Citation: Xuejie Wang, Guoqing Cui, Congkai Wang, Yang Yang, Guiyuan Jiang, Chunming Xu. Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100044. doi: 10.1016/j.actphy.2024.100044 shu

Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers

  • Corresponding author: Guiyuan Jiang, jianggy@cup.edu.cn Chunming Xu, xcm@cup.edu.cn
  • These authors contributed equally to this work.
  • Received Date: 13 September 2024
    Revised Date: 13 November 2024
    Accepted Date: 15 November 2024

    Fund Project: the National Key Research and Development Program 2020YFA0210903the National Natural Science Foundation of China 22225807the National Natural Science Foundation of China 22021004the National Natural Science Foundation of China 22109177Haihe Laboratory of Sustainable Chemical Transformations CYZC202309the Young Elite Scientists Sponsorship Program by CAST 2023QNRC001the Carbon Neutrality Research Institute Fund CNIF20230211the Carbon Neutrality Research Institute Fund CNIF20230303the Carbon Neutrality Research Institute Fund CNIF20240102

  • Hydrogen energy is a widely available, flexible and efficient secondary energy source, and it is also an important energy medium. The development of low-cost, high-density hydrogen storage technology is a significant issue for the industrial application of hydrogen energy. Liquid organic hydrogen storage has attracted extensive attention due to advantages such as high mass hydrogen storage density, safe storage and transportation, as well as ease of long-distance transportation. However, compared with the relatively mature hydrogenation process, the dehydrogenation of liquid organic hydrogen carriers (LOHCs) still suffers from high reaction temperature and low efficiency. The key to solving these problems is the development of efficient dehydrogenation catalysts. In recent years, carbon-based catalysts have shown excellent reaction performance in the dehydrogenation of LOHCs due to their advantages of high dispersion of active components, tunable composition structure and surface physicochemical properties, and outstanding electrical and thermal conductivity, etc. In this review, we initially analyze the thermodynamics and kinetics of dehydrogenation, as well as the physicochemical properties of LOHCs, including cyclohexane, methylcyclohexane, decalin, and perhydro-N-ethylcarbazole. The special features of carbon supports are then outlined in terms of the activated carbon, carbon nanotubes, carbon fibers, and reduced graphene oxide. In addition, the structural characteristics, catalytic performance, structure-property relationship, and dehydrogenation mechanism of carbon-supported metal catalysts are summarized and analyzed. Based on this, we point out the main challenges of liquid organic hydrogen storage. Furthermore, future opportunities in this field are envisioned, with an emphasis on the modification and structuration of carbon support, the study of catalytic mechanisms and chemical process intensification.
  • 加载中
    1. [1]

      Zhou, M. J.; Miao, Y. L.; Gu, Y. W.; Xie, Y. J. Adv. Mater. 2024, 36, 2311355. doi: 10.1002/adma.202311355  doi: 10.1002/adma.202311355

    2. [2]

      Sun, Q. M.; Wang, N.; Xu, Q.; Yu, J. H. Adv. Mater. 2020, 32, 2001818. doi: 10.1002/adma.202001818  doi: 10.1002/adma.202001818

    3. [3]

      Wang, C. L.; Astruc, D. Chem. Soc. Rev. 2021, 50, 3437. doi: 10.1039/d0cs00515k  doi: 10.1039/d0cs00515k

    4. [4]

      Le, T. H.; Tran, N.; Lee, H. J. Int. J. Mol. Sci. 2024, 25, 1359. doi: 10.3390/ijms25021359  doi: 10.3390/ijms25021359

    5. [5]

      Muthukumar, P.; Kumar, A.; Afzal, M.; Bhogilla, S.; Sharma, P.; Parida, A.; Jana, S.; Kumar, E. A.; Pai, R. K.; Jain, I. P. Int. J. Hydrogen Energy 2023, 48, 33223. doi: 10.1016/j.ijhydene.2023.04.304  doi: 10.1016/j.ijhydene.2023.04.304

    6. [6]

      Acharya, D.; Ng, D.; Xie, Z. L. Membranes 2021, 11, 955. doi: 10.3390/membranes11120955  doi: 10.3390/membranes11120955

    7. [7]

      Gianotti, E.; Taillades-Jacquin, M.; Rozière, J.; Jones, D. J. ACS Catal. 2018, 8, 4660. doi: 10.1021/acscatal.7b04278  doi: 10.1021/acscatal.7b04278

    8. [8]

      Rao, P. C.; Yoon, M. Energies 2020, 13, 6040. doi: 10.3390/en13226040  doi: 10.3390/en13226040

    9. [9]

      Yan, P. H.; Xi, S. B.; Peng, H.; Mitchell, D. R. G.; Harvey, L.; Drewery, M.; Kennedy, E. M.; Zhu, Z. H.; Sankar, G.; Stockenhuber, M. J. Am. Chem. Soc. 2023, 145, 9718. doi: 10.1021/jacs.3c01304  doi: 10.1021/jacs.3c01304

    10. [10]

      Yang, X.; Song, Y.; Cao, T. T.; Wang, L.; Song, H. T.; Lin, W. Mol. Catal. 2020, 492, 110971. doi: 10.1016/j.mcat.2020.110971  doi: 10.1016/j.mcat.2020.110971

    11. [11]

      Chen, L. N.; Verma, P.; Hou, K. P.; Qi, Z. Y.; Zhang, S. C.; Liu, Y. S.; Guo, J. H.; Stavila, V.; Allendorf, M. D.; Zheng, L. S.; et al. Nat. Commun. 2022, 13, 1092. doi: 10.1038/s41467-022-28607-y  doi: 10.1038/s41467-022-28607-y

    12. [12]

      Cui, J. J.; Yao, Z. J.; Zhu, B. Y.; Tang, J. H.; Sun, J. W.; Xiong, P.; Fu, Y. S.; Zhang, W. Y.; Zhu, J. W. Adv. Funct. Mater. 2024. doi: 10.1002/adfm.202405328  doi: 10.1002/adfm.202405328

    13. [13]

      Li, P. F.; Zhang, T. Z.; Sun, H. X.; Gao, Y. F.; Zhang, Y. Y.; Liu, Y. Y.; Ge, C. M.; Chen, H.; Dai, X. P.; Zhang, X. Nano Res. 2022, 15, 3001. doi: 10.1007/s12274-021-3932-8  doi: 10.1007/s12274-021-3932-8

    14. [14]

      Akram, M. S.; Aslam, R.; Alhumaidan, F. S.; Usman, M. R. Int. J. Chem. Kinet. 2020, 52, 415. doi: 10.1002/kin.21360  doi: 10.1002/kin.21360

    15. [15]

      Usman, M. R.; Cresswell, D. L.; Garforth, A. A. Pet. Sci. Technol. 2011, 29, 2247. doi: 10.1080/10916466.2011.584103  doi: 10.1080/10916466.2011.584103

    16. [16]

      Guo, J. Q.; Peng, M.; Jia, Z. M.; Li, C. Y.; Liu, H. Y.; Zhang, H. B.; Ma, D. ACS Catal. 2022, 12, 7248. doi: 10.1021/acscatal.2c01420  doi: 10.1021/acscatal.2c01420

    17. [17]

      Hodoshima, S.; Takaiwa, S.; Shono, A.; Satoh, K.; Saito, Y. Appl. Catal. A 2005, 283, 235. doi: 10.1016/j.apcata.2005.01.010  doi: 10.1016/j.apcata.2005.01.010

    18. [18]

      Huynh, N. D.; Hur, S. H.; Kang, S. G. Int. J. Hydrogen Energy 2021, 46, 34788. doi: 10.1016/j.ijhydene.2021.08.039  doi: 10.1016/j.ijhydene.2021.08.039

    19. [19]

      Dong, Y.; Yang, M.; Mei, P.; Li, C. G.; Li, L. L. Int. J. Hydrogen Energy 2016, 41, 8498. doi: 10.1016/j.ijhydene.2016.03.157  doi: 10.1016/j.ijhydene.2016.03.157

    20. [20]

      Sultan, O.; Shaw, H. NASA STI/Recon Technical Report N 1975, 76, 33642.

    21. [21]

      Wang, J.; Liu, H.; Fan, S. G.; Li, W. N.; Li, Z.; Yun, H. R.; Xu, X.; Guo, A. J; Wang, Z. X. Energy Fuels 2020, 34, 16542. doi: 10.1021/acs.energyfuels.0c03085  doi: 10.1021/acs.energyfuels.0c03085

    22. [22]

      Xia, Z. J.; Liu, H. Y.; Lu, H. F.; Zhang, Z. K.; Chen, Y. F. Appl. Surf. Sci. 2017, 422, 905. doi: 10.1016/j.apsusc.2017.04.245  doi: 10.1016/j.apsusc.2017.04.245

    23. [23]

      Lu, F.; Li, L.; Zhang, X. X.; Nie, Y. X.; Geng, Z. Y. J. Phys. Chem. A 2019, 123, 10397. doi: 10.1021/acs.jpca.9b05715  doi: 10.1021/acs.jpca.9b05715

    24. [24]

      Aakko-Saksa, P. T.; Cook, C.; Kiviaho, J.; Repo, T. J. Power Sources 2018, 396, 803. doi: 10.1016/j.jpowsour.2018.04.011  doi: 10.1016/j.jpowsour.2018.04.011

    25. [25]

      Murata, K.; Kurimoto, N.; Yamamoto, Y.; Oda, A.; Ohyama, J.; Satsuma, A. ACS Appl. Nano Mater. 2021, 4, 4532. doi: 10.1021/acsanm.1c00128  doi: 10.1021/acsanm.1c00128

    26. [26]

      Nakaya, Y.; Miyazaki, M.; Yamazoe, S.; Shimizu, K.; Furukawa, S. ACS Catal. 2020, 10, 5163. doi: 10.1021/acscatal.0c00151  doi: 10.1021/acscatal.0c00151

    27. [27]

      Ahn, C. I.; Kwak, Y.; Kim, A. R.; Jang, M.; Badakhsh, A.; Cha, J.; Kim, Y.; Jo, Y. S.; Jeong, H.; Choi, S. H.; et al. Appl. Catal. B-Environ. 2022, 307, 121169. doi: 10.1016/j.apcatb.2022.121169  doi: 10.1016/j.apcatb.2022.121169

    28. [28]

      Song, Y.; Lin, W.; Guo, X. C.; Dong, L. L.; Mu, X. D.; Tian, H. P.; Wang, L. Green Energy Environ. 2019, 4, 75. doi: 10.1016/j.gee.2018.05.003  doi: 10.1016/j.gee.2018.05.003

    29. [29]

      Tuo, Y. X.; Shi, L. J.; Cheng, H. Y.; Zhu, Y. A.; Yang, M. L.; Xu, J.; Han, Y. F.; Li, P.; Yuan, W. K. J. Catal. 2018, 360, 175. doi: 10.1016/j.jcat.2018.02.001  doi: 10.1016/j.jcat.2018.02.001

    30. [30]

      Wang, Z. D; Liu, G. Z; Zhang, X. W. Fuel 2023, 331, 125732. doi: 10.1016/j.fuel.2022.125732  doi: 10.1016/j.fuel.2022.125732

    31. [31]

      Ali, A.; G, U. K.; Lee, H. J. J. Mech. Sci. Technol 2020, 34, 3069. doi: 10.1007/s12206-020-0638-x  doi: 10.1007/s12206-020-0638-x

    32. [32]

      Pez, G. P.; Scott, A. R.; Cooper, A. C.; Cheng, H.; Wilhelm, F. C.; Abdourazak, A. H. Hydrogen Storage by Reversible Hydrogenation of Pi-conjugated Substrates. US7351395, 2008-04-01.

    33. [33]

      Shuang, H. L.; Chen, H.; Wu, F.; Li, J.; Cheng, C.; Li, H. G.; Fu, J. Fuel 2020, 275, 117896. doi: 10.1016/j.fuel.2020.117896  doi: 10.1016/j.fuel.2020.117896

    34. [34]

      Zheng, J.; Zhou, H.; Wang, C. G.; Ye, E. Y.; Xu, J. W.; Loh, X. J.; Li, Z. B. Energy Storage Mater. 2021, 35, 695. doi: 10.1016/j.ensm.2020.12.007  doi: 10.1016/j.ensm.2020.12.007

    35. [35]

      Tan, R. K.; Ji, Q.; Ling, Y. N.; Li, L. Chem. Commun. 2024, 60, 8186. doi: 10.1039/d4cc02057j  doi: 10.1039/d4cc02057j

    36. [36]

      Tan, K. C.; He, T.; Chua, Y. S.; Chen, P. J. Phys. Chem. C 2021, 125, 18553. doi: 10.1021/acs.jpcc.1c04783  doi: 10.1021/acs.jpcc.1c04783

    37. [37]

      Feng, Z. L; Bai, X. F. Fuel 2022, 329, 125473. doi: 10.1016/j.fuel.2022.125473  doi: 10.1016/j.fuel.2022.125473

    38. [38]

      Shi, L. B.; Zhou, Y. M.; Tan, X.; Qi, S. T.; Smith, K. J.; Yi, C. H.; Yang, B. L. Int. J. Hydrogen Energy 2022, 47, 4704. doi: 10.1016/j.ijhydene.2021.11.076  doi: 10.1016/j.ijhydene.2021.11.076

    39. [39]

      Wang, B.; Li, P. Y.; Dong, Q.; Chen, L. Q.; Wang, H. Q.; Han, P. L.; Fang, T. ACS Appl. Energy Mater. 2023, 6, 1741. doi: 10.1021/acsaem.2c03630  doi: 10.1021/acsaem.2c03630

    40. [40]

      Wang, J.; Liu, H.; Fan, S. G.; Wang, S.; Xu, G. J.; Guo, A. J.; Wang, Z. X. Nanomaterials 2021, 11, 2846. doi: 10.3390/nano11112846  doi: 10.3390/nano11112846

    41. [41]

      Jia, S. C.; Liu, X. H.; Guo, Y.; Dong, L.; Chen, Z. P; Wang, Y. Q. J. Catal. 2024, 429, 115233. doi: 10.1016/j.jcat.2023.115233  doi: 10.1016/j.jcat.2023.115233

    42. [42]

      Wang, J.; Shi, J. L.; Wang, S.; Fan, S. G.; Guo, A. J.; Wang, Z. X.; Liu, H. Fuel 2023, 345, 128266. doi: 10.1016/j.fuel.2023.128266  doi: 10.1016/j.fuel.2023.128266

    43. [43]

      Xu, G. Y.; Zhang, X.; Dong, Z. Y.; Liang, W. Y.; Xiao, T. C.; Chen, H. Y.; Ma, Y. H.; Pan, Y.; Fu, Y. Angew. Chem. Int. Ed. 2023, 62, e202305915. doi: 10.1002/anie.202305915  doi: 10.1002/anie.202305915

    44. [44]

      Zhang, S. H.; Zhou, C. A.; Wang, S. H.; Qin, Z. F.; Shu, G. Q.; Wang, C.; Song, L; Zheng, L. R; Wei, X. Y; Ma, K.; et al. Chem. Eng. J. 2024, 481, 148231. doi: 10.1016/j.cej.2023.148231  doi: 10.1016/j.cej.2023.148231

    45. [45]

      Zhang, W.; Wang, H. Z.; Jiang, J. W.; Sui, Z. J.; Zhu, Y.; Chen, D.; Zhou, X. G. ACS Catal. 2020, 10, 12932. doi: 10.1021/acscatal.0c03286  doi: 10.1021/acscatal.0c03286

    46. [46]

      Liu, M. X.; Xu, Y. K.; Meng, Y.; Wang, L. J.; Wang, H.; Huang, Y. C.; Onishi, N.; Wang, L.; Fan, Z. J.; Himeda, Y. Adv. Energy Mater. 2022, 12. 2200817. doi: 10.1002/aenm.202200817  doi: 10.1002/aenm.202200817

    47. [47]

      Liu, Y. H.; Wang, Q. L.; Zhang, J. C.; Ding, J.; Cheng, Y. Q.; Wang, T.; Li, J.; Hu, F. X.; Yang, H. B.; Liu, B. Adv. Energy Mater. 2022, 12, 2200928. doi: 10.1002/aenm.202200928  doi: 10.1002/aenm.202200928

    48. [48]

      Miao, R. Q.; He, Z. H.; Wu, B. T.; Liu, J. J.; Wang, S. W.; Wang, K.; Wang, W. T.; Li, L.; Liu, Z. T. Chem. Eng. J. 2024, 481, 148293. doi: 10.1016/j.cej.2023.148293  doi: 10.1016/j.cej.2023.148293

    49. [49]

      Yuan, Z. L.; Wang, G. H.; Li, X.; He, Y. R.; Wang, P.; Mauriello, F.; Zhang, Z. H. J. Catal. 2023, 424, 91. doi: 10.1016/j.jcat.2023.05.011  doi: 10.1016/j.jcat.2023.05.011

    50. [50]

      Zhang, J. Q.; Li, M.; Tan, X. J.; Shi, L.; Xie, K.; Zhao, X. L.; Wang, S. J.; Zhao, S. Y.; Zhang, H. Y.; Duan, X. G.; et al. Appl. Catal. B-Environ. 2023, 339, 123166. doi: 10.1016/j.apcatb.2023.123166  doi: 10.1016/j.apcatb.2023.123166

    51. [51]

      Zhao, Q. F.; Zhang, S. M.; Huang, X. J.; Tan, Y. L.; Zhang, Y.; Chen, Y. Z. Chem. Eng. J. 2024, 479, 147784. doi: 10.1016/j.cej.2023.147784  doi: 10.1016/j.cej.2023.147784

    52. [52]

      Mahene, W. L.; Kivevele, T.; Machunda, R. Catal. Commun. 2023, 181, 106737. doi: 10.1016/j.catcom.2023.106737  doi: 10.1016/j.catcom.2023.106737

    53. [53]

      Yang, L.; Liu, S.; Xu, H. X.; Liu, F.; Zhang, J. Fuel 2024, 361, 130758. doi: 10.1016/j.fuel.2023.130758  doi: 10.1016/j.fuel.2023.130758

    54. [54]

      Li, S. P.; Yang, Z. P.; Wu, M. Z.; Xu, C. G.; Zhang, X. L.; Lin, R. D.; Wang, X. J.; Zhao, L.; Sun, D.; Ma, X. L.; et al. Energy Environ. Mater. 2022, 5, 1238. doi: 10.1002/eem2.12240  doi: 10.1002/eem2.12240

    55. [55]

      Zhou, X. R; Zhu, Y.; Niu, Q. Y.; Zeng, G. M.; Lai, C.; Liu, S. Y.; Huang, D. L.; Qin, L.; Liu, X. G.; Li, B. S; et al. Chem. Eng. J. 2021, 416, 129027. doi: 10.1016/j.cej.2021.129027  doi: 10.1016/j.cej.2021.129027

    56. [56]

      Dong, Z.; Mukhtar, A.; Ludwig, T.; Akhade, S. A.; Kang, S.; Wood, B.; Grubel, K.; Engelhard, M.; Autrey, T.; Lin, H. F. Appl. Catal. B-Environ. 2023, 321, 122015. doi: 10.1016/j.apcatb.2022.122015  doi: 10.1016/j.apcatb.2022.122015

    57. [57]

      Li, S. P.; Song, X. Y.; Wang, X. J.; Xu, C. G.; Cao, Y. M.; Xiao, Z. H.; Qi, C. L.; Wu, M. Z.; Yang, Z. P.; Fu, L. R.; et al. Carbon 2020, 160, 176. doi: 10.1016/j.carbon.2020.01.025  doi: 10.1016/j.carbon.2020.01.025

    58. [58]

      Ma, X. L.; Zhao, L.; Yu, Z. Q.; Wang, X. J.; Song, X. Y.; Ning, G. Q.; Gao, J. S. ChemSusChem 2018, 11, 3766. doi: 10.1002/cssc.201801767  doi: 10.1002/cssc.201801767

    59. [59]

      Dong, Q.; Lele, A. D.; Zhao, X. P.; Li, S. K.; Cheng, S. C.; Wang, Y. Q.; Cui, M. J.; Guo, M.; Brozena, A. H.; Lin, Y.; et al. Nature 2023, 616, 488. doi: 10.1038/s41586-023-05845-8  doi: 10.1038/s41586-023-05845-8

    60. [60]

      Dong, Q.; Li, T. Y.; Yao, Y. G.; Wang, X. Z.; He, S. M.; Li, J. Y.; Luo, J. R.; Zhang, H. C.; Pei, Y.; Zheng, C. L.; et al. Joule 2020, 4, 2374. doi: 10.1016/j.joule.2020.08.008  doi: 10.1016/j.joule.2020.08.008

    61. [61]

      Dong, Q.; Yao, Y. G.; Cheng, S. C.; Alexopoulos, K.; Gao, J. L.; Srinivas, S.; Wang, Y. F.; Pei, Y.; Zheng, C. L; Brozena, A. H.; et al. Nature 2022, 605, 470. doi: 10.1038/s41586-022-04568-6  doi: 10.1038/s41586-022-04568-6

    62. [62]

      Fang, D. C.; Zheng, J. Y.; Han, C. B.; Zhao, W. K.; Lu, Y. G.; Sun, B. C.; Sun, L.; Wang, X. X.; Yan, H. Appl. Catal. B-Environ. 2023, 334, 122837. doi: 10.1016/j.apcatb.2023.122837  doi: 10.1016/j.apcatb.2023.122837

    63. [63]

      Cui, G. Q; Jiang, G. Y.; Xu, C. M.; Duan, X. Sci. Sin.: Chim. 2024.  doi: 10.1360/SSC-2024-0143

    64. [64]

      Feng, Z. L.; Chen, X. M.; Bai, X. F. Environ. Sci. Pollut. Res. 2020, 27, 36172. doi: 10.1007/s11356-020-09698-w  doi: 10.1007/s11356-020-09698-w

    65. [65]

      Ye, H. L., Zhang, C., Liu, S. X. Chem. Ind. Eng. 2016, 33, 6.  doi: 10.13353/j.issn.1004.9533.20141112

    66. [66]

      Jiang, N. Z.; Rao, K. S. R.; Jin, M. J.; Park, S. E. Appl. Catal. A 2012, 425, 62. doi: 10.1016/j.apcata.2012.03.001  doi: 10.1016/j.apcata.2012.03.001

    67. [67]

      Kim, K.; Oh, J.; Kim, T. W.; Park, J. H.; Han, J. W.; Suh, Y. W. Catal. Sci. Technol. 2017, 7, 3728. doi: 10.1039/c7cy00569e  doi: 10.1039/c7cy00569e

    68. [68]

      Li, X. Y.; Ma, D.; Bao, X. H. Chin. J. Catal. 2008, 29, 259. doi: 10.1016/s1872-2067(08)60027-3  doi: 10.1016/s1872-2067(08)60027-3

    69. [69]

      Ye, H. L.; Wang, T. C.; Liu, S. X.; Zhang, C.; Cai, Y. Q. Catalysts 2022, 12, 211. doi: 10.3390/catal12020211  doi: 10.3390/catal12020211

    70. [70]

      Ye, H. L.; Liu, S. X.; Zhang, C.; Cai, Y. Q.; Shi, Y. F. RSC Adv. 2021, 11, 29287. doi: 10.1039/d1ra05480e  doi: 10.1039/d1ra05480e

    71. [71]

      Qin, Y. B; Shi, J. M.; Bai, X. F. Int. J. Hydrogen Energy 2021, 46, 25543. doi: 10.1016/j.ijhydene.2021.05.074  doi: 10.1016/j.ijhydene.2021.05.074

    72. [72]

      Wang, K.; Zeng, Y. J; Lin, W. Z.; Yang, X. X.; Cao, Y. H.; Wang, H. J.; Peng, F.; Yu, H. Carbon 2020, 167, 709. doi: 10.1016/j.carbon.2020.06.055  doi: 10.1016/j.carbon.2020.06.055

    73. [73]

      Wang, W. H.; Cui, G. Q.; Yan, C. J.; Wang, X. J.; Yang, Y.; Xu, C. M.; Jiang, G. Y. Nano Res. 2023, 16, 12215. doi: 10.1007/s12274-023-5771-2  doi: 10.1007/s12274-023-5771-2

    74. [74]

      Wang, X. J.; Cui, G. Q.; Wang, W. H.; Yang, Y.; Wang, C. K.; Jiang, G. Y.; Xu, C. M. CIESC Journal 2024, 75, 292.  doi: 10.11949/0438-1157.20230848

    75. [75]

      Bao, C. S.; Serrano-Lotina, A.; Niu, M. S.; Portela, R.; Li, Y. X.; Lim, K. H.; Liu, P. W.; Wang, W. J.; Bañares, M. A.; Wang, Q. Y. Chem. Eng. J. 2023, 466, 142902. doi: 10.1016/j.cej.2023.142902  doi: 10.1016/j.cej.2023.142902

    76. [76]

      Zhang, M. M.; Gao, Y. B.; Mao, Y. P.; Wang, W. L.; Sun, J.; Song, Z. L.; Sun, J.; Zhao, X. Q. Chem. Eng. J. 2023, 451, 138616. doi: 10.1016/j.cej.2022.138616  doi: 10.1016/j.cej.2022.138616

    77. [77]

      Suttisawat, Y.; Sakai, H.; Abe, M.; Rangsunvigit, P.; Horikoshi, S. Int. J. Hydrogen Energy 2012, 37, 3242. doi: 10.1016/j.ijhydene.2011.10.111  doi: 10.1016/j.ijhydene.2011.10.111

    78. [78]

      Cao, T. L.; Dai, X. Y.; Liu, W. J.; Fu, Y.; Qi, W. Carbon 2022, 189, 199. doi: 10.1016/j.carbon.2021.12.069  doi: 10.1016/j.carbon.2021.12.069

    79. [79]

      Gan, R. H.; Song, Y.; Ma, C.; Shi, J. L. Appl. Catal. B-Environ. 2023, 327, 122443. doi: 10.1016/j.apcatb.2023.122443  doi: 10.1016/j.apcatb.2023.122443

    80. [80]

      Malhi, H. S.; Zhang, Z. Z.; Shi, Y. L.; Gao, X. H.; Liu, W. Q.; Tu, W. F.; Han, Y. F. Fuel 2023, 339, 127267. doi: 10.1016/j.fuel.2022.127267  doi: 10.1016/j.fuel.2022.127267

    81. [81]

      Yadav, M. D.; Joshi, H. M.; Sawant, S. V.; Dasgupta, K.; Patwardhan, A. W.; Joshi, J. B. Chem. Eng. Sci. 2023, 272, 118586. doi: 10.1016/j.ces.2023.118586  doi: 10.1016/j.ces.2023.118586

    82. [82]

      Pan, H. B.; Wai, C. M. J. Phys. Chem. C 2009, 113, 19782. doi: 10.1021/jp903799w  doi: 10.1021/jp903799w

    83. [83]

      Tuo, Y. X.; Yang, L.; Ma, X. F.; Ma, Z. J.; Gong, S.; Li, P. Int. J. Hydrogen Energy 2021, 46, 930. doi: 10.1016/j.ijhydene.2020.09.225  doi: 10.1016/j.ijhydene.2020.09.225

    84. [84]

      Kozonoe, C. E.; Santos, V. M.; Schmal, M. Environ. Sci. Pollut. Res. 2023, 30, 111382. doi: 10.1007/s11356-023-30205-4  doi: 10.1007/s11356-023-30205-4

    85. [85]

      Ma, Q. X.; Wang, D.; Wu, M. B.; Zhao, T. S.; Yoneyama, Y.; Tsubaki, N. Fuel 2013, 108, 430. doi: 10.1016/j.fuel.2012.12.028  doi: 10.1016/j.fuel.2012.12.028

    86. [86]

      Yang, H. X.; Song, S. Q.; Rao, R. C.; Wang, X. Z.; Yu, Q.; Zhang, A. M. J. Mol. Catal. A: Chem. 2010, 323, 33. doi: 10.1016/j.molcata.2010.03.005  doi: 10.1016/j.molcata.2010.03.005

    87. [87]

      Jiang, C. L.; Araia, A.; Balyan, S.; Robinson, B.; Brown, S.; Caiola, A.; Hu, J. L.; Dou, J.; Neal, L. M.; Li, F. X. Appl. Catal. B-Environ. 2024, 340, 123255. doi: 10.1016/j.apcatb.2023.123255  doi: 10.1016/j.apcatb.2023.123255

    88. [88]

      Sun, J. C.; Shang, H.; Miao, C.; Yang, J.; Liao, Y. F. Chem. Eng. Process. 2023, 190, 109432. doi: 10.1016/j.cep.2023.109432  doi: 10.1016/j.cep.2023.109432

    89. [89]

      Li, X.; Tuo, Y. X.; Li, P.; Duan, X. Z.; Jiang, H.; Zhou, X. G. Carbon 2014, 67, 775. doi: 10.1016/j.carbon.2013.10.071  doi: 10.1016/j.carbon.2013.10.071

    90. [90]

      Shi, L. J.; Liu, X. J.; Tuo, Y. X.; Xu, J.; Li, P.; Han, Y. F. Int. J. Hydrogen Energy 2017, 42, 17403. doi: 10.1016/j.ijhydene.2017.02.161  doi: 10.1016/j.ijhydene.2017.02.161

    91. [91]

      Beltrame, T. F.; Zoppas, F. M.; Gomes, M. C.; Ferreira, J. Z.; Marchesini, F. A.; Bernardes, A. M. Chemosphere 2021, 279, 130832. doi: 10.1016/j.chemosphere.2021.130832  doi: 10.1016/j.chemosphere.2021.130832

    92. [92]

      Wang, J. S.; Li, C. Y.; Ying, J.; Xu, T. F.; Lu, W. Y.; Li, C. Y.; Wu, X. F. J. Catal. 2022, 413, 713. doi: 10.1016/j.jcat.2022.07.027  doi: 10.1016/j.jcat.2022.07.027

    93. [93]

      Van der Ham, M. P. J. M.; Hersbach, T. J. P.; Delgado, J. J.; Matson, B. D.; Lim, J.; Führer, M.; Van Haasterecht, T.; Verhoeven, M. W. G. M.; Hensen, E. J. M.; Sokaras, D.; et al. Appl. Catal. B-Environ. 2023, 338, 123046. doi: 10.1016/j.apcatb.2023.123046  doi: 10.1016/j.apcatb.2023.123046

    94. [94]

      Zhang, R.; Zhu, Y. J.; Cheng, Y. F.; Guan, J. B.; Zou, Q.; Guo, B. C.; Zhang, M. J. Alloys Compd. 2023, 968, 171889. doi: 10.1016/j.jallcom.2023.171889  doi: 10.1016/j.jallcom.2023.171889

    95. [95]

      Tien, P. D.; Satoh, T.; Miura, M.; Nomura, M. Energy Fuels 2005, 19, 731. doi: 10.1021/ef040083v  doi: 10.1021/ef040083v

    96. [96]

      Lázaro, M. P.; García-Bordejé, E.; Sebastián, D.; Lázaro, M. J.; Moliner, R. Catal. Today 2008, 138, 203. doi: 10.1016/j.cattod.2008.05.011  doi: 10.1016/j.cattod.2008.05.011

    97. [97]

      Tien, P. D.; Satoh, T.; Miura, M.; Nomura, M. Fuel Process. Technol. 2008, 89, 415. doi: 10.1016/j.fuproc.2007.11.010  doi: 10.1016/j.fuproc.2007.11.010

    98. [98]

      Li, X.; Tuo, Y. X.; Jiang, H.; Duan, X. Z.; Yu, X. H.; Li, P. Int. J. Hydrogen Energy 2015, 40, 12217. doi: 10.1016/j.ijhydene.2015.07.093  doi: 10.1016/j.ijhydene.2015.07.093

    99. [99]

      Tuo, Y. X.; Jiang, H.; Li, X.; Shi, L. J.; Yu, X. H.; Li, P. Int. J. Hydrogen Energy 2016, 41, 10755. doi: 10.1016/j.ijhydene.2016.04.072  doi: 10.1016/j.ijhydene.2016.04.072

    100. [100]

      Du, Y. D; Meng, X. T.; Wang, Z.; Zhao, X.; Qiu, J. S. Acta Phys.-Chim. Sin. 2022, 38, 2101009.  doi: 10.3866/PKU.WHXB202101009

    101. [101]

      Liu, R. J.; Liu, B. Z.; Sun, J. Y.; Liu, Z. F. Acta Phys.-Chim. Sin. 2023, 39, 2111011.  doi: 10.3866/PKU.WHXB202111011

    102. [102]

      Liu, J. C.; Zhang, M. C.; Tang, Q. K.; Zhao, Y. Y.; Zhang, J. G.; Zhu, Y. F.; Liu, Y. N.; Hu, X. H.; Li, L. Q. Adv. Sci. 2022, 9, 2201428. doi: 10.1002/advs.202201428  doi: 10.1002/advs.202201428

    103. [103]

      Liu, Y. W.; Du, H. B.; Meng, Y. H.; Lu, S.; Zhang, J. L.; Wang, H. S. Fuel Process. Technol. 2023, 242, 107653. doi: 10.1016/j.fuproc.2023.107653  doi: 10.1016/j.fuproc.2023.107653

    104. [104]

      Mollar-Cuni, A.; Martín, S.; Guisado-Barrios, G.; Mata, J. A. Carbon 2023, 206, 314. doi: 10.1016/j.carbon.2023.02.014  doi: 10.1016/j.carbon.2023.02.014

    105. [105]

      Wang, C. R.; Fang, Y. H.; Liang, G. F.; Lv, X. Y.; Duan, H. M.; Li, Y. D.; Chen, D. F.; Long, M. J. J. CO2 Util. 2021, 49, 101542. doi: 10.1016/j.jcou.2021.101542  doi: 10.1016/j.jcou.2021.101542

    106. [106]

      Wang, B.; Chang, T. Y.; Jiang, Z.; Wei, J. J.; Zhang, Y. H.; Yang, S.; Fang, T. Int. J. Hydrogen Energy 2018, 43, 7317. doi: 10.1016/j.ijhydene.2018.02.156  doi: 10.1016/j.ijhydene.2018.02.156

    107. [107]

      Wang, B.; Chang, T. Y.; Jiang, Z.; Wei, J. J.; Fang, T. Appl. Catal. B-Environ. 2019, 251, 261. doi: 10.1016/j.apcatb.2019.03.071  doi: 10.1016/j.apcatb.2019.03.071

    108. [108]

      Wang, B.; Chen, Y. T.; Chang, T. Y.; Jiang, Z.; Huang, Z. Q.; Wang, S. Y.; Chang, C. R.; Chen, Y. S.; Wei, J. J.; Yang, S.; et al. Appl. Catal. B-Environ. 2020, 266, 118658. doi: 10.1016/j.apcatb.2020.118658  doi: 10.1016/j.apcatb.2020.118658

    109. [109]

      Chen, X. W.; Qin, X. T.; Jiao, Y. Y.; Peng, M.; Diao, J. Y.; Ren, P. J.; Li, C. Y.; Xiao, D. Q.; Wen, X. D.; Jiang, Z.; et al. Nat. Commun. 2023, 14, 2588. doi: 10.1038/s41467-023-38361-4  doi: 10.1038/s41467-023-38361-4

    110. [110]

      Jia, Z. M.; Qin, X. T.; Chen, Y. L.; Cai, X. B.; Gao, Z. R.; Peng, M.; Huang, F.; Xiao, D. Q.; Wen, X. D.; Wang, N.; et al. Nat. Commun. 2022, 13, 6798. doi: 10.1038/s41467-022-34674-y  doi: 10.1038/s41467-022-34674-y

    111. [111]

      Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y.; et al. J. Am. Chem. Soc. 2022, 144, 3535. doi: 10.1021/jacs.1c12261  doi: 10.1021/jacs.1c12261

    112. [112]

      Dong, C. Y.; Gao, Z. R.; Li, Y. L.; Peng, M.; Wang, M.; Xu, Y.; Li, C. Y.; Xu, M.; Deng, Y. C.; Qin, X. T.; et al. Nat. Catal. 2022, 5, 485. doi: 10.1038/s41929-022-00769-4  doi: 10.1038/s41929-022-00769-4

    113. [113]

      Dubadi, R.; Jaroniec, M. Nanomaterials 2023, 13, 2262. doi: 10.3390/nano13152262  doi: 10.3390/nano13152262

    114. [114]

      Gao, M. Q.; Wang, L. L.; Yang, Y.; Sun, Y. F.; Zhao, X. R.; Wan, Y. ACS Catal. 2023, 13, 4060. doi: 10.1021/acscatal.2c05894  doi: 10.1021/acscatal.2c05894

    115. [115]

      Kan, X.; Song, F. Y.; Zhang, G. Q.; Zheng, Y.; Zhu, Q. L.; Liu, F. J.; Jiang, L. L. Chem. Eng. Sci. 2023, 269, 118483. doi: 10.1016/j.ces.2023.118483  doi: 10.1016/j.ces.2023.118483

    116. [116]

      Liu, D.; Hu, Y. Y.; Zeng, C.; Qu, D. Y. Acta Phys.-Chim. Sin. 2016, 32, 2826.  doi: 10.3866/PKU.WHXB201609141

    117. [117]

      Sebastián, D.; Alegre, C.; Calvillo, L.; Pérez, M.; Moliner, R.; Lázaro, M. J. Int. J. Hydrogen Energy 2014, 39, 4109. doi: 10.1016/j.ijhydene.2013.04.016  doi: 10.1016/j.ijhydene.2013.04.016

    118. [118]

      Gao, Y. N.; Han, Z. S.; Hong, S.; Wu, T. B.; Li, X.; Qiu, J. S.; Sun, Z. Y. ACS Appl. Energy Mater. 2019, 2, 6071. doi: 10.1021/acsaem.9b01135  doi: 10.1021/acsaem.9b01135

    119. [119]

      Li, Y. M.; Liu, Z. Y.; Zhang, Q. Y.; Wang, Y. J.; Cui, G. Q.; Zhao, Z.; Xu, C. M.; Jiang, G. Y. Pet. Sci. 2023, 20, 559. doi: 10.1016/j.petsci.2022.01.008  doi: 10.1016/j.petsci.2022.01.008

    120. [120]

      Tang, C. X.; Feng, Z. L.; Bai, X. F. Colloids Surf., A 2022, 648, 129348. doi: 10.1016/j.colsurfa.2022.129348  doi: 10.1016/j.colsurfa.2022.129348

    121. [121]

      Tang, C. X.; Feng, Z. L.; Bai, X. F. Fuel 2021, 302, 121186. doi: 10.1016/j.fuel.2021.121186  doi: 10.1016/j.fuel.2021.121186

  • 加载中
    1. [1]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    2. [2]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    5. [5]

      Haiying Jiang Liuhong Song Yangyang Cheng Kefen Yue Mingli Peng Huilin Guo . Ph―C≡C―Cu2.5的力致变色现象探究——推荐一个物理化学实验. University Chemistry, 2025, 40(8): 249-254. doi: 10.12461/PKU.DXHX202410003

    6. [6]

      Rongzhan LOUQiaoling KANGZhenchao BAIDongyun LIYang XURui WANGQingyi LU . Research progress of sodium ion high entropy layered oxide cathode. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2411-2428. doi: 10.11862/CJIC.20250142

    7. [7]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    8. [8]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    12. [12]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    13. [13]

      Yachao HUANGChuanwang ZENGGuiyong LIUJinming ZENGChao LIUXiaopeng QI . Oxygen vacancies and phosphorus doping enhanced metal-organic framework derived nitrogen-doped carbon-coated Co3O4 bifunctional electrocatalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2251-2260. doi: 10.11862/CJIC.20250133

    14. [14]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    19. [19]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(3)
  • Abstract views(281)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return