Citation:
Kun Rong, Cuilian Wen, Jiansen Wen, Xiong Li, Qiugang Liao, Siqing Yan, Chao Xu, Xiaoliang Zhang, Baisheng Sa, Zhimei Sun. Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100053.
doi:
10.1016/j.actphy.2025.100053
-
Metallic 1T Molybdenum disulfide (1T-MoS2) exhibits enhanced full spectral light absorption and prominent electrical conductivity, making it ideal for photothermal applications in conjunction with Ti3C2Tx MXene. Despite the challenges in increasing the 1T-MoS2 proportion within MoS2/Ti3C2Tx heterostructures and the incomplete understanding of the mechanisms governing their formation and properties, herein, a combined theoretical and experimental framework has been established, suggesting that the metallic characteristics of Ti3C2Tx and 1T-MoS2 could significantly improve photothermal performance through strong interlayer interactions and efficient electron transport. The hierarchical MoS2/Ti3C2Tx heterostructure has been fabricated through a one-step hydrothermal synthesis method with enhanced 1T-MoS2 proportion, which achieves multilayered wrinkled architecture resulting from the in-situ growth of MoS2 on Ti3C2Tx nanosheets. Notably, a remarkable peak photoheating temperature of 107 °C under an 808 nm laser with an intensity of 0.5 W·cm-2 is realized, demonstrating its exceptional photothermal conversion capability. By incorporated into a polyvinylidene difluoride membrane, the MoS2/Ti3C2Tx heterostructure functions as an efficient self-floating solar-driven steam generator, reaching an evaporation rate of 1.79 kg·m-2·h-1 and an evaporation efficiency of 96.4% under one solar irradiance. This study proposes a versatile strategy for the MoS2/Ti3C2Tx heterostructure, offering the potential for sustainable solar-driven vapor generation technologies.
-
-
-
[1]
Wang, H.; Li, Q.; Chen, J.; Chen, J.; Jia, H. Adv. Sci. 2023, 10, 2304406. doi:10.1002/advs.202304406
-
[2]
Li, J.; Wang, J.; Zhang, J.; Han, T.; Hu, X.; Lee, M. M. S.; Wang, D.; Tang, B. Z. Adv. Mater. 2021, 33, 2105999. doi:10.1002/adma.202105999
-
[3]
Chen, X.; Yang, N.; Wang, Y.; He, H.; Wang, J.; Wan, J.; Jiang, H.; Xu, B.; Wang, L.; Yu, R.; et al. Adv. Mater. 2022, 34, 2107400. doi:10.1002/adma.202107400
-
[4]
Sun, C.-Y.; Zhao, Z.-W.; Liu, H.; Wang, H.-Q. Rare Met. 2022, 41, 1403. doi:10.1007/s12598-021-01906-x
-
[5]
Chen, Q.; Zhao, J.; Cheng, H.; Qu, L. Acta Phys.-Chim. Sin. 2022, 38, 2101020.
-
[6]
Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. Nat. Photonics 2016, 10, 393. doi:10.1038/nphoton.2016.75
-
[7]
Yang, M. Q.; Tan, C. F.; Lu, W. H.; Zeng, K. Y.; Ho, G. W. Adv. Funct. Mater. 2020, 30, 2004460. doi:10.1002/adfm.202004460
-
[8]
Wang, L.; Li, Y.; Ai, Y.; Fan, E.; Zhang, F.; Zhang, W.; Shao, G.; Zhang, P. Adv. Funct. Mater. 2023, 33, 2306466. doi:10.1002/adfm.202306466
-
[9]
Zhu, H. W.; Ge, J.; Zhao, H. Y.; Shi, L. A.; Huang, J.; Xu, L.; Yu, S. H. Sci. China Mater. 2020, 63, 1957. doi:10.1007/s40843-020-1446-5
-
[10]
Chen, G.; Jiang, Z.; Li, A.; Chen, X.; Ma, Z.; Song, H. ACS Sustainable Chem. Eng. 2022, 10, 4013. doi:10.1021/acssuschemeng.2c00331
-
[11]
Cai, Z.; Ma, Y.-F.; Wang, M.; Qian, A. N.; Tong, Z.-M.; Xiao, L.-T.; Jia, S.-T.; Chen, X.-Y. Rare Met. 2022, 41, 2084. doi:10.1007/s12598-021-01935-6
-
[12]
Huang, W.-X.; Li, Z.-P.; Li, D.-D.; Hu, Z.-H.; Wu, C.; Lv, K.-L.; Li, Q. Rare Met. 2022, 41, 3268. doi:10.1007/s12598-022-02058-2
-
[13]
Zou, L.-R.; Sang, D.-D.; Yao, Y.; Wang, X.-T.; Zheng, Y.-Y.; Wang, N.-Z.; Wang, C.; Wang, Q.-L. Rare Met. 2023, 42, 17. doi:10.1007/s12598-022-02113-y
-
[14]
Guo, Z.; Chen, Z.; Shi, Z.; Qian, J.; Li, J.; Mei, T.; Wang, J.; Wang, X.; Shen, P. Sol. Energy Mater. Sol. Cells 2020, 204, 110227. doi:10.1016/j.solmat.2019.110227
-
[15]
Ghim, D.; Jiang, Q. S.; Cao, S. S.; Singamaneni, S.; Jun, Y. S. Nano Energy 2018, 53, 949. doi:10.1016/j.nanoen.2018.09.038
-
[16]
Zheng, H.; Fan, J.; Chen, A.; Li, X.; Xie, X.; Liu, Y.; Ding, Z. ACS Nano 2024, 18, 3115. doi:10.1021/acsnano.3c08648
-
[17]
Zeng, W.; Ye, X.; Dong, Y.; Zhang, Y.; Sun, C.; Zhang, T.; Guan, X.; Guo, L. Coord. Chem. Rev. 2024, 508, 215753. doi:10.1016/j.ccr.2024.215753
-
[18]
Xu, D.; Li, Z.; Li, L.; Wang, J. Adv. Funct. Mater. 2020, 30, 2070314. doi:10.1002/adfm.202070314
-
[19]
Li, Y.; Zhang, Y.; Hou, R.; Ai, Y.; Cai, M.; Shi, Z.; Zhang, P.; Shao, G. Appl. Catal. B:Environ. Energy 2024, 356, 124223. doi:10.1016/j.apcatb.2024.124223
-
[20]
Wang, Z.; Tan, G.; Zhang, B.; Yang, Q.; Feng, S.; Liu, Y.; Liu, T.; Guo, L.; Zeng, C.; Liu, W.; et al. Adv. Mater. 2024, 36, 2307795. doi:10.1002/adma.202307795
-
[21]
Zhang, B.; Gu, Q.; Wang, C.; Gao, Q.; Guo, J.; Wong, P. W.; Liu, C. T.; An, A. K. ACS Appl. Mater. Interfaces 2021, 13, 3762. doi:10.1021/acsami.0c16054
-
[22]
Wang, Z.; Yu, K.; Gong, S.; Mao, H.; Huang, R.; Zhu, Z. ACS Appl. Mater. Interfaces 2021, 13, 16246. doi:10.1021/acsami.0c22761
-
[23]
Wu, Y.; Song, X.; Zhou, X.; Song, R.; Tang, W.; Yang, D.; Wang, Y.; Lv, Z.; Zhong, W.; Cai, H. L.; et al. Small. 2023, 19, 2205053. doi:10.1002/smll.202205053
-
[24]
Li, Y.; Wang, L.; Zhang, F.; Zhang, W.; Shao, G.; Zhang, P. Adv. Sci. 2023, 10, 2205020. doi:10.1002/advs.202205020
-
[25]
Zhang, P.; Zhao, Y.; Li, Y.; Li, N.; Silva, S. R. P.; Shao, G.; Zhang, P. Adv. Sci. 2023, 10, 2206786. doi:10.1002/advs.202206786
-
[26]
Yang, Y.; Bo, X.; Hongxiang, Z. J. Mater. Inf. 2023, 3, 23. doi:10.20517/jmi.2023.31
-
[27]
van Setten, M. J.; Giantomassi, M.; Bousquet, E.; Verstraete, M. J.; Hamann, D. R.; Gonze, X.; Rignanese, G. M. Comput. Phys. Commun. 2018, 226, 39. doi:10.1016/j.cpc.2018.01.012
-
[28]
Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Comput. Phys. Commun. 2009, 180, 2175. doi:10.1016/j.cpc.2009.06.022
-
[29]
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 19. doi:10.1063/1.3382344
-
[30]
Wang, Y.; Nie, J.; He, Z.; Zhi, Y.; Ma, X.; Zhong, P. ACS Appl. Mater. Interfaces 2022, 14, 5876. doi:10.1021/acsami.1c22952
-
[31]
Xu, T.; Tan, S.; Li, S.; Chen, T.; Wu, Y.; Hao, Y.; Liu, C.; Ji, G. Adv. Funct. Mater. 2024, 34, 2400424. doi:10.1002/adfm.202400424
-
[32]
Shu, Y.; Liu, Y. Q.; Cui, Z.; Xiong, R.; Zhang, Y. G.; Xu, C.; Zheng, J. Y.; Wen, C. L.; Wu, B.; Sa, B. Adv. Electron. Mater. 2023, 9, 11. doi:10.1002/aelm.202201056
-
[33]
Zhang, T.; Zhu, L.; Liu, H.; Zhou, J.; Sun, Z. MGE Adv. 2023, 1, e7. doi:10.1002/mgea.7
-
[34]
Wen, J.; Cai, Q.; Xiong, R.; Cui, Z.; Zhang, Y.; He, Z.; Liu, J.; Lin, M.; Wen, C.; Wu, B.; et al. Molecules 2023, 28, 3525. doi:10.3390/molecules28083525
-
[35]
Liu, Y.; Zhang, Q.; Zhang, W.; Zhang, R.; Wang, B.; Ji, C.; Pei, Z.; Sang, S. J. Phys. Chem. C 2021, 125, 16200. doi:10.1021/acs.jpcc.1c03286
-
[36]
Kaixiong, T.; Jinxing, G.; Linguo, L.; Shijun, Y.; Long, Z.; Zhongfang, C. J. Mater. Inf. 2022, 2, 13. doi:10.20517/jmi.2022.10
-
[37]
Wang, Y.; Lin, Y.; Zha, F.; Li, Y. J. Colloid Interface Sci. 2023, 652, 936. doi:10.1016/j.jcis.2023.08.127
-
[38]
Xiong, R.; Shu, Y.; Yang, X.; Zhang, Y.; Wen, C.; Anpo, M.; Wu, B.; Sa, B. Catal. Sci. Technol. 2022, 12, 3272. doi:10.1039/d2cy00107a
-
[39]
Mannan, S.; Bihani, V.; Krishnan, N. M. A.; Mauro, J. C. MGE Adv. 2024, 2, e25. doi:10.1002/mgea.25
-
[40]
Wen, J.; Xie, M.; Sa, B.; Miao, N.; Wen, C.; Wu, B.; Zhou, J.; Sun, Z. Surf. Interfaces 2024, 48, 104311. doi:10.1016/j.surfin.2024.104311
-
[41]
Zhu, W.; Huang, X.; Cai, W.; Huang, T.; Wu, G.; Huang, X. MGE Adv. 2023, 1, e19. doi:10.1002/mgea.19
-
[42]
Liu, D.; Liu, Z.; Zhu, J.; Zhang, M. Mater. Horiz. 2023, 10, 5621. doi:10.1039/D3MH00736G
-
[43]
Li, J.; Peng, H.; Luo, B.; Cao, J.; Ma, L.; Jing, D. J. Colloid Interface Sci. 2023, 641, 309. doi:10.1016/j.jcis.2023.03.015
-
[44]
Huang, X.; Xiong, R.; Hao, C.; Beck, P.; Sa, B.; Wiebe, J.; Wiesendanger, R. Adv. Mater. 2024, 36, 2308007. doi:10.1002/adma.202308007
-
[45]
Saha, S.; Sinha, T. P.; Mookerjee, A. Phys. Rev. B 2000, 62, 8828. doi:10.1103/PhysRevB.62.8828
-
[46]
Liu, H.; Cui, Z.; Luo, L. J.; Liao, Q. G.; Xiong, R.; Xu, C.; Wen, C. L.; Sa, B. Chem. Eng. J. 2023, 454, 14. doi:10.1016/j.cej.2022.140288
-
[47]
Wen, C.; Liao, Q.; Cui, Z.; Chen, Z.; Liu, H.; Xiong, R.; Sa, B. Chem. Eng. J. 2023, 472, 144921. doi:10.1016/j.cej.2023.144921
-
[48]
Thanh Hoai Ta, Q.; Ngoc Tri, N.; Noh, J.-S. Appl. Surf. Sci. 2022, 604, 154624. doi:10.1016/j.apsusc.2022.154624
-
[49]
Liu, H.; Wu, R.; Zhang, H.; Ma, M. ChemCatChem 2020, 12, 893. doi:10.1002/cctc.201901569
-
[50]
Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.; Sun, Z.; Yang, Y.; et al. Adv. Funct. Mater. 2018, 28, 1707578. doi:10.1002/adfm.201707578
-
[51]
Liao, Q.; Liu, H.; Chen, Z.; Zhang, Y.; Xiong, R.; Cui, Z.; Wen, C.; Sa, B. Front. Phys. 2023, 18, 33300. doi:10.1007/s11467-022-1234-6
-
[52]
Xu, Y. Y.; Zhang, Z. Y.; Cui, Z.; Luo, L. J.; Lin, P.; Xie, M. J.; Zhang, Q. Y.; Sa, B.; Wen, C. L. Chem. Eng. J. 2024, 488, 14. doi:10.1016/j.cej.2024.151078
-
[53]
Tian, X.; Yao, L.; Cui, X.; Zhao, R.; Chen, T.; Xiao, X.; Wang, Y. J. Mater. Chem. A 2022, 10, 5505. doi:10.1039/D1TA10773A
-
[54]
Yang, J.; Zhu, Q.; Xie, Z.; Wang, Y.; Wang, J.; Peng, Y.; Fang, Y.; Deng, L.; Xie, T.; Xu, L. J. Alloys Compd. 2021, 887, 161411. doi:10.1016/j.jallcom.2021.161411
-
[55]
Wang, H. Q.; Wang, J. W.; Wang, X. Z.; Gao, X. H.; Zhuang, G. C.; Yang, J. B.; Ren, H. Chem. Eng. J. 2022, 437, 135431. doi:10.1016/j.cej.2022.135431
-
[56]
Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D. J. ACS Appl. Mater. Interfaces 2017, 9, 37184. doi:10.1021/acsami.7b11055
-
[57]
Fang, Y.; Pan, J.; He, J.; Luo, R.; Wang, D.; Che, X.; Bu, K.; Zhao, W.; Liu, P.; Mu, G.; et al. Angew. Chem. Int. Ed. 2018, 57, 1232. doi:10.1002/anie.201710512
-
[58]
Wang, X.; Shen, X.; Gao, Y.; Wang, Z.; Yu, R.; Chen, L. J. Am. Chem. Soc. 2015, 137, 2715. doi:10.1021/ja512820k
-
[59]
Lv, Y.; Pan, H.; Lin, J.; Chen, Z.; Li, Y.; Li, H.; Shi, M.; Yin, R.; Zhu, S. Chem. Eng. J. 2022, 428, 132072. doi:10.1016/j.cej.2021.132072
-
[60]
Li, Z.; Li, C.; Chen, J.; Xing, X.; Wang, Y.; Zhang, Y.; Yang, M.; Zhang, G. J. Energy Chem. 2022, 70, 18. doi:10.1016/j.jechem.2022.01.001
-
[61]
Ma, C. H.; Zhu, H. Y.; Zhou, J.; Cui, Z. W.; Liu, T.; Wang, Y. C.; Wang, Y.; Zou, Z. G. Dalton Trans. 2017, 46, 3877. doi:10.1039/c6dt04916h
-
[62]
Zhou, R.; Yang, S.; E, T.; Liu, L.; Qian, J. J. Cleaner Prod. 2022, 337, 130511. doi:10.1016/j.jclepro.2022.130511
-
[63]
Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Nature 2014, 516, 78. doi:10.1038/nature13970
-
[64]
Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Appl. Surf. Sci. 2011, 257, 2717. doi:10.1016/j.apsusc.2010.10.051
-
[65]
Wang, B.; Wang, M.; Liu, F.; Zhang, Q.; Yao, S.; Liu, X.; Huang, F. Angew. Chem. Int. Ed. 2020, 59, 1914. doi:10.1002/anie.201913095
-
[66]
Tian, X.; Yao, L. J.; Cui, X. X.; Zhao, R. J.; Chen, T.; Xiao, X. C.; Wang, Y. D. J. Mater. Chem. A 2022, 10, 5505. doi:10.1039/d1ta10773a
-
[67]
Huang, Z. C.; Qi, Y. F.; Yu, D. X.; Zhan, J. H. RSC Adv. 2016, 6, 31031. doi:10.1039/c6ra03226e
-
[68]
Xu, D. X.; Li, Z. D.; Li, L. S.; Wang, J. Adv. Funct. Mater. 2020, 30, 21. doi:10.1002/adfm.202000712
-
[69]
Ju, J.; Chen, Y.; Huang, Y.; Zhang, Y.; Cheng, B.; Kang, W. J. Membr. Sci. 2024, 690, 122237. doi:10.1016/j.memsci.2023.122237
-
[70]
Xu, Q. L.; Zhang, L.; Liu, Y. H.; Cai, L.; Zhou, L. Z.; Jiang, H. J.; Chen, J. J. Nanostruct. Chem. 2022, 14, 137. doi:10.1007/s40097-022-00494-1
-
[71]
Zhou, S. Y.; Jiao, X. D.; Jiang, Y.; Zhao, Y. N.; Xue, P.; Liu, Y. S.; Liu, J. Appl. Surf. Sci. 2021, 552, 9. doi:10.1016/j.apsusc.2021.149498
-
[72]
Park, C. H.; Lee, S.; Pornnoppadol, G.; Nam, Y. S.; Kim, S. H.; Kim, B. J. ACS Appl. Mater. Interfaces 2018, 10, 9023. doi:10.1021/acsami.7b19468
-
[73]
Sun, L.; Bai, H. F.; Jiang, H. J.; Zhang, P.; Li, J.; Qiao, W. D.; Wang, D.; Liu, G. S.; Wang, X. L. Colloids Surf B:Biointerfaces 2022, 214, 8. doi:10.1016/j.colsurfb.2022.112462
-
[74]
Wang, Y. L.; Jiang, B.; Sun, T.; Wang, S.; Jin, Y. C. J. Mater. Chem. C 2022, 10, 8043. doi:10.1039/d2tc00571a
-
[75]
Han, X. H.; Ding, S. Q.; Fan, L. W.; Zhou, Y. H.; Wang, S. R. J. Mater. Chem. A 2021, 9, 18614. doi:10.1039/d1ta04991g
-
[76]
Niu, C.; Yang, L.; Sun, H.; Zhu, Z.; Liang, W.; Li, J.; Li, A. Chem. Eng. J. 2023, 476, 146522. doi:10.1016/j.cej.2023.146522
-
[77]
Wan, Y. Z.; Xiong, P. X.; Liu, J. Z.; Feng, F. F.; Xun, X. W.; Gama, F. M.; Zhang, Q. C.; Yao, F. L.; Yang, Z. W.; Luo, H. L.; et al. ACS Nano 2021, 15, 8439. doi:10.1021/acsnano.0c10666
-
[78]
He, G.; Ning, F.; Liu, X.; Meng, Y.; Lei, Z.; Ma, X.; Tian, M.; Liu, X.; Zhang, X.; Zhang, X.; et al. Adv. Fiber Mater. 2024, 6, 367. doi:10.1007/s42765-023-00348-7
-
[79]
Cai, C. Y.; Wang, Y. Q.; Wei, Z. C.; Fu, Y. Sol. RRL. 2021, 5, 12. doi:10.1002/solr.202100593
-
[80]
Zhang, Y.; Wang, W.; Xie, J.; Dai, K.; Zhang, F.; Zheng, Q. Carbon 2022, 200, 491. doi:10.1016/j.carbon.2022.08.040
-
[81]
Liu, P.; Li, Y.; Tang, Z.; Lv, J.; Cheng, P.; Diao, X.; Jiang, Y.; Chen, X.; Wang, G. J. Energy Chem. 2023, 84, 41. doi:10.1016/j.jechem.2023.04.048
-
[82]
Ying, P. J.; Ai, B.; Hu, W.; Geng, Y.; Li, L.; Sun, K.; Tan, S. C.; Zhang, W.; Li, M. Nano Energy 2021, 89, 10. doi:10.1016/j.nanoen.2021.106443
-
[83]
Xu, R. Q.; Wei, N.; Li, Z. K.; Song, X. J.; Li, Q.; Sun, K. Y.; Yang, E. Q.; Gong, L. K.; Sui, Y. L.; Tian, J.; et al. J. Colloid Interface Sci. 2021, 584, 125. doi:10.1016/j.jcis.2020.09.052
-
[84]
Zha, X. J.; Zhao, X.; Pu, J. H.; Tang, L. S.; Ke, K.; Bao, R. Y.; Bai, L.; Liu, Z. Y.; Yang, M. B.; Yang, W. ACS Appl. Mater. Interfaces 2019, 11, 36589. doi:10.1021/acsami.9b10606
-
[85]
Fei, J.; Koh, S. W.; Tu, W.; Ge, J.; Rezaeyan, H.; Hou, S.; Duan, H.; Lam, Y. C.; Li, H. Adv. Sustainable Syst. 2020, 4, 2000102. doi:10.1002/adsu.202000102
-
[86]
Zhao, J.; Yang, Y.; Yang, C.; Tian, Y.; Han, Y.; Liu, J.; Yin, X.; Que, W. J. Mater. Chem. A 2018, 6, 16196. doi:10.1039/C8TA05569F
-
[87]
Su, J. B.; Xie, Y. N.; Zhang, P. K.; Yang, R.; Wang, B. L.; Zhao, H.; Xu, Y. Y.; Lin, X. L.; Shi, J.; Wang, C. B. Desalination 2023, 566, 11. doi:10.1016/j.desal.2023.116905
-
[88]
Su, J.; Zhang, P.; Yang, R.; Wang, B.; Zhao, H.; Wang, W.; Wang, C. Renewable Energy 2022, 195, 407. doi:10.1016/j.renene.2022.06.038
-
[89]
Chen, L.; Yin, M.; Xiao, C.; Jin, Y.; Guo, Y.; Hasi, Q.-M. Desalination 2024, 575, 117312. doi:10.1016/j.desal.2024.117312
-
[90]
Almarzooqi, N.; Alwan, R. A.; AlMarzooqi, F.; Ghaffour, N.; Hong, S.; Arafat, H. A. Chemosphere 2024, 351, 141129. doi:10.1016/j.chemosphere.2024.141129
-
[1]
-
-
-
[1]
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
-
[2]
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
-
[3]
Changle Liu , Mingyuzhi Sun , Haoran Zhang , Xiqian Cao , Yuqing Li , Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355
-
[4]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[5]
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
-
[6]
Minying Wu , Xueliang Fan , Wenbiao Zhang , Bin Chen , Tong Ye , Qian Zhang , Yuanyuan Fang , Yajun Wang , Yi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258
-
[7]
Tong Su , Yue Wang , Qizhen Zhu , Mengyao Xu , Ning Qiao , Bin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191
-
[8]
Yaping Wang , Pengcheng Yuan , Zeyuan Xu , Xiong-Xiong Liu , Shengfa Feng , Mufan Cao , Chen Cao , Xiaoqiang Wang , Long Pan , Zheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776
-
[9]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[10]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Yuhang Zhang , Weiwei Zhao , Hongwei Liu , Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004
-
[13]
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
-
[14]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[15]
Chao Liu , Huan Yu , Jiaming Li , Xi Yu , Zhuangzhi Yu , Yuxi Song , Feng Zhang , Qinfang Zhang , Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075
-
[16]
Xinxin JING , Weiduo WANG , Hesu MO , Peng TAN , Zhigang CHEN , Zhengying WU , Linbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371
-
[17]
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
-
[18]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[19]
Haiyu Zhu , Zhuoqun Wen , Wen Xiong , Xingzhan Wei , Zhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078
-
[20]
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(34)
- HTML views(5)