Citation: Xue Liu,  Lipeng Wang,  Luling Li,  Kai Wang,  Wenju Liu,  Biao Hu,  Daofan Cao,  Fenghao Jiang,  Junguo Li,  Ke Liu. Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100049. doi: 10.1016/j.actphy.2025.100049 shu

Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展

  • Received Date: 18 November 2024
    Revised Date: 13 December 2024
    Accepted Date: 20 December 2024

    Fund Project: The project was supported by Shenzhen Science and Technology Program, Shenzhen Science and Technology Innovation Committee (KQTD20180411143418361), Shenzhen Gas & SUSTech Joint Energy Lab, Southern University of Science and Technology, Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), Key Scientific Research Project of Colleges and Universities in Henan Province (24B530001) and National Natural Science Foundation of China (U22B20149).

  • 甲醇水蒸气重整(methanol steam reforming, MSR)反应是实现甲醇在线制氢的重要途径,在清洁能源应用中具有重要作用。MSR反应中的催化性能直接影响氢气产量和副产物组成,其中Cu基和Pt基催化剂被广泛研究。其催化机制主要涉及甲醇和水分子中C―H和O―H键的断裂。Cu基催化剂的活性依赖于Cu0和Cu+位点的比例及协同作用,Pt基催化剂则通过Pt0、Ptδ+或Pt2+活性位点与氧空位的相互作用发挥作用。然而,活性金属与载体之间的电子转移及相互作用机制仍存争议,影响金属价态、吸附位点及反应路径选择,特别是在甲醇脱氢生成中间产物(如甲醛、甲酸和甲酸甲酯)的反应路径上,尚未形成统一认识。本文总结了Cu0与Cu+的单位点与协同位点机制,探讨了Pt基催化剂的直接路径与协同路径,分析In2O3等对Pt位点调控及氧空位生成的促进作用。通过催化性能评估与机理研究,提出了优化催化剂活性和稳定性的策略。本综述不仅深化了对MSR反应机理的理解,还为高效催化剂的设计提供了理论基础和研究方向。
  • 加载中
    1. [1]

      Wang, R.; Chen, Z.; Zeng, J.; Wang, Y.; Cao, J.; Tang, X.; Zhang, R. Sci.Technol. Rev. 2024, 42, 10.

    2. [2]

      Raimi, D.; Zhu, Y.; Newell, D. R. G.; Prest, B. C.; Bergman, A. Resources for the Future 2024. Report: https://www.rff.org/publications/reports/global-energy-outlook-2024

    3. [3]

      Gu, B.; Yu, D.; Wang, C.; Wang, Y. Bull. Chin. Acad. Sci. 2024, 39, 726.

    4. [4]

      Dai, L.; Xiong, J.; Liu, H. Chem. Ind. Eng. Prog. 2013, 32, 2068.

    5. [5]

      Pham, T. T.; Mollaamin, F.; Monajjemi, M.; Dang, C. M. Int. J. Nanotechnol. 2020, 17, 498. doi: 10.1504/IJNT.2020.111320

    6. [6]

      Hu, B.; Xu, P.; Wang, L.; Xiang, D.; Jiang, F.; Cao, D.; Liu, K. Int. J. Hydrog. Energy 2024, 91, 434. doi: 10.1016/j.ijhydene.2024.09.342

    7. [7]

      James, L.; Andrew, D. Fuel Cell Systems Explained; John Wiley & Sons: New Jersey, USA, 2003.

    8. [8]

      Acres, G. J. K.; Frost, J. C.; Hards, G. A.; Potter, R. J.; Ralph, T. R.; Thompsett, D.; Burstein, G. T.; Hutchings, G. J. Catal. Today 1997, 38, 393. doi: 10.1016/S0920-5861(97)00050-3

    9. [9]

      Urian, R. C.; Gullá, A. F.; Mukerjee, S. J. Electroanal. Chem. 2003, 554-555, 307. doi: 10.1016/s0022-0728(03)00241-9

    10. [10]

      Li, J.; Wu, C.; Cao, D.; Hu, S.; Weng, L.; Liu, K. Engineering 2023, 29, 27. doi: 10.1016/j.eng.2023.08.005

    11. [11]

      Jiang, D.; Jia, Y.; Lu, Q.; Hong, B.; Shen, R.; Zhang, Y. Electric. Power 2020, 53, 135.

    12. [12]

      Li, X. Energy Conserv. Environ. Prot.Transport. 2023, 19, 45.

    13. [13]

      Li, Q.; Liu, X.; Liu, K.; Zhang, T.; Kong, F. Low-Carbon Chem. Chem. Eng. 2015, 40, 78.

    14. [14]

      Zheng, L.; Zhao, D.; Qi, X.; Chen, Y. J. Eng. Thermophys. 2022, 43, 2305.

    15. [15]

      Shao, L.; Zhang, Y.; Tang, Y.; Yang, P.; Wang, Y.; Wang, H. Refin. Chem. Ind. 2024, 35, 10.

    16. [16]

      Feng, Y.; Cao, T.; Song, H.; Lin, W. China Pet. Process. Pe. 2022, 53, 11. [

    17. [17]

      Liu, K.; Song, C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies; Wiley and AIChE: New Jersey, USA, 2009.

    18. [18]

      Wang, L.; Cao, D.; Liu, X.; Li, C.; Liu, K. Acta Chim. Sin. 2024, 82, 819.

    19. [19]

      Wang, L.; Li, Q.; Liu, X.; Li, C.; Zhao, Z.; Diao, S.; Cao, D.; Xiang, D.; Wu, C.; Liu, K. Appl. Surf. Sci. 2024, 649, 159087. doi: 10.1016/j.apsusc.2023.159087

    20. [20]

      Zhao, H.; Liu, X.; Cao, D.; Li, C.; Jiang, F.; Wu, C.; Liu, K. Low-Carbon Chem. Chem. Eng. 2022, 47, 49.

    21. [21]

      Tang, Y.; Deng, Q.; Lu, Y.; He, M. Low-Carbon Chem. Chem. Eng. 2009, 34, 65.

    22. [22]

      Lee, J. K.; Ko, J. B.; Kim, D. H. Appl. Catal. A 2004, 278, 25. doi: 10.1016/j.apcata.2004.09.022

    23. [23]

      Cao, J.; Ma, Y.; Guan, G.; Hao, X.; Ma, X.; Wang, Z.; Kusakabe, K.; Abudula, A. Appl. Catal. B 2016, 189, 12. doi: 10.1016/j.apcatb.2016.02.021

    24. [24]

      Hassan, A. Int. J. Hydrog. Energy 2024, 93, 1487. doi: 10.1016/j.ijhydene.2024.11.084

    25. [25]

      Wang, S.; Gu, X.; Su, H.; Li W. J. Phys. Chem. C 2018, 122, 10811. doi: 10.1021/acs.jpcc.8b00085

    26. [26]

      Feng, K.; Meng, H.; Yang, Y.; Wei, M. Chem. Ind. Eng. Prog. 2024, 43, 5498.

    27. [27]

      Iruretagoyena, D.; Hellgardt, K.; Chadwick, D. Int. J. Hydrog. Energy 2018, 43, 4211. doi: 10.1016/j.ijhydene.2018.01.043

    28. [28]

      Deng, Y.; Li, S.; Appels, L.; Dewil, R.; Zhang, H.; Baeyens, J.; Mikulcic, H. J. Environ. Manage. 2022, 321, 116019. doi: 10.1016/j.jenvman.2022.116019

    29. [29]

      Ito, S.; Suwa, Y.; Kondo, S.; Kameoka, S.; Tomishige, K.; Kunimori, K. Catal. Commun. 2003, 4, 499. doi: 10.1016/s1566-7367(03)00132-8

    30. [30]

      Miyao, T.; Yamauchi, M.; Narita, H.; Naito, S. Appl. Catal. A 2006, 299, 285. doi: 10.1016/j.apcata.2005.10.043

    31. [31]

      Barthos, R.; Solymosi, F. J. Catal. 2007, 249, 289. doi: 10.1016/j.jcat.2007.05.003

    32. [32]

      Akagi, T.; Ikenaga, N. Int. J. Hydrog. Energy 2023, 48, 25693. doi: 10.1016/j.ijhydene.2023.03.147

    33. [33]

      Liu, S.; Wang, R.; Chen, J. Int. J. Hydrog. Energy 2023, 48, 34382. doi: 10.1016/j.ijhydene.2023.05.238

    34. [34]

      Huang, H.; Chih, Y.; Chen, W.; Hsu, C.; Lin, K.; Lin, H.; Hsu, C. Int. J. Hydrog. Energy 2021, 47, 88. doi: 10.1016/j.ijhydene.2021.12.080

    35. [35]

      Li, J.; Mei, X.; Zhang, L.; Yu, Z.; Liu, Q.; Wei, T.; Wu, W.; Dong, D.; Xu, L.; Hu X. Int. J. Hydrog. Energy 2020, 45, 3815. doi: 10.1016/j.ijhydene.2019.03.269

    36. [36]

      Wang, Q.; Zhao, Q.; Wu, R.; Tao, X.; Zhang, C. Mod. Chem. Ind. 2019, 39, 50.

    37. [37]

      Ni, Z.; Mao, J.; Pan, G.; Xu, Q.; Li, X. Acta. Phys.-Chim. Sin. 2009, 25, 876.

    38. [38]

      Yang, W.; Polo‐Garzon, F.; Zhou, H.; Huang, Z.; Chi, M.; Meyer, H.; Yu, X.; Li, Y.; Wu, Z. Angew. Chem. 2022, 135. doi: 10.1002/ange.202217323

    39. [39]

      Park, H.; Yoon, S. ACS Sustain. Chem. Eng. 2023, 11, 12036. doi: 10.1021/acssuschemeng.3c02330

    40. [40]

      Rui, N.; Zhang, F.; Sun, K.; Liu, Z.; Xu, W.; Stavitski, E.; Senanayake, S. D.; Rodriguez, J. A.; Liu, C. ACS Catal. 2020, 10, 11307. doi: 10.1021/acscatal.0c02120

    41. [41]

      Gu, X.; Qiao, B.; Huang, C.; Ding, W.; Sun, K.; Zhan, E.; Zhang, T.; Liu, J.; Li, W. ACS Catal. 2014, 4, 3886. doi: 10.1021/cs500740u

    42. [42]

      Davda, R. R.; Shabaker, J. W.; Huber, G. W.; Cortright, R. D.; Dumesic, J. A.; Appl. Catal. B 2005, 56, 171. doi: 10.1016/j.apcatb.2004.04.027

    43. [43]

      Yong, S. T.; Ooi, C. W.; Chai, S. P.; Wu, X. S. Int. J. Hydrog. Energy 2013, 38, 9541. doi: 10.1016/j.ijhydene.2013.03.023

    44. [44]

      Herdem, M. S.; Sinaki, M. Y.; Farhad, S.; Hamdullahpur, F. Int. J. Energy Res. 2019, 43, 5076. doi: 10.1002/er.4440

    45. [45]

      Shishido, T.; Yamamoto, Y.; Morioka, H.; Takaki, K.; Takehira, K. Appl. Catal. A 2004, 263, 249. doi: 10.1016/j.apcata.2003.12.018

    46. [46]

      Tong, W.; West, A.; Cheung, K.; Yu, K.-M.; Tsang, S. C. E. ACS Catal. 2013, 3, 1231. doi: 10.1021/cs400011m

    47. [47]

      Chang, C.; Wang, J.; Chang, C.; Liaw, B.; Chen, Y. Chem. Eng. J. 2012, 192, 350. doi: 10.1016/j.cej.2012.03.063

    48. [48]

      Huang, G.; Liaw, B.; Jhang, C.; Chen, Y. Appl. Catal. A 2009, 358, 7. doi: 10.1016/j.apcata.2009.01.031

    49. [49]

      LeValley, T. L.; Richard, A. R.; Fan, M. Int. J. Hydrog. Energy 2014, 39, 16983. doi: 10.1016/j.ijhydene.2014.08.041

    50. [50]

      Krajčí, M.; Tsai, A. P.; Hafner, J. J. Catal. 2015, 330, 6. doi: 10.1016/j.jcat.2015.06.020

    51. [51]

      Tahay, P.; Khani, Y.; Jabari, M.; Bahadoran, F.; Safari, N. Appl. Catal. A 2018, 554, 44. doi: 10.1016/j.apcata.2018.01.022

    52. [52]

      Chen, L. N.; Hou, K. P.; Liu, Y. S.; Qi, Z. Y.; Zheng, Q.; Lu, Y. H.; Chen, J. Y.; Chen, J. L.; Pao, C. W.; Wang, S. B.; et al. J. Am. Chem. Soc. 2019, 141, 17995. doi: 10.1021/jacs.9b09431

    53. [53]

      Cai, F.; Ibrahim, J. J.; Fu, Y.; Kong, W.; Li, S.; Zhang, J.; Sun Y. Ind. Eng. Chem. Res. 2020, 59, 18756. doi: 10.1021/acs.iecr.0c03311

    54. [54]

      Shanmugam, V.; Neuberg, S.; Zapf, R.; Pennemann, H.; Kolb, G. Int. J. Hydrog. Energy 2020, 45, 1658. doi: 10.1016/j.ijhydene.2019.11.015

    55. [55]

      Ma, Y.; Guan, G.; Phanthong, P.; Li, X.; Cao, J.; Hao, X.; Wang, Z. Abudula, A. Int. J. Hydrog. Energy 2014, 39, 18803. doi: 10.1016/j.ijhydene.2014.09.062

    56. [56]

      Ke, C.; Lin, Z. Molecules 2020, 25, 1531. doi: 10.3390/molecules25071531

    57. [57]

      Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüte,r M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Fuel 2016, 166, 276. doi: 10.1016/j.fuel.2015.10.111

    58. [58]

      Aziz, M. A. A.; Jalil, A. A.; Triwahyono, S.; Ahmad, A. Green Chem. 2015, 17, 2647. doi: 10.1039/c5gc00119f

    59. [59]

      Jia, J.; Qian, C.; Dong, Y.; Li, Y. F.; Wang, H.; Ghoussoub, M.; Butler, K. T.; Walsh, A.; Ozink, G. A. Chem. Soc. Rev. 2017, 46, 4631. doi: 10.1039/C7CS00026J

    60. [60]

      Guo, Y.; Mei, S.; Yuan, K.; Wang, D.; Liu, H.; Yan, C.; Zhang, Y. ACS Catal. 2018, 8, 6203. Doi: 10.1021/acscatal.7b04469

    61. [61]

      Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Science 1981, 211, 1121. doi: 10.1126/science.211.4487.1121

    62. [62]

      Acerbi, N.; Tsang, S. C. E.; Jones, G.; Golunski, S.; Collier, P. Angew. Chem. Int. Ed. 2013, 125, 7891. doi: 10.1002/ange.201300130

    63. [63]

      Willinger, M. G.; Zhang, W.; Bondarchuk, O.; Shaikhutdinov, S.; Freund H.; Schlögl, R. Angew. Chem. Int. Ed. 2014, 53, 5998. doi: 10.1002/anie.201400290

    64. [64]

      Matsubu, J. C.; Zhang, S.; DeRita, L.; Marinkovic, N. S.; Chen, J. G.; Graham, G. W.; Pan, X.; Christopher, P. Nat. Chem. 2017, 9, 120. doi: 10.1038/nchem.2607

    65. [65]

      Ahmadi, M.; Mistry, H.; Roldan, C. J. Phys. Chem. Lett. 2016, 7, 3519. doi: 10.1021/acs.jpclett.6b01198

    66. [66]

      Mutz, B.; Belimov, M.; Wang, W.; Sprenger, P.; Serrer, M.; Wang, D.; Pfeifer, P.; Kleist, W.; Grunwaldt, J. ACS Catal. 2017, 7, 6802. doi: 10.1021/acscatal.7b01896

    67. [67]

      Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. 2011, 40, 3703. doi: 10.1039/c1cs15008a

    68. [68]

      Liu, C.; Yang, B.; Tyo, E.; Seifert, S.; DeBartolo, J.; Von Issendorff, B.; Zapol, P.; Vajda, S.; Curtiss, L. J. Am. Chem. Soc. 2015, 137, 8676. doi: 10.1021/jacs.5b03668

    69. [69]

      Wu, C.; Zhang, Z.; Zhu, Q.; Han, H.; Yang, Y.; Han, B. Green Chem. 2015, 17, 1467. doi: 10.1039/c4gc01818d

    70. [70]

      Cargnello, M.; Doan-Nguyen, V. V. T.; Gordon, T. R.; Diaz, R. E.; Stach, E. A.; Gorte, R. J.; Fornasiero, P.; Murray, C. B. Science 2013, 341, 771. doi: 10.1126/science.1240148

    71. [71]

      Larmier, K.; Liao, W. C.; Tada, S.; Lam, E.; Verel, R.; Bansode, A.; Urakawa, A.; Comas‐Vives, A.; Copéret, C. Angew. Chem. Int. Ed. 2017, 56, 2318. doi: 10.1002/anie.201610166

    72. [72]

      Kattel, S.; Yu, W.; Yang, X.; Yan, B.; Huang, Y.; Wan, W.; Liu, P.; Chen, J. G. Angew. Chem. Int. Ed. 2016, 55, 7968. doi: 10.1002/anie.201601661

    73. [73]

      Van Santen, R. A. Acc. Chem. Res. 2009, 42, 57. doi: 10.1021/ar800022m

    74. [74]

      Takezawa, N.; Iwasa, N. Catal. Today 1997, 36, 45. doi: 10.1016/s0920-5861(96)00195-2

    75. [75]

      Idem, R. O.; Bakhshi, N. N. Chem. Eng. Sci. 1996, 51, 3697. doi: 10.1016/0009-2509(96)00008-5

    76. [76]

      Lin, S.; Xie, D.; Guo, H. ACS Catal. 2011, 1, 1263. doi: 10.1021/cs200311t

    77. [77]

      Sun, K.; Liu, J.; Browning, N. D. Appl. Catal. B 2002, 38, 271. doi: 10.1016/S0926-3373(02)00055-3

    78. [78]

      Ruano, D.; Cored, J.; Azenha, C.; Pérez-Dieste, V.; Mendes, A.; Mateos-Pedrero, C.; Concepción, P. ACS Catal. 2019, 9, 2922. doi: 10.1021/acscatal.8b05042

    79. [79]

      López-Suárez, F. E.; Bueno-López, A.; Illán-Gómez, M. J. Appl. Catal. B. 2008, 84, 651. doi: 10.1016/j.apcatb.2008.05.019

    80. [80]

      Liu, A.; Liu, L.; Cao, Y.; Wang, J.; Si, R.; Gao, F.; Dong, L. ACS Catal. 2019, 9, 9840. doi: 10.1021/acscatal.9b02773

    81. [81]

      Hattori, M.; Hattori, T.; Ozawa; M. Appl. Catal. A 2024, 670, 119515. doi: 10.1016/j.apcata.2023.119515

    82. [82]

      Ploner, K.; Delir, Kheyrollahi Nezhad P.; Watschinger, M.; Schlicker, L.; Bekheet, M. F.; Gurlo, A.; Gili, A.; Doran, A.; Schwarz, S.; Stöger-Pollach, M.; et al. Appl. Catal. A 2021, 623, 118279. doi: 10.1016/j.apcata.2021.118279

    83. [83]

      Xi, H.; Hou, X.; Liu, Y.; Qing, S.; Gao, Z.; Angew. Chem. Int. Ed. 2014, 53, 11886. doi: 10.1002/anie.201405213

    84. [84]

      Liu, Y.; Kang, H.; Hou, X.; Qing, S.; Zhang, L.; Gao, Z.; Xiang, H. Appl. Catal. B 2023, 323, 122043. doi: 10.1016/j.apcatb.2022.122043

    85. [85]

      Liu, X.; Xu, J.; Li, S.; Chen, Z.; Xu, X.; Fang, X; Wang, X. Catal. Today 2022, 402, 228. doi: 10.1016/j.cattod.2022.04.012

    86. [86]

      Finger, P. H.; Osmari, T. A.; Cabral, N. M.; Bueno, J. M. C.; Gallo, J. M. R. Catal. Today 2021, 381, 26. doi: 10.1016/j.cattod.2020.10.019

    87. [87]

      Bansode, A.; Tidona, B.; von Rohr, P. R.; Urakawa, A. Catal. Sci. Technol. 2013, 3, 767. doi: 10.1039/c2cy20604h

    88. [88]

      Liu, Y.; Liu, X.; Xia, L.; Huang, C.; Wu, Z.; Wang, H.; Sun, Y. Acta. Phys.-Chim. Sin. 2022, 38, 2002017. doi: 10.3866/pku.Whxb202002017

    89. [89]

      Jiang, X.; Chen, X.; Ling, C.; Chen, S.; Wu, Z. Appl. Catal. A Gen. 2019, 570, 192. doi: 10.1016/j.apcata.2018.11.023

    90. [90]

      Li, C.; Chen, K.; Wang, X.; Xue, N.; Yang, H. Acta. Phys.-Chim. Sin. 2021, 37, 2009101. doi: 10.3866/PKU.WHXB202009101

    91. [91]

      Walenta, C. A.; Courtois, C.; Kollmannsberger, S. L.; Eder, M.; Tschurl, M.; Heiz, U. ACS Catal. 2020, 10, 4080. doi: 10.1021/acscatal.0c00260

    92. [92]

      Patel, S.; Pant, K. K. J. Power Sources 2006, 159, 139. doi: 10.1016/j.jpowsour.2006.04.008

    93. [93]

      Guo, C.; Li, M.; Guo, W.; Xie, J.; Qin, H.; Liao, M.; Zhang, Y.; Gao, P.; Xiao, H. Chem. Eng. J. 2024, 486, 150331. doi: 10.1016/j.cej.2024.150331

    94. [94]

      Mateos-Pedrero, C.; Silva, H.; Pacheco Tanaka, D. A.; Liguori, S.; Iulianelli, A.; Basile, A.; Mendes, A. Appl. Catal. B 2015, 174-175, 67. doi: 10.1016/j.apcatb.2015.02.039

    95. [95]

      Lunkenbein, T.; Schumann, J.; Behrens, M.; Schlögl, R.; Willinger, M. G. Angew. Chem. Int. Ed. 2015, 54, 4544. doi: 10.1002/anie.201411581

    96. [96]

      Li, D.; Xu, F.; Tang, X.; Dai, S.; Pu, T.; Liu, X.; Tian, P.; Xuan, F.; Xu, Z.; Wachs, I. E.; et al. Nat. Catal. 2022, 5, 99. doi: 10.1038/s41929-021-00729-4

    97. [97]

      Li, H.; Tian, F.; Liu, Q.; Han, Y.; Zhu, M. Catal. Sci. Technol. 2022, 12, 6590. doi: 10.1039/D2CY01490D

    98. [98]

      Shiqing, J.; Zekai, Z.; Didi, L.; Yiming, W.; Cheng, L.; Minghui, Z. Angew. Chem. Int. Ed. 2023, 62, 1. doi: 10.1002/anie.202301563

    99. [99]

      Tu, W.; Ren, P.; Li, Y.; Yang, Y.; Tian, Y.; Zhang, Z.; Zhu, M.; Chin, Y.; Gong, J.; Han, Y. J. Am. Chem. Soc. 2023, 145, 8751. doi: 10.1021/jacs.2c13784

    100. [100]

      Mateos-Pedrero, C.; Azenha, C.; D.A P. T.; Sousa, J. M.; Mendes, A. Appl. Catal. B 2020, 277, 119243. doi: 10.1016/j.apcatb.2020.119243

    101. [101]

      Ploner, K.; Watschinger, M.; Kheyrollahi Nezhad, P. D.; Götsch, T.; Schlicker, L.; Köck, E.-M.; Gurlo, A.; Gili, A.; Doran, A.; Zhang, L.; et al. J. Catal. 2020, 391, 497. doi: 10.1016/j.jcat.2020.09.018

    102. [102]

      Zhang, C.; Wang, L.; Etim, U. J.; Song, Y.; Gazit, O. M.; Zhong, Z. J. Catal. 2022, 413, 284. doi: 10.1016/j.jcat.2022.06.026

    103. [103]

      Bossola, F.; Scotti, N.; Somodi, F.; Coduri, M.; Evangelisti, C.; Dal Santo, V. Appl. Catal. B 2019, 258, 118016. doi: 10.1016/j.apcatb.2019.118016

    104. [104]

      Lin, S.; Xie, D.; Guo, H. J. Phys. Chem. C 2011, 115, 20583. doi: 10.1021/jp206511q

    105. [105]

      Hu, J.; Li, Y.; Zhen, Y.; Chen, M.; Wan, H. Chin. J. Catal. 2021, 42, 367. doi: 10.1016/s1872-2067(20)63672-5

    106. [106]

      Huang, X.; Eggart, D.; Qin, G.; Sarma, B. B.; Gaur, A.; Yang, J.; Pan, Y.; Li, M.; Hao, J.; Yu, H.; et al. Nat. Commun. 2023, 14, 5716. doi: 10.1038/s41467-023-41192-y

    107. [107]

      Chu, C.; Liu, X.; Wu, C.; Li, J.; Liu, K. Catal. Sci. Technol. 2021, 11, 823. doi: 10.1039/d0cy02269a

    108. [108]

      Chu, C.; Li, C.; Liu, X.; Zhao, H.; Wu ,C.; Li, J.; Liu, K.; Li, Q.; Cao, D. Catal. Sci. Technol. 2022, 12, 1130. doi: 10.1039/d1cy01554k

    109. [109]

      Zhu, T.; Chen, Q.; Liao, P.; Duan, W.; Liang, S.; Yan, Z.; Feng, C. Small 2020, 16, e2004526. doi: 10.1002/smll.202004526

    110. [110]

      Cui, Z.; Song, S.; Liu, H.; Zhang, Y.; Gao, F.; Ding, T.; Tian, Y.; Fan, X.; Li, X. Appl. Catal. B 2022, 313, 121468. doi: 10.1016/j.apcatb.2022.121468

    111. [111]

      Fan, Y.; Li, R.; Wang, B.; Feng, X.; Du, X.; Liu, C.; Wang, F.; Liu, C.; Dong, C.; Ning, Y.; et al. Nat. Commun. 2024, 15, 3046. doi: 10.1038/s41467-024-47397-z

    112. [112]

      Wang, A.; Zhang, Y.; Fu, P.; Zheng, Q.; Fan, Q.; Wei, P.; Zheng, L. J. Environ. Chem. Eng. 2022, 10, 107676. doi: 10.1016/j.jece.2022.107676

    113. [113]

      Yao, Y.; Wu, X.; Gutiérrez, O. Y.; Ji, J.; Jin, P.; Wang, S.; Xu, Y.; Zhao, Y.; Wang, S.; Ma, X.; et al. Appl. Catal. B 2020, 267, 118698. doi: 10.1016/j.apcatb.2020.118698

    114. [114]

      Ren, Y.; Yang, Y.; Chen, L.; Wang, L.; Shi, Y.; Yin, P.; Wang, W.; Shao, M.; Zhang, X.; Wei, M. Appl. Catal. B 2022, 314, 121515. doi: 10.1016/j.apcatb.2022.121515

    115. [115]

      Yuan, X.; Chen, S.; Cheng, D.; Li, L.; Zhu, W.; Zhong, D.; Zhao, Z. J.; Li, J.; Wang, T.; Gong, J. Angew. Chem. Int. Ed. 2021, 60, 15344. doi: 10.1002/anie.202105118

    116. [116]

      Ma, K.; Tian, Y.; Zhao, Z. J.; Cheng, Q.; Ding, T.; Zhang, J.; Zheng, L.; Jiang, Z.; Abe, T.; Tsubaki, N.; et al. Chem. Sci. 2019, 10, 2578. doi: 10.1039/c9sc00015a

    117. [117]

      Liu, X.; Ma, J.; Mao, L.; Xu, J.; Xu, X.; Fang, X.; Wang, X. Fuel 2024, 357, 130080. doi: 10.1016/j.fuel.2023.130080

    118. [118]

      Yang, H.; Chen, Y.; Cui, X.; Wang, G.; Cen, Y.; Deng, T.; Yan, W.; Gao, J.; Zhu, S.; Olsbye, U.; et al. Angew. Chem. Int. Ed. 2018, 57, 1836. doi: 10.1002/anie.201710605

    119. [119]

      Liu, X.; Wang, K.; Ran, Q.; Liu, Z.; Wang, L.; Wang, M.; Li, Q.; Cao, D.; Wu, C.; Liu, K. Surf. Interfaces 2024, 51, 104633. doi: 10.1016/j.surfin.2024.104633

    120. [120]

      Feng, G.; Ganduglia-Pirovano, M. V.; Huo, C.-F.; Sauer, J. J. Phys. Chem. C 2018, 122, 18445. doi: 10.1021/acs.jpcc.8b03764

    121. [121]

      Li, M.; My Pham, T. H.; Ko, Y.; Zhao, K.; Zhong, L.; Luo, W.; Züttel, A. ACS Sustain. Chem. Eng. 2022, 10, 1524. doi: 10.1021/acssuschemeng.1c06935

    122. [122]

      Wang, A.; Fu, P.; Fan, Q.; Wang, Y.; Zheng, L.; Hu, S.; Xiang, J.; Song, C. Fuel 2024, 357, 129840. doi: 10.1016/j.fuel.2023.129840

    123. [123]

      Meng, H.; Yang, Y.; Shen, T.; Yin, Z.; Wang, L.; Liu, W.; Yin, P.; Ren, Z.; Zheng, L.; Zhang, J.; et al. Nat. Commun. 2023, 14, 7980. doi: 10.1038/s41467-023-43679-0

    124. [124]

      Luo, S.; Song, H.; Ichihara, F.; Oshikiri, M.; Lu, W.; Tang, D.-M.; Li, S.; Li, Y.; Li, Y.; Davin, P.; et al. J. Am. Chem. Soc. 2023, 145, 20530. doi: 10.1021/jacs.3c06688

    125. [125]

      Chen, M.; Mei, Z.; Chen, K.; Luo, Y. Pet. Technol. 2017, 46, 1536.

    126. [126]

      Hughes, R. Deactivation of Catalysts; Academic Press: London, U.K., 1984.

    127. [127]

      Chen, Y.; Huang, Y. Int. J. Hydrog. Energy 2023, 48, 1323. doi: 10.1016/j.ijhydene.2022.10.046

    128. [128]

      Tonelli, F.; Gorriz, O.; Tarditi, A.; Cornaglia, L.; Arrúa, L.; Cristina Abello, M. Int. J. Hydrog. Energy 2015, 40, 13379. doi: 10.1016/j.ijhydene.2015.08.046

    129. [129]

      Tang, X.; Wu, Y.; Fang, Z.; Dong, X.; Du, Z.; Deng, B.; Sun, C.; Zhou, F.; Qiao, X.; Li, X. Energy 2024, 295, 131091. doi: 10.1016/j.energy.2024.131091

    130. [130]

      Xu, T.; Zou, J.; Tao, W.; Zhang, S.; Cui, L.; Zeng, F.; Wang, D.; Cai, W. Fuel 2016, 183, 238. doi: 10.1016/j.fuel.2016.06.081

    131. [131]

      Zhao, Y.; Zhang, H.; Xu, Y.; Wang, S.; Xu, Y.; Wang, S.; Ma, X. J. Energy Chem. 2020, 49, 248. doi: 10.1016/j.jechem.2020.02.038

    132. [132]

      Palo, D. R.; Dagle, R.; Holladay, J. Chem. Rev. 2007, 107, 3992. doi: 10.1021/cr050198b

    133. [133]

      Kappis, K.; Papavasiliou, J.; Avgouropoulos, G. Energies 2021, 14, 8442. doi: 10.3390/en14248442

    134. [134]

      Azenha, C.; Lagarteira, T.; Mateos-Pedrero, C.; Mendes, A. Int. J. Hydrog. Energy 2021, 46, 17490. doi: 10.1016/j.ijhydene.2020.04.040

    135. [135]

      Xie, H.; Du, Q.; Li, H.; Zhou, G.; Chen, S.; Jiao, Z.; Ren, J. Korean J. Chem. Eng. 2017, 34, 1944. doi: 10.1007/s11814-017-0111-4

    136. [136]

      Eaimsumang, S.; Chollacoop, N.; Luengnaruemitchai, A.; Taylor, S. H. J. Catal. 2020, 392, 254. doi: 10.1016/j.jcat.2020.10.023

    137. [137]

      Guo, Y.; Qin, Y.; Liu, H.; Wang, H.; Han, J.; Zhu, X.; Ge, Q. ACS Catal. 2022, 12, 2998. doi: 10.1021/acscatal.1c05994

    138. [138]

      Yuan, B.; Tan, Z.; Guo, Q.; Shen, X.; Zhao, C.; Chen, J. L.; Peng, Y.-K. ACS Nano 2023, 17, 17383. doi: 10.1021/acsnano.3c05409

    139. [139]

      Chen, Y.; Wan, Q.; Cao, L.; Gao, Z.; Lin, J.; Li, L.; Pan, X.; Lin, S.; Wang, X.; Zhang, T. J. Catal. 2022, 415, 174. doi: 10.1016/j.jcat.2022.10.002

    140. [140]

      Jiang, F.; Wang, S.; Liu, B.; Liu, J.; Wang, L.; Xiao, Y.; Xu, Y.; Liu, X. ACS Catal. 2020, 10, 11493. doi: 10.1021/acscatal.0c03324

    141. [141]

      Ma, Y.; Tian, Z.; Zhai, W.; Qu, Y. Nano Res. 2022, 15, 10328. doi: 10.1007/s12274-022-4666-y

    142. [142]

      Chen, W.; Xue, J.; Bao, Y.; Feng, L. Chem. Eng. J. 2020, 381, 122752. doi: 10.1016/j.cej.2019.122752

    143. [143]

      Song, B.; Si, S.; Soleymani, A.; Xin, Y.; Hagelin-Weaver, H. E. Nano Res. 2022, 15, 5922. doi: 10.1007/s12274-022-4251-4

    144. [144]

      Yoon, S.; Ha, H.; Kim, J.; Nam, E.; Yoo, M.; Jeong, B.; Kim, H. Y. An, K. J. Mater. Chem. A 2021, 9, 26381. doi: 10.1039/d1ta06850d

    145. [145]

      Rui, N.; Wang, X.; Deng, K.; Moncada, J.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Hunt, A.; Stavitski, E.; et al. ACS Catal. 2023, 13, 3187. doi: 10.1021/acscatal.2c06029

    146. [146]

      Regalado Vera C. Y.; Manavi, N.; Zhou, Z.; Wang, L.; Diao, W.; Karakalos S.; Liu, B.; Stowers, K. J.; Zhou, M.; Luo, H.; et al. Chem. Eng. J. 2021, 426, 131767. doi: 10.1016/j.cej.2021.131767

    147. [147]

      Dou, M.; Zhang, M.; Chen, Y.; Yu, Y. Catal. Lett. 2018, 148, 3723. doi: 10.1007/s10562-018-2577-z

    148. [148]

      Pinheiro Araújo, T.; Morales‐Vidal, J.; Zou, T.; García‐Muelas, R.; Willi, P. O.; Engel, K. M.; Safonova, O. V.; Faust Akl, D.; Krumeich, F.; Grass, R. N.; et al. Adv. Energy Mater. 2022, 12, 2103707. doi: 10.1002/aenm.202103707

    149. [149]

      Sun, K.; Rui, N.; Zhang, Z.; Sun, Z.; Ge, Q.; Liu, C. Green Chem. 2020, 22, 5059. doi: 10.1039/d0gc01597k

    150. [150]

      Shen, C.; Sun, K.; Zou, R.; Wu, Q.; Mei, D.; Liu, C. ACS Catal. 2022, 12, 12658. doi: 10.1021/acscatal.2c03709

    151. [151]

      Köwitsch, N.; Thoni, L.; Klemmed, B.; Benad, A.; Paciok, P.; Heggen, M.; Köwitsch, I.; Mehring, M.; Eychmüller, A.; Armbrüster, M. ACS Catal. 2020, 11, 304. doi: 10.1021/acscatal.0c04073

    152. [152]

      Zhang, X.; Kirilin, A. V.; Rozeveld, S.; Kang, J. H.; Pollefeyt, G.; Yancey, D. F.; Chojecki, A.; Vanchura, B.; Blum, M. ACS Catal. 2022, 12, 3868. doi: 10.1021/acscatal.2c00207

    153. [153]

      Kolb, G.; Keller, S.; Tiemann, D.; Schelhaas, K.-P.; Schürer, J.; Wiborg, O. Chem. Eng. J. 2012, 207-208, 388. doi: 10.1016/j.cej.2012.06.141

    154. [154]

      Liu, X.; Men, Y.; Wang, J.; He, R.; Wang, Y. J. Power Sources 2017, 364, 341. doi: 10.1016/j.jpowsour.2017.08.043

    155. [155]

      Liu, D.; Men, Y.; Wang, J.; Kolb, G.; Liu, X.; Wang, Y.; Sun, Q. Int. J. Hydrog. Energy 2016, 41, 21990. doi: 10.1016/j.ijhydene.2016.08.184

    156. [156]

      Zhang, J.; Men, Y.; Wang, Y.; Liao, L.; Liu, S.; Wang, J.; An, W. Int. J. Hydrog. Energy 2023, 51, 1185. doi: 10.1016/j.ijhydene.2023.07.186

    157. [157]

      Lorenz, H.; Jochum, W.; Klötzer, B.; Stöger-Pollach, M.; Schwarz, S.; Pfaller, K.; Penner, S. Appl. Catal. A 2008, 347, 34. doi: 10.1016/j.apcata.2008.05.028

    158. [158]

      Gac, W.; Zawadzki, W.; Greluk, M.; Słowik, G.; Machocki, A.; Papavasiliou, J.; Avgouropoulos, G. ChemCatChem 2019, 11, 3264. doi: 10.1002/cctc.201900738

    159. [159]

      Wichert, M.; Zapf, R.; Ziogas, A.; Kolb, G.; Klemm, E. Chem. Eng. Sci. 2016, 155, 201. doi: 10.1016/j.ces.2016.08.009

    160. [160]

      Tsoukalou, A.; Abdala, P. M.; Stoian, D.; Huang, X.; Willinger, M.-G.; Fedorov, A.; Müller, C. R. J. Am. Chem. Soc. 2019, 141, 13497. doi: 10.1021/jacs.9b04873

    161. [161]

      Tsoukalou, A.; Abdala, P. M.; Armutlulu, A.; Willinger, E.; Fedorov, A.; Müller, C. R. ACS Catal. 2020, 10, 10060. doi: 10.1021/acscatal.0c01968

    162. [162]

      Sun, K.; Shen, C.; Zou, R.; Liu, C. Appl. Catal. B 2023, 320, 122018. doi: 10.1016/j.apcatb.2022.122018

    163. [163]

      Shao, Z.; Zhang, S.; Liu, X.; Luo, H.; Huang, C.; Zhou, H.; Wu, Z.; Li, J.; Wang, H.; Sun, Y. Appl. Catal. B 2022, 316, 121669. doi: 10.1016/j.apcatb.2022.121669

    164. [164]

      Zhang, S.; Liu, Y.; Zhang, M.; Ma, Y.; Hu, J.; Qu, Y. Nat. Commun. 2022, 13, 5527. doi: 10.1038/s41467-022-33186-z

    165. [165]

      Qi, Z.; Chen, L.; Zhang, S.; Su, J.; Somorjai, G. A. J. Am. Chem. Soc. 2021, 143, 60. doi: 10.1021/jacs.0c10728

    166. [166]

      Iwasa, N.; Takezawa, N. Topics in Catalysis 2003, 22, 215. doi: 10.1023/A:1023571819211

    167. [167]

      Papavasiliou, J.; Paxinou, A.; Słowik, G.; Neophytides, S.; Avgouropoulos, G. Catalysts 2018, 8, 544. doi: 10.3390/catal8110544

    168. [168]

      Cai, F.; Ibrahim, J. J.; Fu, Y.; Kong, W.; Zhang, J.; Sun, Y. Appl. Catal. B 2020, 264, 118500. doi: 10.1016/j.apcatb.2019.118500

    169. [169]

      Lin, L.; Zhou, W.; Gao, R.; Yao, S.; Zhang, X.; Xu, W.; Zheng, S.; Jiang, Z.; Yu, Q.; Li, Y.; et al. Nature 2017, 544, 80. doi: 10.1038/nature21672

    170. [170]

      Li, D.; Li, Y.; Liu, X.; Guo, Y.; Pao, C.-W.; Chen, J.; Hu, Y.; Wang, Y. ACS Catal. 2019, 9, 9671. doi: 10.1021/acscatal.9b02243

    171. [171]

      Wang, Q.; Li, Y.; Serrano-Lotina, A.; Han, W.; Portela, R.; Wang, R.; Banares, M. A.; Yeung, K. L. J. Am. Chem. Soc. 2021, 143, 196. doi: 10.1021/jacs.0c08640

    172. [172]

      Wang, H.; Hui, Y.; Niu, Y.; He, K.; Vovk, E. I.; Zhou, X.; Yang, Y.; Qin, Y.; Zhang, B.; Song, L.; et al. ACS Catal. 2023, 13, 10500. doi: 10.1021/acscatal.3c02552

    173. [173]

      Liu, X.; Wang, K.; Cao, D.; Li, C.; Wang, L.; Wang, M.; Li, Q.; Wu, C.; Liu, K. Fuel 2024, 362, 130760. doi: 10.1016/j.fuel.2023.130760

  • 加载中
    1. [1]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ- shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    18. [18]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    19. [19]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return