Citation:
Yadan Luo, Hao Zheng, Xin Li, Fengmin Li, Hua Tang, Xilin She. Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics[J]. Acta Physico-Chimica Sinica,
;2025, 41(6): 100052.
doi:
10.1016/j.actphy.2025.100052
-
Photocatalytic microplastic (MP) degradation via reactive oxygen species (ROS) is a considered environmentally friendly and sustainable approach for eliminating MP pollution in aquatic environments. However, it faces challenges due to the low migration and rapid recombination efficiency of charge carriers in photocatalysts. Herein, oxygen and sulfur co-doped carbon nitride (OSCN) nanosheets were synthesized through thermal polymerization coupled with a thermosolvent process. The O and S co-doping can reduce the bandgap and improve the light response of carbon nitride (C3N4). Meanwhile, O/S dopants effectively improve the delocalization of electron distribution, leading to increased carrier separation capacity, thereby promoting the formation of ROS and enhancing photocatalytic performance. Compared to C3N4, OSCN demonstrated significantly higher photocatalytic degradation and mineralization rates for MPs, including polyethylene (PE, traditional petroleum-based MPs) and polylactic acid (PLA, biodegradable bio-based MPs). Specifically, the mass loss of PE and PLA increased by 32.8% and 34.1%, respectively. Notably, ·OH and 1O2 generated by OSCN synergistically catalyzed the degradation of PE, while ·OH was the primary radical triggering the photolysis and hydrolysis of PLA. This study holds significant implications for the application of photocatalysis technology in the remediation of MP pollution in aquatic environments.
-
Keywords:
- Microplastics,
- Photocatalysis,
- Co-doped,
- C3N4,
- Degradation mechanism
-
-
-
[1]
Thompson, R.; Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A. Science 2024, 386, 6720. doi:10.1126/science.adl2746
-
[2]
Seeley, M.; Song, B.; Passie, R.; Hale, R. Nat. Commun. 2020, 11, 2372. doi:10.1038/s41467-020-16235-3
-
[3]
Lin, S.; Zhang, H.; Wang, C.; Su, X.; Song, Y.; Wu, P.; Yang, Z.; Wong, M.; Cai, Z.; Zheng, C. Environ. Sci. Technol. 2022, 56, 17. doi:10.1021/acs.est.2c03980
-
[4]
Cabrera, D.; Wang, Q.; Martín, M.; Rajadel, N.; Rousseau, D.; Hernández-Crespo, C. Water Res. 2023, 240, 120106. doi:10.1016/j.watres.2023.120106
-
[5]
Wu, X.; Zhao, X.; Chen, R.; Liu, P.; Liang, W.; Wang, J.; Teng, M.; Wang, X.; Gao, S. Water Res. 2022, 221, 105093. doi:10.1016/j.watres.2022.118825
-
[6]
Luo, Y.; Sun, C.; Li, C.; Liu, Y.; Zhao, S.; Li, Y.; Kong, F.; Zheng, H.; Luo, X.; Chen, L.; Li, F. Front. Mar. Sci. 2022, 9, 916859. doi:10.3389/fmars.2022.916859
-
[7]
Yang, S.; Cheng, Y.; Liu, T.; Huang, S.; Yin, L.; Pu, Y.; Liang, G. Environ. Chem. Lett. 2022, 20, 2951. doi:10.1007/s10311-022-01462-5
-
[8]
Al-Hashimi, N.; Coupe, S.; El-Sheikh, A.; Newman, A. Water Cycle. 2023, 4, 192. doi:10.1016/j.watcyc.2023.10.001
-
[9]
Zhang, J.; Gou, S.; Yang, Z.; Li, C.; Wang, W. Water Cycle. 2024, 5, 1. doi:10.1016/j.watcyc.2023.11.001
-
[10]
Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Water Res. 2020, 173, 11564. doi:10.1016/j.watres.2020.115564
-
[11]
Li, S.; Rong, K.; Wang, X.; Shen, C.; Yang, F.; Zhang, Q. Acta Phys. -Chim. Sin. 2024, 40, 2403005. doi:10.3866/PKU.WHXB202403005
-
[12]
Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2310013. doi:10.3866/PKU.WHXB202310013
-
[13]
Wang, S.; Liu, Y.; Wang, J. Environ. Sci. Technol. 2020, 54, 10361. doi:10.1021/acs.est.0c03256
-
[14]
Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008. doi:10.3866/PKU.WHXB202201008
-
[15]
Luo, Y.; Li, C.; Liu, Z.; Guo, W.; Sun, C.; Zhao, S.; Wang, Q.; Li, Y.; Chen, L.; Zheng, H.; Li, F. Chem. Eng. J. 2024, 481, 148683. doi:10.1016/j.cej.2024.148683
-
[16]
Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi:10.1016/S1872-2067(23)64496-1
-
[17]
You, C.; Wang, C.; Cai, M.; Liu, Y.; Zhu, B.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2407014. doi:10.3866/PKU.WHXB202407014
-
[18]
Wei, D.; Liu, Y.; Shao, X.; Zhao, X.; Ghufran, S.; Wang, L.; Wu, R.; Guo, J.; Yang, C. J. Environ. 2022, 10, 107216. doi:10.1016/j.jece.2022.107216
-
[19]
Chen, S.; Liu, F.; Cui, R.; Zhu, B.; You, X. Water Cycle. 2022, 3, 8. doi:10.1016/j.watcyc.2022.01.001
-
[20]
Li, J.; Li, Z.; Tan, J.; Meng, Y.; Lu, Y.; Zhang, T. Appl. Surf. Sci. 2021, 554, 149601. doi:10.1016/j.apsusc.2021.149601
-
[21]
Wei, Y.; Liu, Y.; Liu, C.; Li, X.; Song, K.; Wang, R.; Chen, W.; Zhao, G.; Liu, R.; Wang, H.; Shi, G.; Wang, G. ACS Appl. Nano. Mater. 2023, 6, 16567. doi:10.1021/acsanm.3c02762
-
[22]
Hasija, V.; Singh, P.; Thakur, S.; Nguyen, V.; Van Le, Q.; Ahamad, T.; Alshehri, S.; Raizada, P.; Matsagar, B.; Wu, K. Chemosphere. 2023, 320, 138015. doi:10.1016/j.chemosphere.2023.138015
-
[23]
Cui, J.; Yu, F.; Zhang, J.; Tang, X.; Liu, Y. Opt. Mater. 2023, 139, 113777. doi:10.1016/j.optmat.2023.113777
-
[24]
Almond, J.; Sugumaar, P.; Wenzel, M.; Hill, G.; Wallis, C. E-Polymers. 2020, 20, 369. doi:10.1515/epoly-2020-0041
-
[25]
Zha, S.; Lan, H.; Lin, N.; Meng, T. Polym. Degrad. Stabil. 2023, 208, 110247. doi:10.1016/j.polymdegradstab.2022.110247
-
[26]
Qaraah, F.; Mahyoub, S.; Hezam, A.; Qaraah, A.; Xin, F.; Xiu, G. Appl. Catal. B. 2022, 315, 121585. doi:10.1016/j.apcatb.2022.121585
-
[27]
Luo, Y.; Fu, K.; Li, C.; Sun, C.; Tang, H.; She, X.; Zheng, H.; Li, F. Sur. Interfaces 2024, 53, 105093. doi:10.1016/j.surfin.2024.105093
-
[28]
Au, C.; Sikandaier, A.; Guo, X.; Zhu, Y.; Tang, H.; Yang, D. Acta. Phys. -Chim. Sin. 2024, 40, 2405019. doi:10.3866/PKU.WHXB202405019
-
[29]
Tan, J.; Li, Z.; Li, J.; Meng, Y.; Yao, X.; Wang, Y.; Lu, Y.; Zhang, T. J. Hazard. Mater. 2022, 423, 127048. doi:10.1016/j.jhazmat.2021.127048
-
[30]
He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 24, 1616. doi:10.1002/adfm.202315426
-
[31]
Zhang, J.; Li, H.; Dong, F.; Hou, J.; Bian, L.; Liu, L.; Jiang, H.; Shi, Q.; Li, W. Mol. Catal. 2024, 58, 114009. doi:10.1016/j.mcat.2024.114009
-
[32]
Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39, 2212062. doi:10.3866/PKU.WHXB202212062
-
[33]
Huang, C.; Wen, Y.; Ma, J.; Dong, D.; Shen, Y.; Liu, S.; Ma, H.; Zhang, Y. Nat. Commun. 2021, 12, 320. doi:10.1038/s41467-020-20521-5
-
[34]
Qaraah, F.; Mahyoub, A.; Hafez, M.; Xiu, G. RSC Adv. 2019, 9, 39561. doi:10.1039/C9RA07505D
-
[35]
Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi:10.1007/s40843-023-2770-8
-
[36]
Zhou, W.; Li, M.; Liu, Y. J. Environ. Manage. 2024, 351, 119876. doi:10.1016/j.jenvman.2023.119876
-
[37]
Wang, H.; Yu, L.; Jiang, J.; Arramel; Zou, J. Acta Phys. -Chim. Sin. 2024, 40, 2305047. doi:10.3866/PKU.WHXB202305047
-
[38]
Sun, F.; Xu, D.; Xie, Y.; Liu, F.; Qi, H.; Shao, H.; Yang, Y.; Yu, H.; Yu, W.; Dong, X. J. Environ. Chem. Eng. 2023, 11, 109795. doi:10.1016/j.jece.2023.109795
-
[39]
Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016
-
[40]
Mao, Y.; Wang, P.; Li, L.; Chen, Z.; Wang, H.; Li, Y.; Zhan, S. Angew. Chem. Int. Edit. 2020, 59, 3685. doi:10.1002/anie.201914001
-
[41]
Dai, C.; Li, S.; Duan, Y.; Leong, K.; Liu. S.; Zhang. Y.; Zhou. L.; Tu. Y. Water Res. 2022, 216, 118347. doi:10.1016/j.watres.2022.118347
-
[42]
Nosaka, Y.; Nosaka, A. Chem. Rev. 2017, 117, 11302. doi:10.1021/acs.chemrev.7b00161
-
[43]
Zhu, Y.; Ren, J.; Huang, G.; Dong C.; Huang, Y.; Lu, P.; Tang, H.; Liu, Y.; Shen, S.; Yang, D. Adv. Funct. Mater. 2023, 34, 2311623. doi:10.1002/adfm.202311623
-
[44]
Nie, Z.; Sui, C.; Xie, X.; Ni, S.; Kong, L.; Wang, Y.; Zhan, J. Appl. Catal. B. 2024, 347, 123819. doi:10.1016/j.apcatb.2024.123819
-
[45]
Li, M.; Sun, J.; Zhou, X.; Yao, H.; Cong, B.; Li, Y.; Chen, G. Appl. Catal. B 2023, 322, 122096. doi:10.1016/j.apcatb.2022.122096
-
[46]
Cao, S.; Qu, J.; Zhao, Y.; Sun, Y.; Gao, W.; Han, B.; Lu, Y. Rare Metals. 2024, 43, 3134. doi:10.1007/s12598-024-02654-4
-
[47]
Wang, J.; Wang, Z.; Zhang, J.; Mamatkulov, S.; Dai, K.; Ruzimuradov, O.; Low, J. ACS Nano 2024, 18, 20740. doi:10.1021/acsnano.4c06954
-
[48]
Jourshabani, M.; Asrami, MR.; Lee, B. Appl. Catal. B 2022, 302, 120839. doi:10.1016/j.apcatb.2021.120839
-
[49]
Zhou, T.; Luo, Z.; Zhang, Y.; Liu, B.; Li, L.; Wang, R.; Huang, H.; Tang, H. Sur. Interfaces 2024, 51, 104733. doi:10.1016/j.surfin.2024.104733
-
[50]
Zhu, Y.; Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal. 2022, 43, 2558. doi:10.1016/S1872-2067(22)64099-3
-
[51]
Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.; Abu-Omar, M.; Scott, S.; Suh, S. ACS Sustain. Chem. Eng. 2020, 8, 3494. doi:10.1021/acssuschemeng.9b06635
-
[52]
S, Dl. T, SJ. C, R. Environ. Nanotechnol. 2019, 12, 100229. doi:10.1016/j.enmm.2019.100229
-
[53]
Xie, J.; Yan, Y.; Fan, S.; Min, X.; Wang, L.; You, X.; Jia, X.; Waterhouse, G.; Wang, J.; Xu, J. Environ. Sci. Technol. 2022, 56, 9041. doi:10.1021/acs.est.2c01687
-
[54]
Morro, A.; Catalina, F.; Sanchez-Leon, E.; Abrusci, C. J. Polym. Environ. 2019, 27, 352. doi:10.1007/s10924-018-1350-0
-
[55]
Amato, P.; Muscetta, M.; Venezia, V.; Cocca, M.; Gentile, G.; Castaldo, R.; Marotta, R.; Vitiello, G. J. Environ. Chem. Eng. 2023, 11, 109003. doi:10.1016/j.jece.2022.109003
-
[56]
Martin-Alfonso, J. E.; Urbano, J.; Cuadri, A.; Franco, J. Polym. Test. 2019, 73, 268. doi:10.1016/j.polymertesting.2018.11.031
-
[57]
Wang, H.; Zhu, J.; He, Y.; Wang, J.; Zeng, N.; Zhan, X. J. Hazard. Mater. 2023, 451, 131151. doi:10.1016/j.jhazmat.2023.131151
-
[58]
Wang, Z.; Ding, J.; Song, X.; Zheng, L.; Huang, J.; Zou, H.; Wang, Z. Sci. Total Environ. 2023, 855, 158921. doi:10.1016/j.scitotenv.2022.158921
-
[59]
Du, H.; Xie, Y.; Wang, J. J. Hazard. Mater. 2021, 418, 126377. doi:10.1016/j.jhazmat.2021.126377
-
[60]
Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen L.; Chen, C. J. Clean. Prod. 2021, 282, 124523. doi:10.1016/j.jclepro.2020.124523
-
[61]
Chen, J.; Wu, J.; Sherrell, P.; Chen, J.; Wang, H.; Zhang, W.; Yang, J. Adv. Sci. 2022, 9, 2103764. doi:10.1002/advs.202103764
-
[62]
Lim, J.; Kim, H.; Park, J.; Moon, G.; Vequizo, J.; Yamakata, A.; Lee, J.; Choi, W. Environ. Sci. Technol. 2019, 54, 497. doi:10.1021/acs.est.9b05044
-
[63]
Esteban, M.; Martin, A.; Ramon, J.; Arellano, M.; Alejandra, A. Polym. Degrad. Stabil. 2020, 179, 109290. doi:10.1016/j.polymdegradstab.2020.109290
-
[64]
Ling, C.; Li, C.; Liang, A.; Wang, W. Sep. Purif. 2023, 316, 123812. doi:10.1016/j.seppur.2023.123812
-
[65]
Wu, X.; Liu, P.; Gong, Z.; Wang, H.; Huang, H.; Shi, Y.; Zhao, X.; Gao, S. Environ. Sci. Technol. 2021, 55, 15810. doi:10.1021/acs.est.1c04501
-
[66]
Pedroza, R.; David, C.; Lodeiro, P.; Rey-Castro, C. Sci. Total Environ. 2024, 908, 168366. doi:10.1016/j.scitotenv.2023.168366
-
[1]
-
-
-
[1]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[2]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[3]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[5]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[6]
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
-
[7]
Xia ZHANG , Yushi BAI , Xi CHANG , Han ZHANG , Haoyu ZHANG , Liman PENG , Shushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255
-
[8]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[9]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[10]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[11]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[12]
Qin Hu , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024
-
[13]
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371
-
[14]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[15]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[16]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[17]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[18]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[19]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[20]
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(23)
- HTML views(2)