y.; Li, L.; Sun, K.; Tan, S. C.; Zhang, W.; Li, M. Nano Energy 2021, 89, 10. doi:10.1016/j.nanoen.2021.106443

    83. [83]

      Xu, R. Q.; Wei, N.; Li, Z. K.; Song, X. J.; Li, Q.; Sun, K. Y.; Yang, E. Q.; Gong, L. K.; Sui, Y. L.; Tian, J.; et al. J. Colloid Interface Sci. 2021, 584, 125. doi:10.1016/j.jcis.2020.09.052

    84. [84]

      Zha, X. J.; Zhao, X.; Pu, J. H.; Tang, L. S.; Ke, K.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, M. B.; Yang, W. ACS Appl. Mater. Interfaces 2019, 11, 36589. doi:10.1021/acsami.9b10606

    85. [85]

      Fei, J.; Koh, S. W.; Tu, W.; Ge, J.; Rezaeyan, H.; Hou, S.; Duan, H.; Lam, Y. C.; Li, H. Adv. Sustainable Syst. 2020, 4, 2000102. doi:10.1002/adsu.202000102

    86. [86]

      Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. J. Mater. Chem. A 2018, 6, 16196. doi:10.1039/C8TA05569F

    87. [87]

      Su, J. B.; Xie, Y. N.; Zhang, P. K.; Yang, R.; Wang, B. L.; Zhao, H.; Xu, Y. Y.; Lin, X. L.; Shi, J.; Wang, C. B. Desalination 2023, 566, 11. doi:10.1016/j.desal.2023.116905

    88. [88]

      Su, J.; Zhang, P.; Yang, R.; Wang, B.; Zhao, H.; Wang, W.; Wang, C. Renewable Energy 2022, 195, 407. doi:10.1016/j.renene.2022.06.038

    89. [89]

      Chen, L.; Yin, M.; Xiao, C.; Jin, Y.; Guo, Y.; Hasi, Q.-M. Desalination 2024, 575, 117312. doi:10.1016/j.desal.2024.117312

    90. [90]

      Almarzooqi, N.; Alwan, R. A.; AlMarzooqi, F.; Ghaffour, N.; Hong, S.; Arafat, H. A. Chemosphere 2024, 351, 141129. doi:10.1016/j.chemosphere.2024.141129

  • 加载中
    1. [1]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    2. [2]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    3. [3]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    4. [4]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    5. [5]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    6. [6]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    7. [7]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    8. [8]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    9. [9]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    10. [10]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    13. [13]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    20. [20]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

Metrics
  • PDF Downloads(0)
  • Abstract views(33)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return