Citation: Jiahao Lu,  Xin Ming,  Yingjun Liu,  Yuanyuan Hao,  Peijuan Zhang,  Songhan Shi,  Yi Mao,  Yue Yu,  Shengying Cai,  Zhen Xu,  Chao Gao. 基于稳态电热法的石墨烯膜导热系数的精确可靠测量[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100045. doi: 10.1016/j.actphy.2025.100045 shu

基于稳态电热法的石墨烯膜导热系数的精确可靠测量

  • Received Date: 4 July 2024
    Revised Date: 22 August 2024
    Accepted Date: 26 August 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (52272046, 52090030, 52090031, 51973191, 52122301, 52303354), the Natural Science Foundation of Zhejiang Province (LR23E020003) and the Fundamental Research Funds for the Central Universities (226-2024-00074, 226-2023-00023, 226-2023-00082, 2023QZJH26), Shanxi-Zheda Institute of New Materials and Chemical Engineering (2022SZ-TD011, 2022SZ-TD012, 2021SZ-FR004).

  • 高导热石墨烯膜是近年来备受关注的高功率电子器件用散热材料。导热系数作为一项评价其基础性能的重要参数,实现其精确测量对于理解材料基础物性、优化制备工艺以及实际工程应用都具有重要意义。然而,现有的商业化导热测试设备,囿于测试原理、样品尺寸等因素,难以同时实现高效、准确、可靠的测量。开发操作简便、测试快捷、精度优异、可跨尺度的测量方案仍是一个重要挑战。本文提出基于稳态电热法的石墨烯膜导热系数的精确可靠测量方法,结合实验测试与仿真模拟,基于原理分析、测试优化、数据处理等三个方面,显著提升导热测量的精度与效率。测量结果的准确性受到热损校正、样品尺寸、系统设计以及数据处理等四方面因素影响。实验结果表明,热辐射和热对流引起的热损失会影响样品的温度分布和测量结果,可通过控制样品尺寸和温升来控制。对实验数据进行筛选和预处理也可以有效提高测量精度。通过实验与仿真结合,我们提出了可行的操作指南与标准化的测试方案。通过优化,该方法测量误差低于3.0%,不确定性降至0.5%,响应时间达毫秒级。本工作为准确评估材料导热性能提供有益指导,也为导热材料的热管理工程应用提供技术支撑。
  • 加载中
    1. [1]

      Song, H.; Kang, F. Acta Phys.-Chim. Sin. 2022, 38 (1), 2101013.

    2. [2]

      Li, S.; Zheng, Q.; Lv, Y.; Liu, X.; Wang, X.; Huang, P. Y.; Cahill, D. G.; Lv, B. Science 2018, 361 (6402), 579. doi: 10.1126/science.aat8982

    3. [3]

      Peng, L.; Xu, Z.; Liu, Z.; Guo, Y.; Li, P.; Gao, C. Adv. Mater. 2017, 29 (27), 1700589. doi: 10.1002/adma.201700589.

    4. [4]

      Liu, L.; Chang, D.; Gao, C. Adv. Fiber Mater. 2024, 6 (1), 68. doi: 10.1007/s42765-023-00340-1

    5. [5]

      He, W.; Cheng, H.; Qu, L. Acta Phys.-Chim. Sin. 2022, 38 (9), 2203004.

    6. [6]

      Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X.; Yao, Z.; Huang, R.; Broido, D.; et al. Science 2010, 328 (5975), 213. doi:10.1126/science.1184014

    7. [7]

      Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. Nature 2012, 490 (7419), 192. doi: 10.1038/nature11458

    8. [8]

      Moon, J.-Y.; Kim, M.; Kim, S.-I.; Xu, S.; Choi, J.-H.; Whang, D.; Watanabe, K.; Taniguchi, T.; Park, D. S.; Seo, J.; et al. Sci. Adv. 2020, 6 (44), eabc6601. doi: 10.1126/sciadv.abc6601

    9. [9]

      Chen, Z.; Xie, C.; Wang, W.; Zhao, J.; Liu, B.; Shan, J.; Wang, X.; Hong, M.; Lin, L.; Huang, L.; et al. Sci. Adv. 2021, 7 (47), eabk0115. doi: 10.1126/sciadv.abk0115

    10. [10]

      Xia, Z.; Shao, Y. Acta Phys.-Chim. Sin. 2022, 38 (9), 2103046.

    11. [11]

      Zhang, X.; Guo, Y.; Liu, Y.; Li, Z.; Fang, W.; Peng, L.; Zhou, J.; Xu, Z.; Gao, C. Carbon 2020, 167, 249. doi: 10.1016/j.carbon.2020.05.051

    12. [12]

      Huang, H.; Ming, X.; Wang, Y.; Guo, F.; Liu, Y.; Xu, Z.; Peng, L.; Gao, C. Carbon 2021, 180, 197. doi: 10.1016/j.carbon.2021.04.090

    13. [13]

      Jia, H.; Kong, Q.-Q.; Yang, X.; Xie, L.-J.; Sun, G.-H.; Liang, L.-L.; Chen, J.-P.; Liu, D.; Guo, Q.-G.; Chen, C.-M. Carbon 2021, 171, 329. doi: 10.1016/j.carbon.2020.09.017

    14. [14]

      Chen, S.; Wang, Q.; Zhang, M.; Huang, R.; Huang, Y.; Tang, J.; Liu, J. Carbon 2020, 167, 270. doi: 10.1016/j.carbon.2020.06.030

    15. [15]

      Tong, Y.; Tao, Z.; Li, Y.; Liu, Z.; Jiang, L.; Yin, Y. Chin. Space Sci. Technol. 2022, 42 (1), 131.

    16. [16]

      Wang, F.; Fang, W.; Ming, X.; Liu, Y.; Xu, Z.; Gao, C. Appl. Phys. Rev. 2023, 10 (1), 011311. doi: 10.1063/5.0128899.

    17. [17]

      Xie, Y.; Wang, X. Green Carbon 2023, 1 (1), 47. doi: 10.1016/j.greenca.2023.08.004

    18. [18]

      Kerschbaumer, R. C.; Stieger, S.; Gschwandl, M.; Hutterer, T.; Fasching, M.; Lechner, B.; Meinhart, L.; Hildenbrandt, J.; Schrittesser, B.; Fuchs, P. F.; et al. Polym. Test. 2019, 80, 106121. doi: 10.1016/j.polymertesting.2019.106121

    19. [19]

      Sánchez-Calderón, I.; Merillas, B.; Bernardo, V.; Rodríguez-Pérez, M. Á. J. Therm. Anal. Calorim. 2022, 147 (22), 12523. doi: 10.1007/s10973-022-11457-7

    20. [20]

      Kim, D.; Lee, S.; Yang, I. J. Korean Phys. Soc. 2021, 78 (12), 1196. doi: 10.1007/s40042-021-00177-0

    21. [21]

      Hay, B.; Filtz, J. R.; Hameury, J.; Rongione, L. Int. J. Thermophys. 2005, 26 (6), 1883. doi: 10.1007/s10765-005-8603-6

    22. [22]

      Guo, J.; Wang, X.; Geohegan, D. B.; Eres, G.; Vincent, C. J. Appl. Phys. 2008, 103 (11), 113505. doi: 10.1063/1.2936873

    23. [23]

      Ming, X.; Wei, A.; Liu, Y.; Peng, L.; Li, P.; Wang, J.; Liu, S.; Fang, W.; Wang, Z.; Peng, H.; et al. Adv. Mater. 2022, 34 (28), 2201867. doi: 10.1002/adma.202201867

    24. [24]

      Xin, G.; Zhu, W.; Deng, Y.; Cheng, J.; Zhang, L. T.; Chung, A. J.; De, S.; Lian, J. Nat. Nanotechnol. 2019, 14 (2), 168. doi: 10.1038/s41565-018-0330-9

    25. [25]

      Xin, G.; Yao, T.; Sun, H.; Scott, S. M.; Shao, D.; Wang, G.; Lian, J. Science 2015, 349 (6252), 1083. doi:10.1126/science.aaa6502

    26. [26]

      Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Nat. Nanotechnol. 2010, 5 (4), 251. doi: 10.1038/nnano.2010.27

    27. [27]

      Liu, J.; Xu, Z.; Cheng, Z.; Xu, S.; Wang, X. ACS Appl. Mater. Interfaces 2015, 7 (49), 27279. doi: 10.1021/acsami.5b08578

    28. [28]

      Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Nano Lett. 2008, 8 (3), 902. doi: 10.1021/nl0731872

    29. [29]

      Li, Q.; Liu, C.; Wang, X.; Fan, S. Nanotechnology 2009, 20 (14), 145702. doi: 10.1088/0957-4484/20/14/145702.

    30. [30]

      Zhang, L.; Zhang, G.; Liu, C.; Fan, S. Nano Lett. 2012, 12 (9), 4848. doi: 10.1021/nl3023274

    31. [31]

      Völklein, F.; Reith, H.; Cornelius, T. W.; Rauber, M.; Neumann, R. Nanotechnology 2009, 20 (32), 325706. doi: 10.1088/0957-4484/20/32/325706

    32. [32]

      Xin, G.; Sun, H.; Hu, T.; Fard, H. R.; Sun, X.; Koratkar, N.; Borca-Tasciuc, T.; Lian, J. Adv. Mater. 2014, 26 (26), 4521. doi: 10.1002/adma.201400951

    33. [33]

      Liu, Y.; Li, P.; Wang, F.; Fang, W.; Xu, Z.; Gao, W.; Gao, C. Carbon 2019, 155, 462. doi: 10.1016/j.carbon.2019.09.021

    34. [34]

      Wang, H.-D.; Liu, J.-H.; Zhang, X.; Song, Y. Int. J. Heat Mass Transf. 2014, 70, 40. doi: 10.1016/j.ijheatmasstransfer.2013.10.054

    35. [35]

      Pettes, M. T.; Ji, H.; Ruoff, R. S.; Shi, L. Nano Lett. 2012, 12 (6), 2959. doi: 10.1021/nl300662q

    36. [36]

      Yang, J.; Kong, L.; Mu, B.; Zhang, H.; Li, Y.; Cao, W. Rev. Sci. Instrum. 2019, 90 (11), 114902. doi: 10.1063/1.5124720

    37. [37]

      Salihoglu, O.; Uzlu, H. B.; Yakar, O.; Aas, S.; Balci, O.; Kakenov, N.; Balci, S.; Olcum, S.; Süzer, S.; Kocabas, C. Nano Lett. 2018, 18 (7), 4541. doi: 10.1021/acs.nanolett.8b01746

    38. [38]

      Zhang, S. Y.; Li, Y.; Li, L. F. IOP Conf. Ser.: Mater. Sci. Eng. 2022, 1241 (1), 012050. doi: 10.1088/1757-899X/1241/1/012050

    39. [39]

      Schiemann, M.; Gronarz, T.; Graeser, P.; Gorewoda, J.; Kneer, R.; Scherer, V. Fuel 2019, 256, 115889. doi: 10.1016/j.fuel.2019.115889

    40. [40]

      Holliday, T.; Kay, J. A. IEEE Trans. Ind. Appl. 2014, 50 (4), 2403. doi: 10.1109/TIA.2013.2295000

    41. [41]

      Kobayashi, K. J. Non-Cryst. Solids 2003, 316 (2), 403. doi: 10.1016/S0022-3093(02)01907-5

    42. [42]

      Deshpande, V. V.; Hsieh, S.; Bushmaker, A. W.; Bockrath, M.; Cronin, S. B. Phys. Rev. Lett. 2009, 102 (10), 105501. doi: 10.1103/PhysRevLett.102.105501

    43. [43]

      Nishi, T.; Ohta, H.; Shibata, H.; Waseda, Y. Int. J. Thermophys. 2003, 24, 1735. doi: 10.1023/B:IJOT.0000004102.55688.c7

    44. [44]

      Pan, Y.; Zhou, Y.; Min, Q.; Li, J. Metrolog. Meas. Tech. 2022, 49 (9), 107.

  • 加载中
    1. [1]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    11. [11]

      Hui Liu Shupeng Zhang Yuntian Zhang Wei Dong Yuji Liu Bingxin Deng Dongping Chen Yongxing Tang . Research on the Application of Virtual Reality (VR) Technology in the Teaching of Organic Chemistry. University Chemistry, 2024, 39(8): 64-71. doi: 10.3866/PKU.DXHX202312028

    12. [12]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    13. [13]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    14. [14]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Hao Zhao Zhen Gao Weihong Li . Practice and Exploration of the Construction of Experimental Technician Teams of Universities in the New Period. University Chemistry, 2024, 39(4): 7-12. doi: 10.3866/PKU.DXHX202310122

    17. [17]

      Zhenjun Mao Haorui Gu Haiyan Che Xufeng Lin . Exploration on Experiment Teaching of UHPLC-IC Based on Valve Switching Method. University Chemistry, 2024, 39(4): 81-86. doi: 10.3866/PKU.DXHX202311013

    18. [18]

      Congying Wen Zhengkun Du Yukun Lu Zongting Wang Hua He Limin Yang Jingbin Zeng . Teaching Reform and Practice of Modern Analytical Technology under the Integration of Science, Industry, and Education. University Chemistry, 2024, 39(8): 104-111. doi: 10.3866/PKU.DXHX202312089

    19. [19]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    20. [20]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

Metrics
  • PDF Downloads(0)
  • Abstract views(20)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return