Citation: Jian Li,  Yu Zhang,  Rongrong Yan,  Kaiyuan Sun,  Xiaoqing Liu,  Zishang Liang,  Yinan Jiao,  Hui Bu,  Xin Chen,  Jinjin Zhao,  Jianlin Shi. 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100042. doi: 10.1016/j.actphy.2024.100042 shu

高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤

  • Received Date: 18 October 2024
    Revised Date: 29 November 2024
    Accepted Date: 30 November 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (U2130128), the Yanzhao Young Scientist Project from Hebei Natural Science Foundation (B2023205040), the Basic Research Cooperation Special Foundation of Beijing-Tianjin-Hebei Region from Hebei Natural Science Foundation (H2022205047, 22JCZXJC00060, E3B33911DF), the Central Government Guiding Local Science and Technology Development Project (236Z7753G, 246Z7755G), Key Cultivation Special Project for Basic Research from Hebei Education Department (JCZX2025007), Introducing Intelligence and Talent Cultivation Special Fundation from Hebei Provincial Department of Science and Technology, the Innovation Capability Improvement Plan Project of Hebei Province (22567604H), the Ph.D Scientific Research Start-up Fund of Hebei Normal University (L2023B18), and the College student’s innovation and entrepreneurship training plan program (S202410094046).

  • 金属卤化物钙钛矿由于其多维度的晶体结构和优良的荧光成像/示踪及光电转换性质,使其成为一种非常具有前瞻性的光电增效治疗肿瘤材料。然而,传统卤化物钙钛矿纳米晶的水稳定性问题,限制了其应用于生物成像和光电增效肿瘤治疗的药物递送纳米系统研究。本文将甲氨蝶呤-壳聚糖-叶酸(MTX-CS-FA)成功与钙钛矿纳米晶体CsSn0.5Pb0.5Br3 (PeNCs)铆钉连接,制备出了可以在水中稳定228 d且发绿光的PeNCs@MTX-CS-FA纳米载药体系。在可见光照射下,新型PeNCs@MTX-CS-FA纳米载药体系增效抗肿瘤治疗原理:钙钛矿纳米晶体产生电子和活性氧(ROS);钙钛矿光生空穴耗竭过表达的谷胱甘肽(GSH);甲氨蝶呤(MTX)抑制二氢叶酸还原酶(DHFR)活性,导致肿瘤细胞的脂质过氧化,上述三点共同作用抑制肿瘤细胞的增殖、促进肿瘤细胞凋亡。在动物体内实验中,采用小鼠移植肿瘤模型,累积用药量达2.4 mg PeNCs@MTX-CS-FA纳米载药系统时,肿瘤体积减少了约63.68%和肿瘤重量下降了约63.26%。通过生物安全性评估实验证实,在治疗剂量下,小鼠肝、肾等器官功能正常,说明纳米体系具有良好的生物安全性,并且研究发现钙钛矿纳米颗粒经小鼠肠道排出,小鼠粪便呈现出与原始钙钛矿晶体相同的绿色荧光,金属卤化物钙钛矿纳米载药体系在生物成像和光电催化化疗方面呈现优异的增效抗肿瘤治疗效果。
  • 加载中
    1. [1]

      Grätzel, M. Nature 2001, 414 (15), 338. doi: 10.1038/35104607

    2. [2]

      Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Nature 2013, 499 (7458), 316. doi: 10.1038/nature12340

    3. [3]

      Andrei, V.; Roh, I.; Yang, P. Sci. Adv. 2023, 9 (6), 9044. doi: 10.1126/sciadv.ade9044

    4. [4]

      Han, D.; Wang, J.; Agosta, L.; Zang, Z.; Zhao, B.; Kong, L.; Lu, H.; Mosquera-Lois, I.; Carnevali, V.; Dong, J.; et al. Nature 2023, 622 (7983), 493. doi: 10.1038/s41586-023-06514-6

    5. [5]

      Qin, L.; Gan, J.; Niu, D.; Cao, Y.; Duan, X.; Qin, X.; Zhang, H.; Jiang, Z.; Jiang, Y.; Dai, S.; et al. Nat. Commun. 2022, 13 (1), 91. doi: 10.1038/s41467-021-27640-7

    6. [6]

      Zhu, P.; Pu, Y.; Wang, M.; Wu, W.; Qin, H.; Shi, J. J. Am. Chem. Soc 2023, 145 (10), 5803. doi: 10.1021/jacs.2c12942

    7. [7]

      Chang, M.; Wang, Z.; Dong, C.; Zhou, R.; Chen, L.; Huang, H.; Feng, W.; Wang, Z.; Wang, Y.; Chen, Y. Adv. Mater. 2023, 35 (7), 2208817. doi: 10.1002/adma.202208817

    8. [8]

      Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J.-H.; Kim, H.-B.; Jo, Y.; et al. Nat. Photonics 2022, 16 (2), 119. doi: 10.1038/s41566-021-00931-7

    9. [9]

      Qin, W.; Ali, W.; Wang, J.; Liu, Y.; Yan, X.; Zhang, P.; Feng, Z.; Tian, H.; Yin, Y.; Tian, W.; et al. Nat. Commun. 2023, 14 (1), 256. doi: 10.1038/s41467-023-35837-1

    10. [10]

      Zhang, G.; Xu, Y.; Yang, S.; Ren, S.; Jiao, Y.; Wang, Y.; Ma, X.; Li, H.; Hao, W.; He, C.; et al. Nano Energy 2023, 106, 108074. doi: 10.1016/j.nanoen.2022.108074

    11. [11]

      Zhao, J.; Kong, G.; Chen, S.; Chen, S.; Li, Q.; Huang, B.; Huang, B.; Liu, Z.; San, X.; Wang, Y.; et al. Sci. Bull. 2017, 62 (17), 1173. doi: 10.1016/j.scib.2017.08.022

    12. [12]

      Zhao, J.; Wei, L.; Jia, C.; Tang, H.; Su, X.; Ou, Y.; Liu, Z.; Wang, C.; Zhao, X.; Jin, H.; et al. J. Mater. Chem. A 2018, 6 (41), 20224. doi: 10.1039/c8ta05282d

    13. [13]

      Macdonald, T. J.; Lanzetta, L.; Liang, X.; Ding, D.; Haque, S. A. Adv. Mater. 2023, 35 (25), 2206684. doi: 10.1002/adma.202206684

    14. [14]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52 (15), 9019. doi: 10.1021/ic401215x

    15. [15]

      Dong, Q.; Fang, Y.; Shao, Y.; Mulligan, P.; Qiu, J.; Cao, L.; Huang, J. J. S. Science 2015, 347 (6225), 967. doi: 10.1126/science.aaa5760

    16. [16]

      Jiang, Y.; Wang, X.; Pan, A. J. A. M. Adv. Mater. 2019, 31 (47), 1806671. doi: 10.1002/adma.201806671

    17. [17]

      Cui, J.; Liu, Y.; Deng, Y.; Lin, C.; Fang, Z.; Xiang, C.; Bai, P.; Du, K.; Zuo, X.; Wen, K.; et al. Sci. Adv. 2021, 7 (41), 8458. doi: 10.1126/sciadv.abg8458

    18. [18]

      Jiang, Y.; Sun, C.; Xu, J.; Li, S.; Cui, M.; Fu, X.; Liu, Y.; Liu, Y.; Wan, H.; Wei, K.; et al. Nature 2022, 612 (7941), 679. doi: 10.1038/s41586-022-05486-3

    19. [19]

      Song, W.; Wang, D.; Tian, J.; Qi, G.; Wu, M.; Liu, S.; Wang, T.; Wang, B.; Yao, Y.; Zou, Z.; et al. Small 2022, 18 (42), 2204763. doi: 10.1002/smll.202204763

    20. [20]

      Jin, M.; Zhai, X.; Huang, Y.; Zhang, M.; Ma, T.; Zeng, Z.; Fu, H.; Yin, L.; Zhang, Y.; Du, Y. Small 2024, 20 (26), e2310238. doi: 10.1002/smll.202310238

    21. [21]

      He, C. L.; Meng, Z. Q.; Ren, S. X.; Li, J.; Wang, Y.; Wu, H.; Bu, H.; Zhang, Y.; Hao, W. Z.; Chen, S. L.; et al. Rare Met. 2023, 42, 1624. doi:10.1007/s12598-022-02222-8

    22. [22]

      Ma, C.; Eickemeyer, F. T.; Lee, S.-H.; Kang, D.-H.; Kwon, S. J.; Grätzel, M.; Park, N.-G. Science 2023, 379 (6628), 173. doi: 10.1126/science.adf3349

    23. [23]

      Park, S. M.; Wei, M.; Xu, J.; Atapattu, H. R.; Eickemeyer, F. T.; Darabi, K.; Grater, L.; Yang, Y.; Liu, C.; Science 2023, 381 (6654), 209. doi: 10.1126/science.adi4107

    24. [24]

      Wang, Z.; Zeng, L.; Zhu, T.; Chen, H.; Chen, B.; Kubicki, D. J.; Balvanz, A.; Li, C.; Maxwell, A.; Ugur, E.; et al. Nature 2023, 618 (7963), 74. doi: 10.1038/s41586-023-06006-7

    25. [25]

      Folgueras, M. C.; Jiang, Y.; Jin, J.; Yang, P. Nature 2023, 621 (7978), 282. doi: 10.1038/s41586-023-06396-8

    26. [26]

      Jin, J.; Huang, H.; Chen, C.; Smith, P. W.; Folgueras, M. C.; Yu, S.; Zhang, Y.; Chen, P.-C.; Seeler, F.; Schaefer, B.; et al. ACS Photonics 2023, 10 (3), 772. doi: 10.1021/acsphotonics.3c00042

    27. [27]

      Ryu, I.; Ryu, J. Y.; Choe, G.; Kwon, H.; Park, H.; Cho, Y. S.; Du, R.; Yim, S. Adv. Funct. Mater. 2021, 31 (34), 2102334. doi: 10.1002/adfm.202102334

    28. [28]

      Lian, H.; Li, Y.; Saravanakumar, S.; Jiang, H.; Li, Z.; Wang, J.; Xu, L.; Zhao, W.; Han, G. Coord. Chem. Rev. 2022, 452, 214313. doi: 10.1016/j.ccr.2021.214313

    29. [29]

      Patel, M.; Patel, R.; Park, C.; Cho, K.; Kumar, P.; Park, C.; Koh, W.-G. Nano Converg. 2023, 10 (1), 21. doi: 10.1186/s40580-023-00366-6

    30. [30]

      Luo, X.; Han, Y.; Chen, Z.; Li, Y.; Liang, G.; Liu, X.; Ding, T.; Nie, C.; Wang, M.; Castellano, F. N.; et al. Nat. Commun. 2020, 11 (1), 28. doi: 10.1038/s41467-019-13951-3

    31. [31]

      Luo, X.; Liang, G.; Han, Y.; Li, Y.; Ding, T.; He, S.; Liu, X.; Wu, K. J. Am. Chem. Soc 2020, 142 (25), 11270. doi: 10.1021/jacs.0c04583

    32. [32]

      Liu, M.; Xia, P.; Zhao, G.; Nie, C.; Gao, K.; He, S.; Wang, L.; Wu, K. Angew. Chem. Int. Ed. 2022, 61 (35), 202208241. doi: 10.1002/anie.202208241

    33. [33]

      Liu, M.; Wang, J.; Liang, G.; Luo, X.; Zhao, G.; He, S.; Wang, L.; Liang, W.; Li, J.; Wu, K. Chem. 2022, 8 (6), 1720. doi: 10.1016/j.chempr.2022.03.003

    34. [34]

      Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Nat. Commun. 2016, 7 (1), 12555. doi: 10.1038/ncomms12555

    35. [35]

      Li, S.; Lei, D.; Ren, W.; Guo, X.; Wu, S.; Zhu, Y.; Rogach, A. L.; Chhowalla, M.; Jen, A. K. Y. Nat. Commun. 2020, 11 (1), 1192. doi: 10.1038/s41467-020-15016-2

    36. [36]

      Hu, X.; Xu, Y.; Wang, J.; Ma, J.; Wang, L.; Jiang, W. Adv. Fiber Mater. 2023, 5 (1), 183. doi: 10.1007/s42765-022-00207-x

    37. [37]

      Xue, J.; Chen, D.; Zhang, H.; Guo, L.; Li, P.; Han, D.; Guo, X.; Duan, Q.; Sang, S. ACS Appl. Nano Mater. 2024, 7 (4), 3997. doi: 10.1021/acsanm.3c05605

    38. [38]

      Jia, C.; Zhao, X.; Lai, Y.-H.; Zhao, J.; Wang, P.-C.; Liou, D.-S.; Wang, P.; Liu, Z.; Zhang, W.; Chen, W.; et al. Nano Energy 2019, 60, 476. doi: 10.1016/j.nanoen.2019.03.053

    39. [39]

      Liu, X.; Ren, S.; Li, Z.; Guo, J.; Yi, S.; Yang, Z.; Hao, W.; Li, R.; Zhao, J. Adv. Funct. Mater. 2022, 32 (38), 2202951. doi: 10.1002/adfm.202202951

    40. [40]

      Wang, P.; Zhao, J.; Liu, J.; Wei, L.; Liu, Z.; Guan, L.; Cao, G. J. Power Sources 2017, 339, 51. doi: 10.1016/j.jpowsour.2016.11.046

    41. [41]

      Lim, S.; Han, S.; Kim, D.; Min, J.; Choi, J.; Park, T. Adv. Mater. 2022, 35 (4), 2203430. doi: 10.1002/adma.202203430

    42. [42]

      Zhang, W.; Duan, X.; Tan, Y.; Hao, J.; Zhu, H.; Wang, Q.; Yang, H.; Liu, H.; Wang, K.; Wang, Z.; et al. Laser Photonics Rev. 2024, 18, 2400367. doi: 10.1002/lpor.202400367

    43. [43]

      Soheyli, E.; Ghaemi, B.; Sahraei, R.; Sabzevari, Z.; Kharrazi, S.; Amani, A. MSE C 2020, 111, 110807. doi: 10.1016/j.msec.2020.110807

    44. [44]

      Wang, N.; Zheng, A.-Q.; Liu, X.; Chen, J.-J.; Yang, T.; Chen, M.-L.; Wang, J.-H. ACS Appl. Mater. Interfaces 2018, 10 (9), 7901. doi: 10.1021/acsami.8b00947

    45. [45]

      Khan, Z. U.; Khan, L. U.; Uchiyama, M. K.; Prado, F. M.; Faria, R. L.; Costa, I. F.; Miyamoto, S.; Araki, K.; Gidlund, M.; Brito, H. F.; et al. ACS Appl. Nano Mater. 2023, 6 (5), 3767. doi: 10.1021/acsanm.2c05482

    46. [46]

      Soheyli, E.; Sahraei, R.; Nabiyouni, G.; Hatamnia, A. A.; Rostamzad, A.; Soheyli, S. J. Colloid Interface Sci. 2018, 529, 520. doi: 10.1016/j.jcis.2018.06.024

    47. [47]

      Wu, X.-g.; Ji, H.; Yan, X.; Zhong, H. Nat. Nanotechnol. 2022, 17 (8), 813. doi: 10.1038/s41565-022-01163-8

    48. [48]

      Cheng, H.; Chen, X.; Sheng, Y.; Song, M.; Sun, C.; Wang, Z.; Zhou, J.; Zhang, H.; Ding, Y. Chem. Eng. J. 2023, 468. doi: 10.1016/j.cej.2023.143457

    49. [49]

      Sun, L.; Cao, Y.; Li, W.; Wang, L.; Ding, P.; Lu, Z.; Ma, F.; Wang, Z.; Pei, R. Small 2023, 19 (27). doi: 10.1002/smll.202300101

    50. [50]

      Zhang, C.; Li, W.; Li, L. Angew. Chem. 2021, 133 (14), 7564. doi: 10.1002/ange.202006169

    51. [51]

      Samiei, S.; Soheyli, E.; Vighnesh, K.; Nabiyouni, G.; Rogach, A. L. Small 2024, 20 (17), 2307972. doi: 10.1002/smll.202307972

    52. [52]

      Liang, S.; Zhang, M.; Biesold, G. M.; Choi, W.; He, Y.; Li, Z.; Shen, D.; Lin, Z. Adv. Mater. 2021, 33 (50), 2005888. doi: 10.1002/adma.202005888

    53. [53]

      Gao, J.; Hou, B.; Zhu, Q.; Yang, L.; Jiang, X.; Zou, Z.; Li, X.; Xu, T.; Zheng, M.; Chen, Y.-H.; et al. Nat. Commun. 2022, 13 (1), 4318. doi: 10.1038/s41467-022-32050-4

    54. [54]

      Geng, B.; Hu, J.; Li, Y.; Feng, S.; Pan, D.; Feng, L.; Shen, L. Nat. Commun. 2022, 13 (1), 5735. doi: 10.1038/s41467-022-33474-8

    55. [55]

      Pan, S.; Huang, G.; Sun, Z.; Chen, X.; Xiang, X.; Jiang, W.; Xu, Y.; Chen, T.; Zhu, X. Adv. Funct. Mater. 2023, 33 (13), 2213364. doi: 10.1002/adfm.202213364

    56. [56]

      Du, J.; Zhou, M.; Chen, Q.; Tao, Y.; Ren, J.; Zhang, Y.; Qin, H. Adv. Funct. Mater. 2023, 33 (24), 2215244. doi: 10.1002/adfm.202215244

    57. [57]

      Yang, K.; Yu, G.; Yang, Z.; Yue, L.; Zhang, X.; Sun, C.; Wei, J.; Rao, L.; Chen, X.; Wang, R. Angew. Chem. Int. Ed. 2021, 60 (32), 17570. doi: 10.1002/anie.202103721

    58. [58]

      Yu, G.; Zhao, X.; Zhou, J.; Mao, Z.; Huang, X.; Wang, Z.; Hua, B.; Liu, Y.; Zhang, F.; He, Z.; et al. J. Am. Chem. Soc 2018, 140 (25), 8005. doi: 10.1021/jacs.8b04400

    59. [59]

      Sun, S.; Chen, Q.; Tang, Z.; Liu, C.; Li, Z.; Wu, A.; Lin, H. Angew. Chem. Int. Ed. 2020, 59 (47), 21041. doi: 10.1002/anie.202007786

    60. [60]

      Wang, J.; Zhang, Z.; Ai, Y.; Liu, F.; Chen, M.-M.; Liu, D. Carbohydr. Res. 2021, 501, 108275. doi: 10.1016/j.carres.2021.108275

    61. [61]

      Chen, J.; Huang, L.; Lai, H.; Lu, C.; Fang, M.; Zhang, Q.; Luo, X. Mol. Pharm. 2014, 11 (7), 2213. doi: 10.1021/mp400269z

    62. [62]

      Pang, Z.; Yan, W.; Yang, J.; Li, Q.; Guo, Y.; Zhou, D.; Jiang, X. ACS Nano 2022, 16 (10), 16019. doi: 10.1021/acsnano.2c03752

    63. [63]

      Liu, H.; Nie, T.; Duan, X.; Zhang, X.; Zheng, Y.; Zhong, W.; Chen, H.; Miao, C.; Wu, J.; Lin, D. J. Control. Release 2023, 359, 132. doi: 10.1016/j.jconrel.2023.05.040

    64. [64]

      Zheng, J.; Conrad, M. Cell Metab 2020, 32 (6), 920. doi: 10.1016/j.cmet.2020.10.011

    65. [65]

      Pramanik, A.; Patibandla, S.; Gao, Y.; Gates, K.; Ray, P. C. JACS Au 2020, 1 (1), 53. doi: 10.1021/jacsau.0c00038

    66. [66]

      Lei, Y.; Li, Y.; Lu, C.; Yan, Q.; Wu, Y.; Babbe, F.; Gong, H.; Zhang, S.; Zhou, J.; Wang, R.; et al. Nature 2022, 608 (7922), 317. doi: 10.1038/s41586-022-04961-1

    67. [67]

      Zhang, H.; Lee, J.-W.; Nasti, G.; Handy, R.; Abate, A.; Grätzel, M.; Park, N.-G. Nature 2023, 617 (7962), 687. doi: 10.1038/s41586-023-05938-4

    68. [68]

      Chowdhury, T. H.; Reo, Y.; Yusoff, A. R. B. M.; Noh, Y. Y. Adv. Sci. 2022, 9 (33), 2203749. doi: 10.1002/advs.202203749

    69. [69]

      Sun, Q.; Zhang, Z.; Zhang, T.; Feng, Y.; Gu, A.; Yu, H.; Zhang, M.; Zhang, X. L.; Zhu, J.; Shen, Y.; et al. ACS Energy Lett. 2022, 7 (12), 4215. doi: 10.1021/acsenergylett.2c02262

    70. [70]

      Liu, F.; Ding, C.; Zhang, Y.; Ripolles, T. S.; Kamisaka, T.; Toyoda, T.; Hayase, S.; Minemoto, T.; Yoshino, K.; Dai, S.; et al. J. Am. Chem. Soc 2017, 139 (46), 16708. doi: 10.1021/jacs.7b08628

    71. [71]

      Schwartz, H. A.; Laurenzen, H.; Marzouk, A.; Runkel, M.; Brinkmann, K. O.; Rogalla, D.; Riedl, T.; Ashhab, S.; Olthof, S. ACS Appl. Mater. Interfaces 2021, 13 (3), 4203. doi: 10.1021/acsami.0c20285

    72. [72]

      Karmakar, A.; Bhattacharya, A.; Bernard, G. M.; Mar, A.; Michaelis, V. K. ACS Mater. Lett. 2021, 3 (3), 261. doi: 10.1021/acsmaterialslett.0c00596

    73. [73]

      Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; et al. J. Am. Chem. Soc 2016, 138 (9), 2941. doi: 10.1021/jacs.5b13470

    74. [74]

      Yang, Z.; Zhang, S.; Sheng, T.; Lv, X.; Wei, X.; Qin, S.; Yi, S.; Zhao, J. J. Mater. Chem. A 2023, 11 (41), 22020. doi: 10.1039/D3TA02909C

    75. [75]

      http://www.science-and-fun.de/tools/ (accessed on Oct 3, 2024).

    76. [76]

      Al-Nemrawi, N.; Hameedat, F.; Al-Husein, B.; Nimrawi, S. Pharmaceuticals 2022, 15 (2), 149. doi: 10.3390/ph15020149

    77. [77]

      Al-Nemrawi, N. K.; Altawabeyeh, R. M.; Darweesh, R. S. J. Pharm. Sci. 2022, 111 (2), 485. doi: 10.1016/j.xphs.2021.10.034

    78. [78]

      Li, M.; Zhang, X.; Yang, P. Nanoscale 2021, 13 (6), 3860. doi: 10.1039/d0nr08325a

    79. [79]

      Zhu, J.; Liu, Y.; He, B.; Zhang, W.; Cui, L.; Wang, S.; Chen, H.; Duan, Y.; Tang, Q. Chem. Eng. J. 2022, 428, 131950. doi: 10.1016/j.cej.2021.131950

    80. [80]

      Yang, X.; Yan, Z. J.; Zhong, C. M.; Jia, H.; Chen, G. L.; Fan, X. T.; Wang, S. L.; Wu, T. Z.; Lin, Y.; Chen, Z. Adv. Opt. Mater. 2023, 11 (9), 2202673. doi: 10.1002/adom.202202673

    81. [81]

      Martins, N. C. T.; Ângelo, J.; Girão, A. V.; Trindade, T.; Andrade, L.; Mendes, A. Appl. Catal. B Environ. 2016, 193, 67. doi: 10.1016/j.apcatb.2016.04.016

    82. [82]

      Wang, Y.; Zhang, Y.; Feng, Y.; Zhang, X.; Liu, J.; Hou, W.; Jia, J.; Zhang, B. IOP Conf. Ser. Mater. Sci. Eng. 2019, 490 (2), 022067. doi: 10.1088/1757-899x/490/2/022067

    83. [83]

      Ban, H.; Sun, Q.; Zhang, T.; Li, H.; Shen, Y.; Wang, M. Sol. RRL 2019, 4 (3), 1900457. doi: 10.1002/solr.201900457

    84. [84]

      Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Surf. Sci. Rep. 2011, 66 (1), 1. doi: 10.1016/j.surfrep.2010.10.001

    85. [85]

      Chen, X.; Lai, J.; Shen, Y.; Chen, Q.; Chen, L. 2018, 30 (48), 1802490. doi: 10.1002/adma.201802490

    86. [86]

      Wang, R.; Wang, Z.; Shang, X.; Yang, Y.; Ding, J.; Zhong, Q. J. Mater. Chem. A 2023, 11 (2), 630. doi: 10.1039/D2TA08349C

    87. [87]

      Yuan, Y.; Li, T.; Wang, Q.; Xing, J.; Gruverman, A.; Huang, J. 2017, 3 (3), e1602164. doi: 10.1126/sciadv.1602164

    88. [88]

      Deng, X.; Qi, F.; Li, F.; Wu, S.; Lin, F. R.; Zhang, Z.; Guan, Z.; Yang, Z.; Lee, C. S.; Jen, A. K. Y. Angew. Chem. Int. Ed. 2022, 61 (30), 202203088. doi: 10.1002/anie.202203088

    89. [89]

      Li, Z.; Mo, F.; Wang, Y.; Li, W.; Chen, Y.; Liu, J.; Chen-Mayfield, T.-J.; Hu, Q. Nat. Commun. 2022, 13 (1), 6321. doi: 10.1038/s41467-022-34036-8

    90. [90]

      Cramer, S. L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S. E.; Rowlinson, S.; et al. Nat. Med. 2017, 23 (1), 120. doi: 10.1038/nm.4232

    91. [91]

      Yuan, M.; Liang, S.; Yang, L.; Li, F.; Liu, B.; Yang, C.; Yang, Z.; Bian, Y.; Ma, P.; Cheng, Z.; et al. Adv. Mater. 2023, 35 (10), 2209589. doi: 10.1002/adma.202209589

    92. [92]

      Niu, B.; Liao, K.; Zhou, Y.; Wen, T.; Quan, G.; Pan, X.; Wu, C. Biomaterials 2021, 277, 121110. doi: 10.1016/j.biomaterials.2021.121110

    93. [93]

      Zhu, J.; Wang, C.; Wei, Q.; Su, Y.; Qu, X.; Wang, W.; Song, X.; Dong, X.; Cai, Y. Small 2023, 19 (45), 2303365. doi: 10.1002/smll.202303365

    94. [94]

      Lu, G.; Wang, X.; Li, F.; Wang, S.; Zhao, J.; Wang, J.; Liu, J.; Lyu, C.; Ye, P.; Tan, H.; et al. Nat. Commun. 2022, 13 (1), 4214. doi: 10.1038/s41467-022-31799-y

    95. [95]

      Ogiwara, H.; Takahashi, K.; Sasaki, M.; Kuroda, T.; Yoshida, H.; Watanabe, R.; Maruyama, A.; Makinoshima, H.; Chiwaki, F.; Sasaki, H.; et al. Cancer cell 2019, 35 (2), 177. doi: 10.1016/j.ccell.2018.12.009

    96. [96]

      Xiong, Y.; Xiao, C.; Li, Z.; Yang, X. Chem. Soc. Rev. 2021, 50 (10), 6013. doi: 10.1039/d0cs00718h

    97. [97]

      Liu, Y.; Wang, Y.; Song, S.; Zhang, H. Natl. Sci. Rev. 2022, 9 (3), 139. doi: 10.1093/nsr/nwab139

    98. [98]

      Cheung, E. C.; Vousden, K. H. Nat. Rev. Cancer 2022, 22 (5), 280. doi: 10.1038/s41568-021-00435-0

    99. [99]

      Hardy, N.; Viola, H. M.; Johnstone, V. P.; Clemons, T. D.; Cserne Szappanos, H.; Singh, R.; Smith, N. M.; Iyer, K. S.; Hool, L. C. ACS Nano 2015, 9 (1), 279. doi: 10.1021/nn5061404

    100. [100]

      Yu, Y.; Huang, Z.; Chen, Q.; Zhang, Z.; Jiang, H.; Gu, R.; Ding, Y.; Hu, Y. Biomaterials 2022, 288, 121724. doi: 10.1016/j.biomaterials.2022.121724

    101. [101]

      Fan, L.; Duan, M.; Sun, X.; Wang, H.; Liu, J. ACS Appl. Bio Mater. 2020, 3 (6), 3553. doi: 10.1021/acsabm.0c00171

    102. [102]

      Zhou, G.; Li, M. Adv. Mater. 2022, 34 (24), 2200871. doi: 10.1002/adma.202200871

    103. [103]

      Verma, R.; Singh, V.; Koch, B.; Kumar, M. Colloids Surf. B Biointerfaces 2023, 226, 113308. doi: 10.1016/j.colsurfb.2023.113308

    104. [104]

      Shiji, R.; Joseph, M. M.; Sen, A.; Pillai, K. R.; Unnikrishnan, B.; Sreelekha, T. T. Int. J. Biol. Macromol. 2022, 219, 740. doi: 10.1016/j.ijbiomac.2022.07.185

    105. [105]

      Pandey, S.; Choudhary, P.; Gajbhiye, V.; Jadhav, S.; Bodas, D. Cancer Nanotechnol. 2023, 14(1), 30. doi: 10.1186/s12645-023-00162-1

    106. [106]

      Shan, M.; Wang, H.; Li, S.; Zhang, X.; Yang, G.; Shan, Y. Mol. Pharm. 2023, 20 (6), 3234. doi: 10.1021/acs.molpharmaceut.2c01035

    107. [107]

      Moharil, P.; Wan, Z.; Pardeshi, A.; Li, J.; Huang, H.; Luo, Z.; Rathod, S.; Zhang, Z.; Chen, Y.; Zhang, B.; et al. Acta Pharm. Sin. B. 2022, 12 (3), 1148. doi: 10.1016/j.apsb.2021.09.024

    108. [108]

      Forster Iii, J.; Nandi, D.; Kulkarni, A. Biomater. Sci. 2022, 10 (19), 5566. doi: 10.1039/D2BM00883A

    109. [109]

      Cheng, K.; Liu, B.; Zhang, X.-S.; Zhang, R.-Y.; Zhang, F.; Ashraf, G.; Fan, G.-Q.; Tian, M.-Y.; Sun, X.; Yuan, J.; et al. Nat. Commun. 2022, 13 (1), 4567. doi: 10.1038/s41467-022-32349-2

    110. [110]

      Lu, C.; Zhang, C.; Wang, P.; Zhao, Y.; Yang, Y.; Wang, Y.; Yuan, H.; Qu, S.; Zhang, X.; Song, G.; et al. Chem 2020, 6 (9), 2314. doi: 10.1016/j.chempr.2020.06.024

    111. [111]

      Jiang, H.; Guo, Y.; Wei, C.; Hu, P.; Shi, J. Adv. Mater. 2021, 33 (20), 2008065. doi: 10.1002/adma.202008065

    112. [112]

      Feng, W.; Lv, Y.; Chen, Z.; Wang, F.; Wang, Y.; Pei, Y.; Jin, W.; Shi, C.; Wang, Y.; Qu, Y.; et al. Chem. Eng. J. 2021, 417, 129178. doi: 10.1016/j.cej.2021.129178

    113. [113]

      Niu, H.; Chen, J.; Jin, J.; Qi, X.; Bai, K.; Shu, C.; Wu, A.; Xiao, Y.; Wu, C.; Bu, H.; et al. Chem. Eng. J. 2022, 437, 135373. doi: 10.1016/j.cej.2022.135373

    114. [114]

      https://stacks.cdc.gov/view/cdc/37586 (accessed on Oct 3, 2024).

    115. [115]

      Zhang, J.; Li, P.; Wang, T.; Li, J.; Yun, K.; Zhang, X.; Yang, X. Pharmacol. Res. 2023, 187, 106632. doi: 10.1016/j.phrs.2022.106632

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    6. [6]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return