Citation:
Xuejie Wang, Guoqing Cui, Congkai Wang, Yang Yang, Guiyuan Jiang, Chunming Xu. 碳基催化剂催化有机液体氢载体脱氢研究进展[J]. Acta Physico-Chimica Sinica,
;2025, 41(5): 100044.
doi:
10.1016/j.actphy.2024.100044
-
氢能是一种来源广泛、灵活高效的二次能源,同时也是一种重要的能源介质。目前,低成本、高密度的储氢技术被认为是制约氢能产业规模化发展的瓶颈。有机液体储氢具有质量储氢密度高、液体储运安全以及易于长距离运输等优势,受到研究者的广泛关注。然而,与发展相对成熟的加氢工艺相比,有机液体氢载体脱氢过程仍存在反应温度高、效率低等难题。解决上述问题的关键在于开发高效的脱氢催化剂。近年来,碳基催化剂因其具有活性组分高分散、碳载体组成结构及表面理化性质可调、导电导热性能优异等特点,在有机液体氢载体脱氢反应中表现出优异的反应性能。本文首先详细分析了以环己烷、甲基环己烷、十氢化萘、十二氢乙基咔唑等为代表的有机液体氢载体脱氢热力学、动力学及常用氢载体的理化性质,总结了活性炭、碳纳米管、碳纤维、还原氧化石墨烯等作为催化剂载体的独特优势,并从碳基催化剂结构特点、催化性能、构效关系及脱氢反应机理等方面进行归纳和分析。在此基础上,提出了有机液体储氢领域面临的主要挑战,展望了碳载体的改性及粉体成型、反应机理以及化工过程强化的研究是该领域未来发展的重要方向。
-
-
-
[1]
Zhou, M. J.; Miao, Y. L.; Gu, Y. W.; Xie, Y. J. Adv. Mater. 2024, 36, 2311355. doi: 10.1002/adma.202311355
-
[2]
Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Adv. Mater. 2020, 32, 2001818. doi: 10.1002/adma.202001818
-
[3]
Wang, C. L.; Astruc, D. Chem. Soc. Rev. 2021, 50, 3437. doi: 10.1039/d0cs00515k
-
[4]
Le, T. H.; Tran, N.; Lee, H. J. Int. J. Mol. Sci. 2024, 25, 1359. doi: 10.3390/ijms25021359
-
[5]
Muthukumar, P.; Kumar, A.; Afzal, M.; Bhogilla, S.; Sharma, P.; Parida, A.; Jana, S.; Kumar, E. A.; Pai, R. K.; Jain, I. P. Int. J. Hydrogen Energy 2023, 48, 33223. doi: 10.1016/j.ijhydene.2023.04.304
-
[6]
Acharya, D.; Ng, D.; Xie, Z. L. Membranes 2021, 11, 955. doi: 10.3390/membranes11120955
-
[7]
Gianotti, E.; Taillades-Jacquin, M.; Rozière, J.; Jones, D. J. ACS Catal. 2018, 8, 4660. doi: 10.1021/acscatal.7b04278
-
[8]
Rao, P. C.; Yoon, M. Energies 2020, 13, 6040. doi: 10.3390/en13226040
-
[9]
Yan, P. H.; Xi, S. B.; Peng, H.; Mitchell, D. R. G.; Harvey, L.; Drewery, M.; Kennedy, E. M.; Zhu, Z. H.; Sankar, G.; Stockenhuber, M. J. Am. Chem. Soc. 2023, 145, 9718. doi: 10.1021/jacs.3c01304
-
[10]
Yang, X.; Song, Y.; Cao, T. T.; Wang, L.; Song, H. T.; Lin, W. Mol. Catal. 2020, 492, 110971. doi: 10.1016/j.mcat.2020.110971
-
[11]
Chen, L. N.; Verma, P.; Hou, K. P.; Qi, Z. Y.; Zhang, S. C.; Liu, Y. S.; Guo, J. H.; Stavila, V.; Allendorf, M. D.; Zheng, L. S.; et al. Nat. Commun. 2022, 13, 1092. doi: 10.1038/s41467-022-28607-y
-
[12]
Cui, J. J.; Yao, Z. J.; Zhu, B. Y.; Tang, J. H.; Sun, J. W.; Xiong, P.; Fu, Y. S.; Zhang, W. Y.; Zhu, J. W. Adv. Funct. Mater. 2024. doi: 10.1002/adfm.202405328
-
[13]
Li, P. F.; Zhang, T. Z.; Sun, H. X.; Gao, Y. F.; Zhang, Y. Y.; Liu, Y. Y.; Ge, C. M.; Chen, H.; Dai, X. P.; Zhang, X. Nano Res. 2022, 15, 3001. doi: 10.1007/s12274-021-3932-8
-
[14]
Akram, M. S.; Aslam, R.; Alhumaidan, F. S.; Usman, M. R. Int. J. Chem. Kinet. 2020, 52, 415. doi: 10.1002/kin.21360
-
[15]
Usman, M. R.; Cresswell, D. L.; Garforth, A. A. Pet. Sci. Technol. 2011, 29, 2247. doi: 10.1080/10916466.2011.584103
-
[16]
Guo, J. Q.; Peng, M.; Jia, Z. M.; Li, C. Y.; Liu, H. Y.; Zhang, H. B.; Ma, D. ACS Catal. 2022, 12, 7248. doi: 10.1021/acscatal.2c01420
-
[17]
Hodoshima, S.; Takaiwa, S.; Shono, A.; Satoh, K.; Saito, Y. Appl. Catal. A 2005, 283, 235. doi: 10.1016/j.apcata.2005.01.010
-
[18]
Huynh, N. D.; Hur, S. H.; Kang, S. G. Int. J. Hydrogen Energy 2021, 46, 34788. doi: 10.1016/j.ijhydene.2021.08.039
-
[19]
Dong, Y.; Yang, M.; Mei, P.; Li, C. G.; Li, L. L. Int. J. Hydrogen Energy 2016, 41, 8498. doi: 10.1016/j.ijhydene.2016.03.157
-
[20]
Sultan, O.; Shaw, H. NASA STI/Recon Technical Report N 1975, 76, 33642.
-
[21]
Wang, J.; Liu, H.; Fan, S. G.; Li, W. N.; Li, Z.; Yun, H. R.; Xu, X.; Guo, A. J; Wang, Z. X. Energy Fuels 2020, 34, 16542. doi: 10.1021/acs.energyfuels.0c03085
-
[22]
Xia, Z. J.; Liu, H. Y.; Lu, H. F.; Zhang, Z. K.; Chen, Y. F. Appl. Surf. Sci. 2017, 422, 905. doi: 10.1016/j.apsusc.2017.04.245
-
[23]
Lu, F.; Li, L.; Zhang, X. X.; Nie, Y. X.; Geng, Z. Y. J. Phys. Chem. A 2019, 123, 10397. doi: 10.1021/acs.jpca.9b05715
-
[24]
Aakko-Saksa, P. T.; Cook, C.; Kiviaho, J.; Repo, T. J. Power Sources 2018, 396, 803. doi: 10.1016/j.jpowsour.2018.04.011
-
[25]
Murata, K.; Kurimoto, N.; Yamamoto, Y.; Oda, A.; Ohyama, J.; Satsuma, A. ACS Appl. Nano Mater. 2021, 4, 4532. doi: 10.1021/acsanm.1c00128
-
[26]
Nakaya, Y.; Miyazaki, M.; Yamazoe, S.; Shimizu, K. ; Furukawa, S. ACS Catal. 2020, 10, 5163. doi: 10.1021/acscatal.0c00151
-
[27]
Ahn, C. I.; Kwak, Y.; Kim, A. R.; Jang, M.; Badakhsh, A.; Cha, J.; Kim, Y.; Jo, Y. S.; Jeong, H.; Choi, S. H.; et al. Appl. Catal. B-Environ. 2022, 307, 121169. doi: 10.1016/j.apcatb.2022.121169
-
[28]
Song, Y.; Lin, W.; Guo, X. C.; Dong, L. L.; Mu, X. D.; Tian, H. P.; Wang, L. Green Energy Environ. 2019, 4 , 75. doi: 10.1016/j.gee.2018.05.003
-
[29]
Tuo, Y. X.; Shi, L. J.; Cheng, H. Y.; Zhu, Y. A.; Yang, M. L.; Xu, J.; Han, Y. F.; Li, P.; Yuan, W. K. J. Catal. 2018, 360, 175. doi: 10.1016/j.jcat.2018.02.001
-
[30]
Wang, Z. D; Liu, G. Z; Zhang, X. W. Fuel 2023, 331, 125732. doi: 10.1016/j.fuel.2022.125732
-
[31]
Ali, A.; G, U. K.; Lee, H. J. J. Mech. Sci. Technol 2020, 34, 3069. doi: 10.1007/s12206-020-0638-x
-
[32]
Pez, G. P.; Scott, A. R.; Cooper, A. C.; Cheng, H.; Wilhelm, F. C.; Abdourazak, A. H. Hydrogen Storage by Reversible Hydrogenation of Pi-conjugated Substrates. US7351395, 2008-04-01.
-
[33]
Shuang, H. L.; Chen, H.; Wu, F.; Li, J.; Cheng, C.; Li, H. G.; Fu, J. Fuel 2020, 275, 117896. doi: 10.1016/j.fuel.2020.117896
-
[34]
Zheng, J.; Zhou, H.; Wang, C. G.; Ye, E. Y.; Xu, J. W.; Loh, X. J.; Li, Z. B. Energy Storage Mater. 2021, 35, 695. doi: 10.1016/j.ensm.2020.12.007
-
[35]
Tan, R. K.; Ji, Q.; Ling, Y. N.; Li, L. Chem. Commun. 2024, 60, 8186. doi: 10.1039/d4cc02057j
-
[36]
Tan, K. C.; He, T.; Chua, Y. S.; Chen, P. J. Phys. Chem. C 2021, 125, 18553. doi: 10.1021/acs.jpcc.1c04783
-
[37]
Feng, Z. L; Bai, X. F. Fuel 2022, 329, 125473. doi: 10.1016/j.fuel.2022.125473
-
[38]
Shi, L. B.; Zhou, Y. M.; Tan, X.; Qi, S. T.; Smith, K. J.; Yi, C. H.; Yang, B. L. Int. J. Hydrogen Energy 2022, 47, 4704. doi: 10.1016/j.ijhydene.2021.11.076
-
[39]
Wang, B.; Li, P. Y.; Dong, Q.; Chen, L. Q.; Wang, H. Q.; Han, P. L.; Fang, T. ACS Appl. Energy Mater. 2023, 6, 1741. doi: 10.1021/acsaem.2c03630
-
[40]
Wang, J.; Liu, H.; Fan, S. G.; Wang, S.; Xu, G. J.; Guo, A. J.; Wang, Z. X. Nanomaterials 2021, 11, 2846. doi: 10.3390/nano11112846
-
[41]
Jia, S. C.; Liu, X. H.; Guo, Y.; Dong, L.; Chen, Z. P; Wang, Y. Q. J. Catal. 2024, 429, 115233. doi: 10.1016/j.jcat.2023.115233
-
[42]
Wang, J.; Shi, J. L.; Wang, S.; Fan, S. G.; Guo, A. J.; Wang, Z. X.; Liu, H. Fuel 2023, 345, 128266. doi: 10.1016/j.fuel.2023.128266
-
[43]
Xu, G. Y.; Zhang, X.; Dong, Z. Y.; Liang, W. Y.; Xiao, T. C.; Chen, H. Y.; Ma, Y. H.; Pan, Y.; Fu, Y. Angew. Chem. Int. Ed. 2023, 62, e202305915. doi: 10.1002/anie.202305915
-
[44]
Zhang, S. H.; Zhou, C. A.; Wang, S. H.; Qin, Z. F.; Shu, G. Q.; Wang, C.; Song, L; Zheng, L. R; Wei, X. Y; Ma, K.; et al. Chem. Eng. J. 2024, 481, 148231. doi: 10.1016/j.cej.2023.148231
-
[45]
Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z. J.; Zhu, Y.; Chen, D.; Zhou, X. G. ACS Catal. 2020, 10 , 12932. doi: 10.1021/acscatal.0c03286
-
[46]
Liu, M. X.; Xu, Y. K.; Meng, Y.; Wang, L. J.; Wang, H.; Huang, Y. C.; Onishi, N.; Wang, L.; Fan, Z. J.; Himeda, Y. Adv. Energy Mater. 2022, 12. 2200817. doi: 10.1002/aenm.202200817
-
[47]
Liu, Y. H.; Wang, Q. L.; Zhang, J. C.; Ding, J.; Cheng, Y. Q.; Wang, T.; Li, J.; Hu, F. X.; Yang, H. B.; Liu, B. Adv. Energy Mater. 2022, 12, 2200928. doi: 10.1002/aenm.202200928
-
[48]
Miao, R. Q.; He, Z. H.; Wu, B. T.; Liu, J. J.; Wang, S. W.; Wang, K.; Wang, W. T.; Li, L.; Liu, Z. T. Chem. Eng. J. 2024, 481, 148293. doi: 10.1016/j.cej.2023.148293
-
[49]
Yuan, Z. L.; Wang, G. H.; Li, X.; He, Y. R.; Wang, P.; Mauriello, F.; Zhang, Z. H. J. Catal. 2023, 424, 91. doi: 10.1016/j.jcat.2023.05.011
-
[50]
Zhang, J. Q.; Li, M.; Tan, X. J.; Shi, L.; Xie, K.; Zhao, X. L.; Wang, S. J.; Zhao, S. Y.; Zhang, H. Y.; Duan, X. G.; et al. Appl. Catal. B-Environ. 2023, 339, 123166. doi: 10.1016/j.apcatb.2023.123166
-
[51]
Zhao, Q. F.; Zhang, S. M.; Huang, X. J.; Tan, Y. L.; Zhang, Y.; Chen, Y. Z. Chem. Eng. J. 2024, 479, 147784. doi: 10.1016/j.cej.2023.147784
-
[52]
Mahene, W. L.; Kivevele, T.; Machunda, R. Catal. Commun. 2023, 181, 106737. doi: 10.1016/j.catcom.2023.106737
-
[53]
Yang, L.; Liu, S.; Xu, H. X.; Liu, F.; Zhang, J. Fuel 2024, 361, 130758. doi: 10.1016/j.fuel.2023.130758
-
[54]
Li, S. P.; Yang, Z. P.; Wu, M. Z.; Xu, C. G.; Zhang, X. L.; Lin, R. D.; Wang, X. J.; Zhao, L.; Sun, D.; Ma, X. L.; et al. Energy Environ. Mater. 2022, 5, 1238. doi: 10.1002/eem2.12240
-
[55]
Zhou, X. R; Zhu, Y.; Niu, Q. Y.; Zeng, G. M.; Lai, C.; Liu, S. Y.; Huang, D. L.; Qin, L.; Liu, X. G.; Li, B. S; et al. Chem. Eng. J. 2021, 416, 129027. doi: 10.1016/j.cej.2021.129027
-
[56]
Dong, Z.; Mukhtar, A.; Ludwig, T.; Akhade, S. A.; Kang, S.; Wood, B.; Grubel, K.; Engelhard, M.; Autrey, T.; Lin, H. F. Appl. Catal. B-Environ. 2023, 321, 122015. doi: 10.1016/j.apcatb.2022.122015
-
[57]
Li, S. P.; Song, X. Y.; Wang, X. J.; Xu, C. G.; Cao, Y. M.; Xiao, Z. H.; Qi, C. L.; Wu, M. Z.; Yang, Z. P.; Fu, L. R.; et al. Carbon 2020, 160, 176. doi: 10.1016/j.carbon.2020.01.025
-
[58]
Ma, X. L.; Zhao, L.; Yu, Z. Q.; Wang, X. J.; Song, X. Y.; Ning, G. Q.; Gao, J. S. ChemSusChem 2018, 11, 3766. doi: 10.1002/cssc.201801767
-
[59]
Dong, Q.; Lele, A. D.; Zhao, X. P.; Li, S. K.; Cheng, S. C.; Wang, Y. Q.; Cui, M. J.; Guo, M.; Brozena, A. H.; Lin, Y.; et al. Nature 2023, 616, 488. doi: 10.1038/s41586-023-05845-8
-
[60]
Dong, Q.; Li, T. Y.; Yao, Y. G.; Wang, X. Z.; He, S. M.; Li, J. Y.; Luo, J. R.; Zhang, H. C.; Pei, Y.; Zheng, C. L.; et al. Joule 2020, 4, 2374. doi: 10.1016/j.joule.2020.08.008
-
[61]
Dong, Q.; Yao, Y. G.; Cheng, S. C.; Alexopoulos, K.; Gao, J. L.; Srinivas, S.; Wang, Y. F.; Pei, Y.; Zheng, C. L; Brozena, A. H.; et al. Nature 2022, 605, 470. doi: 10.1038/s41586-022-04568-6
-
[62]
Fang, D. C.; Zheng, J. Y.; Han, C. B.; Zhao, W. K.; Lu, Y. G.; Sun, B. C.; Sun, L.; Wang, X. X.; Yan, H. Appl. Catal. B-Environ. 2023, 334, 122837. doi: 10.1016/j.apcatb.2023.122837
-
[63]
-
[64]
Feng, Z. L.; Chen, X. M.; Bai, X. F. Environ. Sci. Pollut. Res. 2020, 27, 36172. doi: 10.1007/s11356-020-09698-w
-
[65]
Ye, H. L., Zhang, C., Liu, S. X. Chem. Ind. Eng. 2016, 33, 6.
-
[66]
Jiang, N. Z.; Rao, K. S. R.; Jin, M. J.; Park, S. E. Appl. Catal. A 2012, 425, 62. doi: 10.1016/j.apcata.2012.03.001
-
[67]
Kim, K.; Oh, J.; Kim, T. W.; Park, J. H.; Han, J. W.; Suh, Y. W. Catal. Sci. Technol. 2017, 7, 3728. doi: 10.1039/c7cy00569e
-
[68]
Li, X. Y.; Ma, D.; Bao, X. H. Chin. J. Catal. 2008, 29, 259. doi: 10.1016/s1872-2067(08)60027-3
-
[69]
Ye, H. L.; Wang, T. C.; Liu, S. X.; Zhang, C.; Cai, Y. Q. Catalysts 2022, 12, 211. doi: 10.3390/catal12020211
-
[70]
Ye, H. L.; Liu, S. X.; Zhang, C.; Cai, Y. Q.; Shi, Y. F. RSC Adv. 2021, 11, 29287. doi: 10.1039/d1ra05480e
-
[71]
Qin, Y. B; Shi, J. M.; Bai, X. F. Int. J. Hydrogen Energy 2021, 46, 25543. doi: 10.1016/j.ijhydene.2021.05.074
-
[72]
Wang, K.; Zeng, Y. J; Lin, W. Z.; Yang, X. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Carbon 2020, 167, 709. doi: 10.1016/j.carbon.2020.06.055
-
[73]
Wang, W. H.; Cui, G. Q.; Yan, C. J.; Wang, X. J.; Yang, Y.; Xu, C. M.; Jiang, G. Y. Nano Res. 2023, 16, 12215. doi: 10.1007/s12274-023-5771-2
-
[74]
Wang, X. J.; Cui, G. Q.; Wang, W. H.; Yang, Y.; Wang, C. K.; Jiang, G. Y.; Xu, C. M. CIESC Journal 2024, 75, 292.
-
[75]
Bao, C. S.; Serrano-Lotina, A.; Niu, M. S.; Portela, R.; Li, Y. X.; Lim, K. H.; Liu, P. W.; Wang, W. J.; Bañares, M. A.; Wang, Q. Y. Chem. Eng. J. 2023, 466, 142902. doi: 10.1016/j.cej.2023.142902
-
[76]
Zhang, M. M.; Gao, Y. B.; Mao, Y. P.; Wang, W. L.; Sun, J.; Song, Z. L.; Sun, J.; Zhao, X. Q. Chem. Eng. J. 2023, 451, 138616. doi: 10.1016/j.cej.2022.138616
-
[77]
Suttisawat, Y.; Sakai, H.; Abe, M.; Rangsunvigit, P.; Horikoshi, S. Int. J. Hydrogen Energy 2012, 37, 3242. doi: 10.1016/j.ijhydene.2011.10.111
-
[78]
Cao, T. L.; Dai, X. Y.; Liu, W. J.; Fu, Y.; Qi, W. Carbon 2022, 189, 199. doi: 10.1016/j.carbon.2021.12.069
-
[79]
Gan, R. H.; Song, Y.; Ma, C.; Shi, J. L. Appl. Catal. B-Environ. 2023, 327, 122443. doi: 10.1016/j.apcatb.2023.122443
-
[80]
Malhi, H. S.; Zhang, Z. Z.; Shi, Y. L.; Gao, X. H.; Liu, W. Q.; Tu, W. F.; Han, Y. F. Fuel 2023, 339, 127267. doi: 10.1016/j.fuel.2022.127267
-
[81]
Yadav, M. D.; Joshi, H. M.; Sawant, S. V.; Dasgupta, K.; Patwardhan, A. W.; Joshi, J. B. Chem. Eng. Sci. 2023, 272, 118586. doi: 10.1016/j.ces.2023.118586
-
[82]
Pan, H. B.; Wai, C. M. J. Phys. Chem. C 2009, 113, 19782. doi: 10.1021/jp903799w
-
[83]
Tuo, Y. X.; Yang, L.; Ma, X. F.; Ma, Z. J.; Gong, S.; Li, P. Int. J. Hydrogen Energy 2021, 46, 930. doi: 10.1016/j.ijhydene.2020.09.225
-
[84]
Kozonoe, C. E.; Santos, V. M.; Schmal, M. Environ. Sci. Pollut. Res. 2023, 30, 111382. doi: 10.1007/s11356-023-30205-4
-
[85]
Ma, Q. X.; Wang, D.; Wu, M. B.; Zhao, T. S.; Yoneyama, Y.; Tsubaki, N. Fuel 2013, 108, 430. doi: 10.1016/j.fuel.2012.12.028
-
[86]
Yang, H. X.; Song, S. Q.; Rao, R. C.; Wang, X. Z.; Yu, Q.; Zhang, A. M. J. Mol. Catal. A: Chem. 2010, 323, 33. doi: 10.1016/j.molcata.2010.03.005
-
[87]
Jiang, C. L.; Araia, A.; Balyan, S.; Robinson, B.; Brown, S.; Caiola, A.; Hu, J. L.; Dou, J.; Neal, L. M.; Li, F. X. Appl. Catal. B-Environ. 2024, 340, 123255. doi: 10.1016/j.apcatb.2023.123255
-
[88]
Sun, J. C.; Shang, H.; Miao, C.; Yang, J.; Liao, Y. F. Chem. Eng. Process. 2023, 190, 109432. doi: 10.1016/j.cep.2023.109432
-
[89]
Li, X.; Tuo, Y. X.; Li, P.; Duan, X. Z.; Jiang, H.; Zhou, X. G. Carbon 2014, 67, 775. doi: 10.1016/j.carbon.2013.10.071
-
[90]
Shi, L. J.; Liu, X. J.; Tuo, Y. X.; Xu, J.; Li, P.; Han, Y. F. Int. J. Hydrogen Energy 2017, 42, 17403. doi: 10.1016/j.ijhydene.2017.02.161
-
[91]
Beltrame, T. F.; Zoppas, F. M.; Gomes, M. C.; Ferreira, J. Z.; Marchesini, F. A.; Bernardes, A. M. Chemosphere 2021, 279, 130832. doi: 10.1016/j.chemosphere.2021.130832
-
[92]
Wang, J. S.; Li, C. Y.; Ying, J.; Xu, T. F.; Lu, W. Y.; Li, C. Y.; Wu, X. F. J. Catal. 2022, 413, 713. doi: 10.1016/j.jcat.2022.07.027
-
[93]
Van der Ham, M. P. J. M.; Hersbach, T. J. P.; Delgado, J. J.; Matson, B. D.; Lim, J.; Führer, M.; Van Haasterecht, T.; Verhoeven, M. W. G. M.; Hensen, E. J. M.; Sokaras, D.; et al. Appl. Catal. B-Environ. 2023, 338, 123046. doi: 10.1016/j.apcatb.2023.123046
-
[94]
Zhang, R.; Zhu, Y. J.; Cheng, Y. F.; Guan, J. B.; Zou, Q.; Guo, B. C.; Zhang, M. J. Alloys Compd. 2023, 968, 171889. doi: 10.1016/j.jallcom.2023.171889
-
[95]
Tien, P. D.; Satoh, T.; Miura, M.; Nomura, M. Energy Fuels 2005, 19, 731. doi: 10.1021/ef040083v
-
[96]
Lázaro, M. P.; García-Bordejé, E.; Sebastián, D.; Lázaro, M. J.; Moliner, R. Catal. Today 2008, 138, 203. doi: 10.1016/j.cattod.2008.05.011
-
[97]
Tien, P. D.; Satoh, T.; Miura, M.; Nomura, M. Fuel Process. Technol. 2008, 89, 415. doi: 10.1016/j.fuproc.2007.11.010
-
[98]
Li, X.; Tuo, Y. X.; Jiang, H.; Duan, X. Z.; Yu, X. H.; Li, P. Int. J. Hydrogen Energy 2015, 40, 12217. doi: 10.1016/j.ijhydene.2015.07.093
-
[99]
Tuo, Y. X.; Jiang, H.; Li, X.; Shi, L. J.; Yu, X. H.; Li, P. Int. J. Hydrogen Energy 2016, 41, 10755. doi: 10.1016/j.ijhydene.2016.04.072
-
[100]
Du, Y. D; Meng, X. T.; Wang, Z.; Zhao, X.; Qiu, J. S. Acta Phys.-Chim. Sin. 2022, 38, 2101009.
-
[101]
Liu, R. J.; Liu, B. Z.; Sun, J. Y.; Liu, Z. F. Acta Phys.-Chim. Sin. 2023, 39, 2111011.
-
[102]
Liu, J. C.; Zhang, M. C.; Tang, Q. K.; Zhao, Y. Y.; Zhang, J. G.; Zhu, Y. F.; Liu, Y. N.; Hu, X. H.; Li, L. Q. Adv. Sci. 2022, 9, 2201428. doi: 10.1002/advs.202201428
-
[103]
Liu, Y. W.; Du, H. B.; Meng, Y. H.; Lu, S.; Zhang, J. L.; Wang, H. S. Fuel Process. Technol. 2023, 242, 107653. doi: 10.1016/j.fuproc.2023.107653
-
[104]
Mollar-Cuni, A.; Martín, S.; Guisado-Barrios, G.; Mata, J. A. Carbon 2023, 206, 314. doi: 10.1016/j.carbon.2023.02.014
-
[105]
Wang, C. R.; Fang, Y. H.; Liang, G. F.; Lv, X. Y.; Duan, H. M.; Li, Y. D.; Chen, D. F.; Long, M. J. J. CO2 Util. 2021, 49, 101542. doi: 10.1016/j.jcou.2021.101542
-
[106]
Wang, B.; Chang, T. Y.; Jiang, Z.; Wei, J. J.; Zhang, Y. H.; Yang, S.; Fang, T. Int. J. Hydrogen Energy 2018, 43, 7317. doi: 10.1016/j.ijhydene.2018.02.156
-
[107]
Wang, B.; Chang, T. Y.; Jiang, Z.; Wei, J. J.; Fang, T. Appl. Catal. B-Environ. 2019, 251, 261. doi: 10.1016/j.apcatb.2019.03.071
-
[108]
Wang, B.; Chen, Y. T.; Chang, T. Y.; Jiang, Z.; Huang, Z. Q.; Wang, S. Y.; Chang, C. R.; Chen, Y. S.; Wei, J. J.; Yang, S.; et al. Appl. Catal. B-Environ. 2020, 266, 118658. doi: 10.1016/j.apcatb.2020.118658
-
[109]
Chen, X. W.; Qin, X. T.; Jiao, Y. Y.; Peng, M.; Diao, J. Y.; Ren, P. J.; Li, C. Y.; Xiao, D. Q.; Wen, X. D.; Jiang, Z.; et al. Nat. Commun. 2023, 14, 2588. doi: 10.1038/s41467-023-38361-4
-
[110]
Jia, Z. M.; Qin, X. T.; Chen, Y. L.; Cai, X. B.; Gao, Z. R.; Peng, M.; Huang, F.; Xiao, D. Q.; Wen, X. D.; Wang, N.; et al. Nat. Commun. 2022, 13, 6798. doi: 10.1038/s41467-022-34674-y
-
[111]
Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y.; et al. J. Am. Chem. Soc. 2022, 144, 3535. doi: 10.1021/jacs.1c12261
-
[112]
Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T.; et al. Nat. Catal. 2022, 5, 485. doi: 10.1038/s41929-022-00769-4
-
[113]
Dubadi, R.; Jaroniec, M. Nanomaterials 2023, 13, 2262. doi: 10.3390/nano13152262
-
[114]
Gao, M. Q.; Wang, L. L.; Yang, Y.; Sun, Y. F.; Zhao, X. R.; Wan, Y. ACS Catal. 2023, 13, 4060. doi: 10.1021/acscatal.2c05894
-
[115]
Kan, X.; Song, F. Y.; Zhang, G. Q.; Zheng, Y.; Zhu, Q. L.; Liu, F. J.; Jiang, L. L. Chem. Eng. Sci. 2023, 269, 118483. doi: 10.1016/j.ces.2023.118483
-
[116]
Liu, D.; Hu, Y. Y.; Zeng, C.; Qu, D. Y. Acta Phys.-Chim. Sin. 2016, 32, 2826.
-
[117]
Sebastián, D.; Alegre, C.; Calvillo, L.; Pérez, M.; Moliner, R.; Lázaro, M. J. Int. J. Hydrogen Energy 2014, 39, 4109. doi: 10.1016/j.ijhydene.2013.04.016
-
[118]
Gao, Y. N.; Han, Z. S.; Hong, S.; Wu, T. B.; Li, X.; Qiu, J. S.; Sun, Z. Y. ACS Appl. Energy Mater. 2019, 2, 6071. doi: 10.1021/acsaem.9b01135
-
[119]
Li, Y. M.; Liu, Z. Y.; Zhang, Q. Y.; Wang, Y. J.; Cui, G. Q.; Zhao, Z.; Xu, C. M.; Jiang, G. Y. Pet. Sci. 2023, 20, 559. doi: 10.1016/j.petsci.2022.01.008
-
[120]
Tang, C. X.; Feng, Z. L.; Bai, X. F. Colloids Surf., A 2022, 648, 129348. doi: 10.1016/j.colsurfa.2022.129348
-
[121]
Tang, C. X.; Feng, Z. L.; Bai, X. F. Fuel 2021, 302, 121186. doi: 10.1016/j.fuel.2021.121186
-
[1]
-
-
-
[1]
Bin HE , Hao ZHANG , Lin XU , Yanghe LIU , Feifan LANG , Jiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161
-
[2]
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
-
[3]
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
-
[4]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[5]
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
-
[6]
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
-
[7]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[8]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[9]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[10]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[11]
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
-
[12]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[15]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[16]
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
-
[17]
Yuchen Zhou , Huanmin Liu , Hongxing Li , Xinyu Song , Yonghua Tang , Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067
-
[18]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[19]
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
-
[20]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(22)
- HTML views(0)