Citation:
Jinwang Wu, Qijing Xie, Chengliang Zhang, Haifeng Shi. 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素[J]. Acta Physico-Chimica Sinica,
;2025, 41(5): 100050.
doi:
10.1016/j.actphy.2025.100050
-
最近,电子自旋极化作为抑制光生电荷快速复合的一种策略受到了广泛的关注。然而,自旋极化调控主要关注于单个光催化材料,光生电荷分离的效率依然有待进一步提高。于此,本文构建了ZnFe1.2Co0.8O4(ZFCO)/BiVO4(BVO)异质结,通过S型异质结和自旋极化作用协同促进光生电荷分离,在外部磁场下进一步促进了光催化去除有机物污染物的性能。实验结果表明,在光照下,ZB-1.5 (ZFCO : BVO = 3 : 2)表现出最佳性能,四环素(TC)降解的反应速率常数(k)为0.0146 min-1。在光照和磁场条件下,ZB-1.5的TC降解反应速率常数(k)为0.0175 min-1,其光催化性能得到了进一步提升。研究表明这是由于电子自旋极化和S型电荷分离机制协同促进了光生电荷分离。DFT计算表明,ZFCO在费米能级附近出现了明显的自旋极化现象。光致发光光谱(PL)表明,S型异质结提高了电荷分离效率。此外,评估了可能的降解路径和毒性,表明成功实现了脱毒。这项工作为利用S型异质结开发具有高效光生电荷分离的光催化剂提供了一种研究思路。
-
-
-
[1]
Li, R.; Qiu, L. P.; Cao, S. Z.; Li, Z.; Gao, S. L.; Zhang, J.; Ramakrishna, S.; Long, Y. Z. Adv. Funct. Mater. 2024, 34, 2316725. doi: 10.1002/adfm.202316725
-
[2]
Chen, R. Y.; Xia, J. Z.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2023, 39, 2209012.
-
[3]
Xie, Q. J.; Huang, H. M.; Zhang, C. L.; Zheng, X. Y.; Shi, H. F. J. Phys. D: Appl. Phys. 2024, 57, 165104. doi: 10.1088/1361-6463/ad2094
-
[4]
Wang, L. N.; Chen, T. Y.; Cui, Y. J.; Wu, J. W.; Zhou, X. Y.; Xu, M. F.; Liu, Z. Q.; Mao, W.; Zeng, X. M.; Shen, W.; et al. Adv. Funct. Mater. 2024, 34, 2313653. doi: 10.1002/adfm.202313653
-
[5]
Xu, J. C.; Zhang, X. D.; Wang, X. F.; Zhang, J. J.; Yu, J. G.; Yu, H. G. ACS Catal. 2024, 14, 15444. doi: 10.1021/acscatal.4c03916
-
[6]
You, C. J.; Wang, C. C.; Cai, M. J.; Liu, Y. P.; Zhu, B. K.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2407014.
-
[7]
Chen, R. Y.; Zhang, H. Y.; Dong, Y. M.; Shi, H. F. J. Mater. Sci. Technol. 2024, 170, 11. doi: 10.1016/j.jmst.2023.07.005
-
[8]
Fang, X. Y.; Choi, J. Y.; Stodolka, M.; Pham, H. T.; Park, J. Acc. Chem. Res. 2024, 57, 2316. doi: 10.1021/acs.accounts.4c00280
-
[9]
Shi, H. F.; Chen, G. Q.; Zhang, C. L.; Zou, Z. G. ACS Catal. 2014, 4, 3637. doi: 10.1021/cs500848f
-
[10]
Dong, K. X.; Shen, C. Q.; Yan, R. Y.; Liu, Y. P.; Zhuang, C. Q.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2310013.
-
[11]
Lv, M. S.; Wang, S. H.; Shi, H. F. J. Mater. Sci. Technol. 2024, 201, 21. doi: 10.1016/j.jmst.2024.02.073
-
[12]
Jin, X. X.; Li, X.; Dong, L. M.; Zhang, B.; Liu, D.; Hou, S. K.; Zhang, Y. S.; Zhang, F. M.; Song, B. Nano Energy 2024, 123, 109341. doi: 10.1016/j.nanoen.2024.109341
-
[13]
Dai, B. Y.; Gao, C. C.; Guo, J. H.; Ding, M.; Xu, Q. L.; He, S. X.; Mou, Y. B.; Dong, H.; Hu, M. G.; Dai, Z. Nano Lett. 2024, 24, 4816. doi: 10.1021/acs.nanolett.3c05098
-
[14]
Ding, X.; Jing, W. H.; Yin, Y. T.; He, G. W.; Bai, S. J.; Wang, F.; Liu, Y.; Guo, L. J. Chem. Eng. J. 2024, 499, 156091. doi: 10.1016/j.cej.2024.156091
-
[15]
Li, X. Y.; Mai, H. X.; Wang, X. D.; Xie, Z. L.; Lu, J. L.; Wen, X. M.; Russo, S. P.; Chen, D. H.; Caruso, R. A. J. Mater. Chem. A 2024, 12, 5204. doi: 10.1039/d3ta06439e
-
[16]
Fang, B.; Xing, Z. P.; Kong, W. F.; Li, Z. Z.; Zhou, W. Nano Energy 2022, 101, 107616. doi: 10.1016/j.nanoen.2022.107616
-
[17]
Li, Y. Y.; Wang, Z. H.; Wang, Y. Q.; Kovács, A.; Foo, C.; Dunin-Borkowski, R. E.; Lu, Y. H.; Taylor, R. A.; Wu, C.; Tsang, S. C. E. Energy Environ. Sci. 2022, 15, 265. doi: 10.1039/D1EE02222A
-
[18]
Mtangi, W.; Kiran, V.; Fontanesi, C.; Naaman, R. J. Phys. Chem. Lett. 2015, 6, 4916. doi: 10.1021/acs.jpclett.5b02419
-
[19]
Wu, T. Z.; Sun, Y. M.; Ren, X.; Wang, J. R.; Song, J. J.; Pan, Y. D.; Mu, Y. B.; Zhang, J. S.; Cheng, Q. Z.; Xian, G. Y. Adv. Mater. 2023, 35, 2207041. doi: 10.1002/adma.202207041
-
[20]
Zhou, S. M.; Miao, X. B.; Zhao, X.; Ma, C.; Qiu, Y. H.; Hu, Z. P.; Zhao, J. Y.; Shi, L.; Zeng, J. Nat. Commun. 2016, 7, 11510. doi: 10.1038/ncomms11510
-
[21]
Gao, W. Q.; Peng, R.; Yang, Y. Y.; Zhao, X. L.; Cui, C.; Su, X. W.; Qin, W.; Dai, Y.; Ma, Y. D.; Liu, H. ACS Energy Lett. 2021, 6, 2129. doi: 10.1021/acsenergylett.1c00682
-
[22]
Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. Nat. Commun. 2020, 11, 418. doi: 10.1038/s41467-020-14333-w
-
[23]
Zhu, B. C.; Sun, J.; Zhao, Y. Y.; Zhang, L. Y.; Yu, J. Adv. Mater. 2024, 36, 2310600. doi: 10.1002/adma.202310600
-
[24]
Deng, X. Y.; Zhang, J. J.; Qi, K. Z.; Liang, G. J.; Xu, F. Y.; Yu, J. G. Nat. Commun. 2024, 15, 4807. doi: 10.1038/s41467-024-49004-7
-
[25]
Meng, K.; Zhang, J. J.; Cheng, B.; Ren, X. G.; Xia, Z. S.; Xu, F. Y.; Zhang, L. Y.; Yu, J. G. Adv. Mater. 2024, 36, 2406460. doi: 10.1002/adma.202406460
-
[26]
Sun, G. T.; Tai, Z. G.; Zhang, J. J.; Cheng, B.; Yu, H. G.; Yu, J. G. Appl. Catal. B 2024, 358, 124459. doi: 10.1016/j.apcatb.2024.124459
-
[27]
Li, Y. Q.; Wan, S. J.; Liang, W. C.; Cheng, B.; Wang, W.; Xiang, Y.; Yu, J. G.; Cao, S. W. Small 2024, 20, 2312104. doi: 10.1002/smll.202312104
-
[28]
Qiu, J. Y.; Meng, K.; Zhang, Y.; Cheng, B.; Zhang, J. J.; Wang, L. X.; Yu, J. G. Adv. Mater. 2024, 36, 2400288. doi: 10.1002/adma.202400288
-
[29]
Deng, X. Y.; Wen, Z. H.; Li, X. H.; Macyk, W.; Yu, J. G.; Xu, F. Y. Small 2024, 20, 2305410. doi: 10.1002/smll.202305410
-
[30]
Wang, W. L.; Zhang, H. C.; Chen, Y. G.; Shi, H. F. Acta Phys. -Chim. Sin. 2022, 38, 2201008.
-
[31]
Wang, S. D.; Huang, L. Y.; Xue, L. J.; Kang, Q.; Wen, L. L.; Lv, K. L. Appl. Catal. B 2024, 358, 124366. doi: 10.1016/j.apcatb.2024.124366
-
[32]
Zhang, D.; Chen, P. X.; Qin, R.; Li, H. S.; Pu, X. P.; Zou, J. P.; Liu, J. C.; Zhang, D. F.; Ji, X. Y. Appl. Catal. B 2024, 361, 124690. doi: 10.1016/j.apcatb.2024.124690
-
[33]
Xiao, L. F.; Ren, W. L.; Shen, S. S.; Chen, M. S.; Liao, R. H.; Zhou, Y. T.; Li, X. B. Acta Phys. -Chim. Sin. 2024, 40, 2308036.
-
[34]
Hu, T. P.; Dai, K.; Zhang, J. F.; Chen, S. F. Appl. Catal. B 2020, 269, 118844. doi: 10.1016/j.apcatb.2020.118844
-
[35]
Huang, K. H.; Chen, D. J.; Zhang, X.; Shen, R. X.; Zhang, P.; Xu, D. F.; Li. X. Acta Phys. -Chim. Sin. 2024, 40, 2407020.
-
[36]
Hu, H. J.; Zhang, X. Y.; Zhang, K. L.; Ma, Y. L.; Wang, H. T.; Li, H.; Huang, H. W.; Sun, X. D.; Ma, T. Y. Adv. Energy Mater. 2024, 14, 2303638. doi: 10.1002/aenm.202303638
-
[37]
Ren, D. D.; Zhang, W. N.; Ding, Y. N.; Shen, R. C.; Jiang, Z. M.; Lu, X. Y.; Li, X. Sol. RRL 2020, 4, 1900423. doi: 10.1002/solr.201900423
-
[38]
Li, S. J.; Wang, C. C.; Dong, K. X.; Zhang, P.; Chen, X. B.; Li, X. Chin. J. Catal. 2023, 51, 101. doi: 10.1016/S1872-2067(23)64479-1
-
[39]
Guo, W. Q.; Luo, H. L.; Jiang, Z.; Shangguan, W. F. Chin. J. Catal. 2022, 43, 316. doi: 10.1016/S1872-2067(21)63846-9
-
[40]
Wang, C. C.; You, C. J.; Rong, K.; Shen, C. Q.; Yang, F.; Li, S. J. Acta Phys. -Chim. Sin. 2024, 40, 2307045.
-
[41]
Zhang, Q. Q; Wang, Z.; Song, Y. H.; Fan, J.; Sun, T.; Liu, E. Z. J. Mater. Sci. Technol. 2024, 169, 148. doi: 10.1016/j.jmst.2023.05.066
-
[42]
Liu, J. H.; Wei, X. N.; Sun, W. Q.; Guan, X. X.; Zheng, X. C.; Li, J. Environ. Res. 2021, 197, 111136. doi: 10.1016/j.envres.2021.111136
-
[43]
Li, Y.; Li, Y. Z.; Yin, Y. D.; Xia, D. H.; Ding, H. R.; Ding, C.; Wu, J.; Yan, Y. H.; Liu, Y.; Chen, N. Appl. Catal. B 2018, 226, 324. doi: 10.1016/j.apcatb.2017.12.051
-
[44]
Zhang, G. H.; Meng, Y.; Xie, B.; Ni, Z. M.; Lu, H. F.; Xia, S. J. Appl. Catal. B 2021, 296, 120379. doi: 10.1016/j.apcatb.2021.120379
-
[45]
Li, C.; Feng, F.; Jian, J.; Xu, Y. X.; Li, F.; Wang, H. Q.; Jia, L. C. J. Mater. Sci. Technol. 2021, 79, 21. doi: 10.1016/j.jmst.2020.11.037
-
[46]
Zou, X. J.; Dong, Y. Y.; Ke, J.; Ge, H.; Chen, D.; Sun, H. J.; Cui, Y. B. Chem. Eng. J. 2020, 400, 125919. doi: 10.1016/j.cej.2020.125919
-
[47]
Lai, C.; Zhang, M. M.; Li, B. S.; Huang, D. L.; Zeng, G. M.; Qin, L.; Liu, X. G.; Yi, H.; Cheng, M.; Li, L. Chem. Eng. J. 2019, 358, 891. doi: 10.1016/j.cej.2018.10.072
-
[48]
Wu, Y.; Zhang, J.; Duan, H.; Zhao, Y. M.; Dong, Y. Z. Dalton Trans. 2021, 50, 15036. doi: 10.1039/D1DT02865K
-
[49]
Li, A. H.; Ma, J. L.; Hong, M.; Sun, R. C. Appl. Catal. B 2024, 348, 123834. doi: 10.1016/j.apcatb.2024.123834
-
[50]
Lin, H.; Li, S. M.; Deng, B.; Tan, W. H.; Li, R. M.; Xu, Y.; Zhang, H. Chem. Eng. J. 2019, 364, 541. doi: 10.1016/j.cej.2019.01.189
-
[51]
Han, T. Y.; Shi, H. F.; Chen, Y. G. J. Mater. Sci. Technol. 2024, 174, 30. doi: 10.1016/j.jmst.2023.03.053
-
[52]
Yan, J. T.; Zhang, J. J. J. Mater. Sci. Technol. 2024, 193, 18. doi: 10.1016/j.jmst.2023.12.054
-
[53]
Cai, J. J.; Liu, B. W.; Zhang, S. M.; Wang, L. X.; Wu, Z.; Zhang, J. J.; Cheng, B. J. Mater. Sci. Technol. 2024, 197, 183. doi: 10.1016/j.jmst.2024.02.012
-
[54]
Zhu, J. J.; Wageh, S.; Al-Ghamdi, A. A. Chin. J. Catal. 2023, 49, 5. doi: 10.1016/S1872-2067(23)64438-9
-
[55]
Cheng, C.; Zhang, J. J.; Zhu, B. C.; Liang, G. J.; Zhang, L. Y.; Yu, J. G. Angew. Chem. Int. Ed. 2023, 62, e202218688. doi: 10.1002/anie.202218688
-
[56]
Yu, J. H.; Yao, X. T.; Su, P.; Wang, S. K.; Zhang, D. F.; Ge, B.; Pu, X. P. J. Liaocheng Univ. (Nat. Sci. Ed.) 2024, 37, 52. doi: 10.19728/j.issn1672-6634.2021070009
-
[57]
Zhou, D. S.; Shao, S.; Zhang, X.; Di, T. M.; Zhang, J.; Wang, T. L.; Wang, C. W. J. Mater. Chem. A 2023, 11, 401. doi: 10.1039/D2TA07289K
-
[58]
Long, Z. Y.; Shi, H. F.; Chen, Y. G. J. Colloid Interface Sci. 2025, 678, 1169. doi: 10.1016/j.jcis.2024.09.112
-
[59]
Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Chin. J. Catal. 2020, 41, 140. doi: 10.1016/S1872-2067(19)63481-9
-
[60]
Gracia, J.; Sharpe, R.; Munarriz, J. J. Catal. 2018, 361, 331. doi: 10.1016/j.jcat.2018.03.012
-
[61]
Gracia, J.; Munarriz, J.; Polo, V.; Sharpe, R.; Jiao, Y.; Niemantsverdriet, J.; Lim, T. ChemCatChem 2017, 9, 3358. doi: 10.1002/cctc.201700302
-
[62]
Gracia, J. J. Phys. Chem. C 2019, 123, 9967. doi: 10.1021/acs.jpcc.9b01635
-
[1]
-
-
-
[1]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[2]
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064
-
[3]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[4]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[5]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[6]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[7]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[8]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[9]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[10]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[11]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[12]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[13]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[14]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[15]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[16]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[17]
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
-
[18]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[19]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[20]
Jingzhuo Tian , Chaohong Guan , Haobin Hu , Enzhou Liu , Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(34)
- HTML views(6)