Citation: Yadan Luo,  Hao Zheng,  Xin Li,  Fengmin Li,  Hua Tang,  Xilin She. Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics[J]. Acta Physico-Chimica Sinica, ;2025, 41(6): 100052. doi: 10.1016/j.actphy.2025.100052 shu

Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics

  • Received Date: 16 December 2024
    Revised Date: 11 January 2025
    Accepted Date: 13 January 2025

    Fund Project: The project was supported by the Hainan Provincial Natural Science Foundation of China (423CXTD384), the National Natural Science Foundation of China (42077115), the National Science Fund for Distinguished Young Scholars of Shandong Province (ZR2021JQ13).

  • Photocatalytic microplastic (MP) degradation via reactive oxygen species (ROS) is a considered environmentally friendly and sustainable approach for eliminating MP pollution in aquatic environments. However, it faces challenges due to the low migration and rapid recombination efficiency of charge carriers in photocatalysts. Herein, oxygen and sulfur co-doped carbon nitride (OSCN) nanosheets were synthesized through thermal polymerization coupled with a thermosolvent process. The O and S co-doping can reduce the bandgap and improve the light response of carbon nitride (C3N4). Meanwhile, O/S dopants effectively improve the delocalization of electron distribution, leading to increased carrier separation capacity, thereby promoting the formation of ROS and enhancing photocatalytic performance. Compared to C3N4, OSCN demonstrated significantly higher photocatalytic degradation and mineralization rates for MPs, including polyethylene (PE, traditional petroleum-based MPs) and polylactic acid (PLA, biodegradable bio-based MPs). Specifically, the mass loss of PE and PLA increased by 32.8% and 34.1%, respectively. Notably, ·OH and 1O2 generated by OSCN synergistically catalyzed the degradation of PE, while ·OH was the primary radical triggering the photolysis and hydrolysis of PLA. This study holds significant implications for the application of photocatalysis technology in the remediation of MP pollution in aquatic environments.
  • 加载中
    1. [1]

      Thompson, R.; Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A. Science 2024, 386, 6720. doi:10.1126/science.adl2746

    2. [2]

      Seeley, M.; Song, B.; Passie, R.; Hale, R. Nat. Commun. 2020, 11, 2372. doi:10.1038/s41467-020-16235-3

    3. [3]

      Lin, S.; Zhang, H.; Wang, C.; Su, X.; Song, Y.; Wu, P.; Yang, Z.; Wong, M.; Cai, Z.; Zheng, C. Environ. Sci. Technol. 2022, 56, 17. doi:10.1021/acs.est.2c03980

    4. [4]

      Cabrera, D.; Wang, Q.; Martín, M.; Rajadel, N.; Rousseau, D.; Hernández-Crespo, C. Water Res. 2023, 240, 120106. doi:10.1016/j.watres.2023.120106

    5. [5]

      Wu, X.; Zhao, X.; Chen, R.; Liu, P.; Liang, W.; Wang, J.; Teng, M.; Wang, X.; Gao, S. Water Res. 2022, 221, 105093. doi:10.1016/j.watres.2022.118825

    6. [6]

      Luo, Y.; Sun, C.; Li, C.; Liu, Y.; Zhao, S.; Li, Y.; Kong, F.; Zheng, H.; Luo, X.; Chen, L.; Li, F. Front. Mar. Sci. 2022, 9, 916859. doi:10.3389/fmars.2022.916859

    7. [7]

      Yang, S.; Cheng, Y.; Liu, T.; Huang, S.; Yin, L.; Pu, Y.; Liang, G. Environ. Chem. Lett. 2022, 20, 2951. doi:10.1007/s10311-022-01462-5

    8. [8]

      Al-Hashimi, N.; Coupe, S.; El-Sheikh, A.; Newman, A. Water Cycle. 2023, 4, 192. doi:10.1016/j.watcyc.2023.10.001

    9. [9]

      Zhang, J.; Gou, S.; Yang, Z.; Li, C.; Wang, W. Water Cycle. 2024, 5, 1. doi:10.1016/j.watcyc.2023.11.001

    10. [10]

      Zhu, K.; Jia, H.; Sun, Y.; Dai, Y.; Zhang, C.; Guo, X.; Wang, T.; Zhu, L. Water Res. 2020, 173, 11564. doi:10.1016/j.watres.2020.115564

    11. [11]

      Li, S.; Rong, K.; Wang, X.; Shen, C.; Yang, F.; Zhang, Q. Acta Phys. -Chim. Sin. 2024, 40, 2403005. doi:10.3866/PKU.WHXB202403005

    12. [12]

      Dong, K.; Shen, C.; Yan, R.; Liu, Y.; Zhuang, C.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2310013. doi:10.3866/PKU.WHXB202310013

    13. [13]

      Wang, S.; Liu, Y.; Wang, J. Environ. Sci. Technol. 2020, 54, 10361. doi:10.1021/acs.est.0c03256

    14. [14]

      Wang, W.; Zhang, H.; Chen, Y.; Shi, H. Acta Phys. -Chim. Sin. 2022, 38, 2201008. doi:10.3866/PKU.WHXB202201008

    15. [15]

      Luo, Y.; Li, C.; Liu, Z.; Guo, W.; Sun, C.; Zhao, S.; Wang, Q.; Li, Y.; Chen, L.; Zheng, H.; Li, F. Chem. Eng. J. 2024, 481, 148683. doi:10.1016/j.cej.2024.148683

    16. [16]

      Cai, M.; Liu, Y.; Dong, K.; Chen, X.; Li, S. Chin. J. Catal. 2023, 52, 239. doi:10.1016/S1872-2067(23)64496-1

    17. [17]

      You, C.; Wang, C.; Cai, M.; Liu, Y.; Zhu, B.; Li, S. Acta Phys. -Chim. Sin. 2024, 40, 2407014. doi:10.3866/PKU.WHXB202407014

    18. [18]

      Wei, D.; Liu, Y.; Shao, X.; Zhao, X.; Ghufran, S.; Wang, L.; Wu, R.; Guo, J.; Yang, C. J. Environ. 2022, 10, 107216. doi:10.1016/j.jece.2022.107216

    19. [19]

      Chen, S.; Liu, F.; Cui, R.; Zhu, B.; You, X. Water Cycle. 2022, 3, 8. doi:10.1016/j.watcyc.2022.01.001

    20. [20]

      Li, J.; Li, Z.; Tan, J.; Meng, Y.; Lu, Y.; Zhang, T. Appl. Surf. Sci. 2021, 554, 149601. doi:10.1016/j.apsusc.2021.149601

    21. [21]

      Wei, Y.; Liu, Y.; Liu, C.; Li, X.; Song, K.; Wang, R.; Chen, W.; Zhao, G.; Liu, R.; Wang, H.; Shi, G.; Wang, G. ACS Appl. Nano. Mater. 2023, 6, 16567. doi:10.1021/acsanm.3c02762

    22. [22]

      Hasija, V.; Singh, P.; Thakur, S.; Nguyen, V.; Van Le, Q.; Ahamad, T.; Alshehri, S.; Raizada, P.; Matsagar, B.; Wu, K. Chemosphere. 2023, 320, 138015. doi:10.1016/j.chemosphere.2023.138015

    23. [23]

      Cui, J.; Yu, F.; Zhang, J.; Tang, X.; Liu, Y. Opt. Mater. 2023, 139, 113777. doi:10.1016/j.optmat.2023.113777

    24. [24]

      Almond, J.; Sugumaar, P.; Wenzel, M.; Hill, G.; Wallis, C. E-Polymers. 2020, 20, 369. doi:10.1515/epoly-2020-0041

    25. [25]

      Zha, S.; Lan, H.; Lin, N.; Meng, T. Polym. Degrad. Stabil. 2023, 208, 110247. doi:10.1016/j.polymdegradstab.2022.110247

    26. [26]

      Qaraah, F.; Mahyoub, S.; Hezam, A.; Qaraah, A.; Xin, F.; Xiu, G. Appl. Catal. B. 2022, 315, 121585. doi:10.1016/j.apcatb.2022.121585

    27. [27]

      Luo, Y.; Fu, K.; Li, C.; Sun, C.; Tang, H.; She, X.; Zheng, H.; Li, F. Sur. Interfaces 2024, 53, 105093. doi:10.1016/j.surfin.2024.105093

    28. [28]

      Au, C.; Sikandaier, A.; Guo, X.; Zhu, Y.; Tang, H.; Yang, D. Acta. Phys. -Chim. Sin. 2024, 40, 2405019. doi:10.3866/PKU.WHXB202405019

    29. [29]

      Tan, J.; Li, Z.; Li, J.; Meng, Y.; Yao, X.; Wang, Y.; Lu, Y.; Zhang, T. J. Hazard. Mater. 2022, 423, 127048. doi:10.1016/j.jhazmat.2021.127048

    30. [30]

      He, H.; Wang, Z.; Zhang, J.; Shao, C.; Dai, K.; Fan, K. Adv. Funct. Mater. 2024, 24, 1616. doi:10.1002/adfm.202315426

    31. [31]

      Zhang, J.; Li, H.; Dong, F.; Hou, J.; Bian, L.; Liu, L.; Jiang, H.; Shi, Q.; Li, W. Mol. Catal. 2024, 58, 114009. doi:10.1016/j.mcat.2024.114009

    32. [32]

      Yin, F.; Qin, P.; Xu, J.; Cao, S. Acta Phys. -Chim. Sin. 2023, 39, 2212062. doi:10.3866/PKU.WHXB202212062

    33. [33]

      Huang, C.; Wen, Y.; Ma, J.; Dong, D.; Shen, Y.; Liu, S.; Ma, H.; Zhang, Y. Nat. Commun. 2021, 12, 320. doi:10.1038/s41467-020-20521-5

    34. [34]

      Qaraah, F.; Mahyoub, A.; Hafez, M.; Xiu, G. RSC Adv. 2019, 9, 39561. doi:10.1039/C9RA07505D

    35. [35]

      Chen, D.; Wang, Z.; Fu, J.; Zhang, J.; Dai, K. Sci. China Mater. 2024, 67, 541. doi:10.1007/s40843-023-2770-8

    36. [36]

      Zhou, W.; Li, M.; Liu, Y. J. Environ. Manage. 2024, 351, 119876. doi:10.1016/j.jenvman.2023.119876

    37. [37]

      Wang, H.; Yu, L.; Jiang, J.; Arramel; Zou, J. Acta Phys. -Chim. Sin. 2024, 40, 2305047. doi:10.3866/PKU.WHXB202305047

    38. [38]

      Sun, F.; Xu, D.; Xie, Y.; Liu, F.; Qi, H.; Shao, H.; Yang, Y.; Yu, H.; Yu, W.; Dong, X. J. Environ. Chem. Eng. 2023, 11, 109795. doi:10.1016/j.jece.2023.109795

    39. [39]

      Zan, Z.; Li, X.; Gao, X.; Huang, J.; Luo, Y.; Han, L. Acta Phys. -Chim. Sin. 2023, 39, 2209016. doi:10.3866/PKU.WHXB202209016

    40. [40]

      Mao, Y.; Wang, P.; Li, L.; Chen, Z.; Wang, H.; Li, Y.; Zhan, S. Angew. Chem. Int. Edit. 2020, 59, 3685. doi:10.1002/anie.201914001

    41. [41]

      Dai, C.; Li, S.; Duan, Y.; Leong, K.; Liu. S.; Zhang. Y.; Zhou. L.; Tu. Y. Water Res. 2022, 216, 118347. doi:10.1016/j.watres.2022.118347

    42. [42]

      Nosaka, Y.; Nosaka, A. Chem. Rev. 2017, 117, 11302. doi:10.1021/acs.chemrev.7b00161

    43. [43]

      Zhu, Y.; Ren, J.; Huang, G.; Dong C.; Huang, Y.; Lu, P.; Tang, H.; Liu, Y.; Shen, S.; Yang, D. Adv. Funct. Mater. 2023, 34, 2311623. doi:10.1002/adfm.202311623

    44. [44]

      Nie, Z.; Sui, C.; Xie, X.; Ni, S.; Kong, L.; Wang, Y.; Zhan, J. Appl. Catal. B. 2024, 347, 123819. doi:10.1016/j.apcatb.2024.123819

    45. [45]

      Li, M.; Sun, J.; Zhou, X.; Yao, H.; Cong, B.; Li, Y.; Chen, G. Appl. Catal. B 2023, 322, 122096. doi:10.1016/j.apcatb.2022.122096

    46. [46]

      Cao, S.; Qu, J.; Zhao, Y.; Sun, Y.; Gao, W.; Han, B.; Lu, Y. Rare Metals. 2024, 43, 3134. doi:10.1007/s12598-024-02654-4

    47. [47]

      Wang, J.; Wang, Z.; Zhang, J.; Mamatkulov, S.; Dai, K.; Ruzimuradov, O.; Low, J. ACS Nano 2024, 18, 20740. doi:10.1021/acsnano.4c06954

    48. [48]

      Jourshabani, M.; Asrami, MR.; Lee, B. Appl. Catal. B 2022, 302, 120839. doi:10.1016/j.apcatb.2021.120839

    49. [49]

      Zhou, T.; Luo, Z.; Zhang, Y.; Liu, B.; Li, L.; Wang, R.; Huang, H.; Tang, H. Sur. Interfaces 2024, 51, 104733. doi:10.1016/j.surfin.2024.104733

    50. [50]

      Zhu, Y.; Zhuang, Y.; Wang, L.; Tang, H.; Meng, X.; She, X. Chin. J. Catal. 2022, 43, 2558. doi:10.1016/S1872-2067(22)64099-3

    51. [51]

      Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.; Abu-Omar, M.; Scott, S.; Suh, S. ACS Sustain. Chem. Eng. 2020, 8, 3494. doi:10.1021/acssuschemeng.9b06635

    52. [52]

      S, Dl. T, SJ. C, R. Environ. Nanotechnol. 2019, 12, 100229. doi:10.1016/j.enmm.2019.100229

    53. [53]

      Xie, J.; Yan, Y.; Fan, S.; Min, X.; Wang, L.; You, X.; Jia, X.; Waterhouse, G.; Wang, J.; Xu, J. Environ. Sci. Technol. 2022, 56, 9041. doi:10.1021/acs.est.2c01687

    54. [54]

      Morro, A.; Catalina, F.; Sanchez-Leon, E.; Abrusci, C. J. Polym. Environ. 2019, 27, 352. doi:10.1007/s10924-018-1350-0

    55. [55]

      Amato, P.; Muscetta, M.; Venezia, V.; Cocca, M.; Gentile, G.; Castaldo, R.; Marotta, R.; Vitiello, G. J. Environ. Chem. Eng. 2023, 11, 109003. doi:10.1016/j.jece.2022.109003

    56. [56]

      Martin-Alfonso, J. E.; Urbano, J.; Cuadri, A.; Franco, J. Polym. Test. 2019, 73, 268. doi:10.1016/j.polymertesting.2018.11.031

    57. [57]

      Wang, H.; Zhu, J.; He, Y.; Wang, J.; Zeng, N.; Zhan, X. J. Hazard. Mater. 2023, 451, 131151. doi:10.1016/j.jhazmat.2023.131151

    58. [58]

      Wang, Z.; Ding, J.; Song, X.; Zheng, L.; Huang, J.; Zou, H.; Wang, Z. Sci. Total Environ. 2023, 855, 158921. doi:10.1016/j.scitotenv.2022.158921

    59. [59]

      Du, H.; Xie, Y.; Wang, J. J. Hazard. Mater. 2021, 418, 126377. doi:10.1016/j.jhazmat.2021.126377

    60. [60]

      Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen L.; Chen, C. J. Clean. Prod. 2021, 282, 124523. doi:10.1016/j.jclepro.2020.124523

    61. [61]

      Chen, J.; Wu, J.; Sherrell, P.; Chen, J.; Wang, H.; Zhang, W.; Yang, J. Adv. Sci. 2022, 9, 2103764. doi:10.1002/advs.202103764

    62. [62]

      Lim, J.; Kim, H.; Park, J.; Moon, G.; Vequizo, J.; Yamakata, A.; Lee, J.; Choi, W. Environ. Sci. Technol. 2019, 54, 497. doi:10.1021/acs.est.9b05044

    63. [63]

      Esteban, M.; Martin, A.; Ramon, J.; Arellano, M.; Alejandra, A. Polym. Degrad. Stabil. 2020, 179, 109290. doi:10.1016/j.polymdegradstab.2020.109290

    64. [64]

      Ling, C.; Li, C.; Liang, A.; Wang, W. Sep. Purif. 2023, 316, 123812. doi:10.1016/j.seppur.2023.123812

    65. [65]

      Wu, X.; Liu, P.; Gong, Z.; Wang, H.; Huang, H.; Shi, Y.; Zhao, X.; Gao, S. Environ. Sci. Technol. 2021, 55, 15810. doi:10.1021/acs.est.1c04501

    66. [66]

      Pedroza, R.; David, C.; Lodeiro, P.; Rey-Castro, C. Sci. Total Environ. 2024, 908, 168366. doi:10.1016/j.scitotenv.2023.168366

  • 加载中
    1. [1]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    2. [2]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    12. [12]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    13. [13]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(24)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return