Citation:
Xueting Cao, Shuangshuang Cha, Ming Gong. 电催化反应中的界面双电层:理论、表征与应用[J]. Acta Physico-Chimica Sinica,
;2025, 41(5): 100041.
doi:
10.1016/j.actphy.2024.100041
-
界面双电层是电催化反应的核心区域。催化剂表面原子、反应物、中间体、产物、溶剂分子和离子等组分,共同构成了复杂的动态反应网络。这种特殊的组成和结构赋予界面双电层以特殊的性质,深刻地影响了电催化反应的路径与结果。本文将以电催化反应中的双电层为主要研究对象,围绕双电层理论模型及其历史沿革、双电层的实验表征方法和双电层对电催化反应的影响这三个方面,以若干电催化反应前沿研究为例,阐述双电层与电催化反应之间的关联,并介绍一些特定情形下电催化双电层研究的研究方法和研究逻辑。
-
-
-
[1]
Shao, Y. Y.; Markovic, N. M. Nano Energy 2016, 29, 1. doi: 10.1016/j.nanoen.2016.09.025
-
[2]
Steinmann, S. N.; Seh, Z. W. Nat. Rev. Mater. 2021, 6 (4), 289. doi: 10.1038/s41578-021-00303-1
-
[3]
Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 771-775.
-
[4]
Xu, Y. F.; Yang, H.; Chang, X. X.; Xu, B. J. Acta Phys. -Chim. Sin. 2023, 39, 2210025.
-
[5]
Elliott, J. D.; Papaderakis, A. A.; Dryfe, R. A. W.; Carbone, P. J. Mater. Chem. C 2022, 10 (41), 15225. doi: 10.1039/D2TC01631A
-
[6]
Ivanov, V. D. J. Solid State Electrochem. 2024, 28, 2487. doi: 10.1007/s10008-024-05850-5
-
[7]
Gouy, G. J. Physique 1910, 9, 457. doi: 10.1051/jphystap:019100090045700
-
[8]
Chapman, D. L. Phil. Mag. 1913, 25, 475. doi: 10.1080/14786440408634187
-
[9]
Stern, H. O. Z. Electrochem. 1924, 30, 508. doi: 10.1002/bbpc.192400182
-
[10]
Grahame, D. C. Chem. Rev. 1947, 41 (3), 441. doi: 10.1021/cr60130a002
-
[11]
Hou, J. J.; Xu, B. J.; Lu, Q. Nat. Commun. 2024, 15 (1), 1926. doi: 10.1038/s41467-024-46318-4
-
[12]
Boettcher, S. W.; Surendranath, Y. Nat. Catal. 2021, 4 (1), 4. doi: 10.1038/s41929-020-00570-1
-
[13]
Lyu, D. Y.; Xu, J. C.; Wang, Z. Y. Front. Chem. 2023, 11, 1231886. doi: 10.3389/fchem.2023.1231886
-
[14]
Fawcett, W. R. J. Solid State Electrochem. 2011, 15 (7-8), 1347. doi: 10.1007/s10008-011-1337-4
-
[15]
Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J. H. Surf. Sci. 1969, 18 (1), 44. doi: 10.1016/0039-6028(69)90266-0
-
[16]
Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 933-959, 1190-1201.
-
[17]
Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43 (15), 5372. doi: 10.1039/C4CS00087K
-
[18]
Wu, J. X.; Wang, R.; Kang, Y. K.; Li, J. L.; Hao, Y. M.; Li, Y. F.; Liu, Z. P.; Gong, M. Angew Chem. Int, Ed. 2024, 63 (22), e202403466. doi: 10.1002/anie.202403466
-
[19]
Bikerman J. J. Lond. Edinb. Phil. Mag. 1942, 33 (220), 384. doi: 10.1080/14786444208520813
-
[20]
Webb, T. J. J. Am. Chem. Soc. 1926, 48 (10), 2589. doi: 10.1021/ja01421a013
-
[21]
Conway, B. E.; Bockris, J. O’. M.; Ammar, I. A. Trans. Faraday Soc. 1951, 47, 756. doi: 10.1039/tf9514700756
-
[22]
Bockris, J. O’. M.; Devanathan, M. A. V.; Müller, K.; Butler, J. A. V. Proc. R. Soc. Lond. A 1963, 274 (1356), 55. doi: 10.1098/rspa.1963.0114
-
[23]
Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 895-919.
-
[24]
Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Nat. Catal. 2022, 5 (10), 900. doi: 10.1038/s41929-022-00846-8
-
[25]
Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M.; et al. Nat. Rev. Chem. 2021, 5 (7), 466. doi: 10.1038/s41570-021-00293-2
-
[26]
Wang, Q.; Qu, Z. G.; Tian, D. Adv. Energy Mater. 2024, 2402974. doi: 10.1002/aenm.202402974
-
[27]
Zhang, L. L.; Li, C. K.; Huang, J. J. Electrochem. 2022, 28 (2), 2108471.
-
[28]
Horng, T. L.; Tsai, P. H.; Lin, T. C. Comput. Math. Biophys. 2017, 5 (1), 142. doi: 10.1515/mlbmb-2017-0010
-
[29]
Blum, L. Mol. Phys. 1975, 30 (5), 1529. doi: 10.1080/00268977500103051
-
[30]
Outhwaite, C. W.; Bhuiyan, L. B.; Levine, S. J. Chem. Soc. Faraday Trans. 2 1980, 76, 1388. doi: 10.1039/F29807601388
-
[31]
Lück, J.; Latz, A. Phys. Chem. Chem. Phys. 2018, 20 (44), 27804. doi: 10.1039/C8CP05113E
-
[32]
Drude, P. Ann. Phys. 1900, 306, 566. doi: 10.1002/andp.19003060312
-
[33]
Schmickler, W.; Henderson, D. J. Chem. Phys. 1984, 80 (7), 3381. doi: 10.1063/1.447092
-
[34]
Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 919-968.
-
[35]
Petrii, O. A. Electrochim. Acta 1996, 41 (14), 2307. doi: 10.1016/0013-4686(96)00060-6
-
[36]
Wang, Z. Y.; Chen, J.; Ni, C. W.; Nie, W.; Li, D. F.; Ta, N.; Zhang, D. Y.; Sun, Y. M.; Sun, F. S.; Li, Q.; et al. Natl. Sci. Rev. 2023, 10 (9), nwad166. doi: 10.1093/nsr/nwad166
-
[37]
Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313 (5794), 1760. doi: 10.1126/science.1132195
-
[38]
Schmickler, W. J. Solid State Electrochem. 2020, 24 (9), 2175. doi: 10.1007/s10008-020-04597-z
-
[39]
Fang, Y. H.; Liu, Z. P. Chin. J. Catal. 2019, 40 (s1), 90.
-
[40]
Fang, Y. H.; Liu, Z. P. J. Electrochem. 2020, 26 (1), 32.
-
[41]
Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j
-
[42]
Masood, Z.; Ge, Q. F. J. Phys. Chem. C 2023, 127 (48), 23170. doi: 10.1021/acs.jpcc.3c03796
-
[43]
Zhang, X.; Zhou, Z. J. Phys. Chem. C 2022, 126 (8), 3820. doi: 10.1021/acs.jpcc.1c10870
-
[44]
Hu, X.; Chen, S.; Chen, L.; Tian, Y.; Yao, S.; Lu, Z.; Zhang, X.; Zhou, Z. J. Am. Chem. Soc. 2022, 144 (39), 18144. doi: 10.1021/jacs.2c08743
-
[45]
Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6 (14), 2663. doi: 10.1021/acs.jpclett.5b01043
-
[46]
Jaugstetter, M.; Blanc, N.; Kratz, M.; Tschulik, K. Chem. Soc. Rev. 2022, 51 (7), 2491. doi: 10.1039/D1CS00789K
-
[47]
Zhang, D.; Li, Hao. J. Mater. Chem. A, 2024, 12, 13742. doi: 10.1039/D4TA02285H
-
[48]
Li, P.; Jiao. Y. Z.; Huang, J.; Chen, S. L. JACS Au 2023, 3(10), 2640. doi: 10.1021/jacsau.3c00410
-
[49]
Hu, X.; Yao, S.; Chen, L. T.; Zhang, X.; Jiao, M. G.; Lu, Z. Y; Zhou, Z. J. Mater. Chem. A 2021, 9, 23515. doi: 10.1039/D1TA07791K
-
[50]
Agrawal, A.; Choudhary, A. APL Mater. 2016, 4 (5), 053208. doi: 10.1063/1.4946894
-
[51]
Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. WIREs Comput. Mol. Sci. 2019, 9, e1415. doi: 10.1002/wcms.1415
-
[52]
Naserifar, S.; Chen, Y. L.; Kwon, S.; Xiao, H.; Goddard, W. A. Matter 2021, 4 (1), 195. doi: 10.1016/j.matt.2020.11.010
-
[53]
Schlüter, N.; Novák, P.; Schröder, D. Adv. Energy Mater. 2022, 12 (21), 2200708. doi: 10.1002/aenm.202200708
-
[54]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 156-417.
-
[55]
Zhang, J. Q. Electrochemical Measurement Technology, 1st ed.; Chemical Industry Press: Beijing, 2010; pp. 73-300.
-
[56]
Scholz, F. ChemTexts 2015, 1 (4), 17. doi: 10.1007/s40828-015-0016-y
-
[57]
Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 859-869.
-
[58]
Beck, T. R. J. Phys. Chem. 1969, 73 (2), 466. doi: 10.1021/j100722a045
-
[59]
Fredlein, R. A.; Damjanovic, A.; Bockris, J. O’. M. Surf. Sci. 1971, 25 (2), 261. doi: 10.1016/0039-6028(71)90246-9
-
[60]
Hamm, U. W.; Kramer, D.; Zhai, R. S.; Kolb, D. M. J. Electroanal. Chem. 1996, 414 (1), 85. doi: 10.1016/0022-0728(96)01006-6
-
[61]
Bond, A. M.; Duffy, N. W.; Guo, S. X.; Zhang, J.; Elton, D. Anal. Chem. 2005, 77 (9), 186 A. doi: 10.1021/ac053370k
-
[62]
Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2018, 122 (22), 11777. doi: 10.1021/acs.jpcc.8b00272
-
[63]
Ojha, K.; Arulmozhi, N.; Aranzales, D.; Koper, M. T. M. Angew. Chem. Int. Ed. 2020, 59 (2), 711. doi: 10.1002/anie.201911929
-
[64]
Lertanantawong, B.; O’Mullane, A. P.; Surareungchai, W.; Somasundrum, M.; Burke, L. D.; Bond, A. M. Langmuir 2008, 24 (6), 2856. doi: 10.1021/la702454k
-
[65]
Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2017, 121 (22), 12136. doi: 10.1021/acs.jpcc.7b00287
-
[66]
Pettit, C. M.; Goonetilleke, P. C.; Roy, D. J. Electroanal. Chem. 2006, 589 (2), 219. doi: 10.1016/j.jelechem.2006.02.012
-
[67]
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 537-544.
-
[68]
Tymoczko, J.; Colic, V.; Bandarenka, A. S.; Schuhmann, W. Surf. Sci. 2015, 631, 81. doi: 10.1016/j.susc.2014.04.014
-
[69]
Yun, C.; Hwang, S. Int. J. Electrochem. Sci. 2021, 16 (3), 210355. doi: 10.20964/2021.03.50
-
[70]
Bandarenka, A. S. Analyst 2013, 138 (19), 5540. doi: 10.1039/C3AN00791J
-
[71]
Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F. J.; Brock, Joel. D.; et al. ACS Catal. 2021, 11 (3), 1136. doi: 10.1021/acscatal.0c04789
-
[72]
Ji, Y.; Yin, Z. W.; Yang, Z.; Deng, Y. P.; Chen, H.; Lin, C.; Yang, L.; Yang, K.; Zhang, M.; Xiao, Q.; et al. Chem. Soc. Rev. 2021, 50 (19), 10743. doi: 10.1039/D1CS00629K
-
[73]
Łukaszewski, M.; Siwek, H.; Czerwiński, A. J. Solid State Electrochem. 2010, 14 (7), 1279. doi: 10.1007/s10008-009-0926-y
-
[74]
Bockris, J. O.; Gamboa-Aldeco, M.; Szklarczyk, M. J. Electroanal. Chem. 1992, 339 (1), 355. doi: 10.1016/0022-0728(92)80463-E
-
[75]
Su, H. S.; Chang, X. X.; Xu, B. J. Chinese J. Catal. 2022, 43 (11), 2757. doi: 10.1016/S1872-2067(22)64157-3
-
[76]
Jiang, Z.; Zhang, Q.; Liang, Z. X.; Chen, J. G. G. Appl. Catal. B Environ. 2018, 234, 329. doi: 10.1016/j.apcatb.2018.04.052
-
[77]
Zhu, S. Q; Jiang, B.; Cai, W. B.; Shao, M. H. J. Am. Chem. Soc. 2017, 139 (44), 15664. doi: 10.1021/jacs.7b10462
-
[78]
Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; Guo, J. J.; Myrthil, N.; Lopez, S. A.; Kendrick, I.; Mukerjee, S.; Ma, L.; et al. Nat. Energy 2023, 8 (8), 859. doi: 10.1038/s41560-023-01302-y
-
[79]
Wu, J. X.; Li, J. L.; Li, Y. F.; Ma, X. Y.; Zhang, W. Y.; Hao, Y. M.; Cai, W. B.; Liu, Z. P.; Gong, M. Angew. Chem. Int. Ed. 2022, 61 (11), e202113362. doi: 10.1002/anie.202113362
-
[80]
Yang, K. L.; Kas, R.; Smith, W. A. J. Am. Chem. Soc. 2019, 141 (40), 15891. doi: 10.1021/jacs.9b07000.
-
[81]
Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. ACS Catal. 2017, 7, 2033. doi: 10.1021/acscatal.6b03108
-
[82]
Liu, T.; Chen, Y. X.; Hao, Y. M.; Wu, J. X.; Wang, R.; Gu, L. M.; Yang, X. J.; Yang, Q.; Lian, C.; Liu, H. L.; Gong, M. Chem 2022, 8 (10), 2700. doi: 10.1016/j.chempr.2022.06.012
-
[83]
Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Nature 2010, 464 (7287), 392. doi: 10.1038/nature08907
-
[84]
Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551
-
[85]
Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. J. Am. Chem. Soc. 2021, 143, 1493. doi: 10.1021/jacs.0c11307
-
[86]
Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867
-
[87]
Xu, Z. Z.; Liang, Z. B.; Guo, W. H.; Zou, R. Q. Coordin. Chem. Rev. 2021, 436, 213824. doi: 10.1016/j.ccr.2021.213824
-
[88]
Wang, Y. H.; Zheng, S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600 (7887), 81. doi: 10.1038/s41586-021-04068-z
-
[89]
Bhattacharyya, D.; E. Videla, P.; Cattaneo, M.; S. Batista, V.; Lian, T.; P. Kubiak, C. Chem. Sci. 2021, 12 (30), 10131. doi: 10.1039/D1SC01876K
-
[90]
Chang, X. X.; Xiong, H. C.; Xu, Y. F.; Zhao, Y. R.; Xu, B. J. Catal. Sci. Technol., 2021, 11, 6825. doi: 10.1039/D1CY01090E
-
[91]
Yang, L. J.; Zhang, W. K.; Bian, H. T.; Ma, G. Biointerphases 2022, 17 (5), 051201. doi: 10.1116/6.0002007
-
[92]
Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Angew. Chem. Int. Ed. 2019, 58 (44), 15895. doi: 10.1002/anie.201908722
-
[93]
Ge, A.; Rudshteyn, B.; Videla, P. E.; Miller, C. J.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. Acc. Chem. Res. 2019, 52 (5), 1289. doi: 10.1021/acs.accounts.9b00001
-
[94]
Bhattacharyya, D.; Videla, P. E.; Palasz, J. M.; Tangen, I.; Meng, J. H.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. J. Am. Chem. Soc. 2022, 144 (31), 14330. doi: 10.1021/jacs.2c05563
-
[95]
Xu, P. T.; von Rueden, A. D.; Schimmenti, R.; Mavrikakis, M.; Suntivich, J. Nat. Mater. 2023, 22 (4), 503. doi: 10.1038/s41563-023-01474-8
-
[96]
Harlow, G. S.; Lundgren, E.; Escudero-Escribano, M. Curr. Opin. Electrochem. 2020, 23, 162. doi: 10.1016/j.coelec.2020.08.005
-
[97]
Hung, S. F. Pure Appl. Chem. 2020, 92 (5), 733. doi: 10.1515/pac-2019-1006
-
[98]
Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Nat. Commun. 2016, 7 (1), 12695. doi: 10.1038/ncomms12695
-
[99]
Wang, Y. Q.; Skaanvik, S. A.; Xiong, X. Y.; Wang, S. Y.; Dong, M. D. Matter 2021, 4 (11), 3483. doi: 10.1016/j.matt.2021.09.024
-
[100]
Santos, C. S.; Jaato, B. N.; Sanjuán, I.; Schuhmann, W.; Andronescu, C. Chem. Rev. 2023, 123 (8), 4972. doi: 10.1021/acs.chemrev.2c00766
-
[101]
Liang, Y. C.; Pfisterer, J. H. K.; McLaughlin, D.; Csoklich, C.; Seidl, L.; Bandarenka, A. S.; Schneider, O. Small Methods 2019, 3 (8), 1800387. doi: 10.1002/smtd.201800387
-
[102]
Bae, S. E.; Stewart, K. L.; Gewirth, A. A. J. Am. Chem. Soc. 2007, 129 (33), 10171. doi: 10.1021/ja071330n
-
[103]
Tong, L.; Yu, Z.; Gao, Y. J.; Li, X. C.; Zheng, J. F.; Shao, Y.; Wang, Y. H.; Zhou, X. S. Nat. Commun. 2023, 14 (1), 3397. doi: 10.1038/s41467-023-39206-w
-
[104]
Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev. 2016, 116 (22), 13234. doi: 10.1021/acs.chemrev.6b00067
-
[105]
Barman, K.; Askarova, G.; Jia, R.; Hu, G. X.; Mirkin, M. V. J. Am. Chem. Soc. 2023, 145 (10), 5786. doi: 10.1021/jacs.2c12775
-
[106]
Monteiro, M. C. O.; Jacobse, L.; Touzalin, T.; Koper, M. T. M. Anal. Chem. 2020, 92 (2), 2237. doi: 10.1021/acs.analchem.9b04952
-
[107]
Kim, D.; Yu, S.; Zheng, F.; Roh, I.; Li, Y. F.; Louisia, S.; Qi, Z. Y.; Somorjai, G. A.; Frei, H.; Wang, L. W. W.; et al. Nat. Energy 2020, 5 (12), 1032. doi: 10.1038/s41560-020-00730-4
-
[108]
Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W.; et al. Nat. Commun. 2023, 14 (1), 997. doi: 10.1038/s41467-023-36718-3
-
[109]
Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; Handoko, A. D.; Teh, W. J.; Zheng, Y.; Khoo, Z. H. J.; Lin, M.; Isaacs, M.; Tam, T. L. D.; et al. Nat. Commun. 2023, 14 (1), 335. doi: 10.1038/s41467-023-35912-7
-
[110]
Wang, T.; Zhang, Y. R.; Huang, B. T.; Cai, B.; Rao, R. R.; Giordano, L.; Sun, S. G.; Shao-Horn, Y. Nat. Catal. 2021, 4 (9), 753. doi: 10.1038/s41929-021-00668-0
-
[111]
Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F.; et al. Adv. Mater. 2022, 34 (18), 2200270. doi: 10.1002/adma.202200270
-
[112]
Li, F. W.; Li, Y. G. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F.; et al. Nat. Catal. 2020, 3 (1), 75. doi: 10.1038/s41929-019-0383-7
-
[113]
Omura, J.; Yano, H.; Watanabe, M.; Uchida, H. Langmuir 2011, 27 (10), 6464. doi: 10.1021/la200694a
-
[114]
Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Nat. Catal. 2021, 4 (8), 654. doi: 10.1038/s41929-021-00655-5
-
[115]
Monteiro, M. C. O.; Dattila, F.; López, N.; Koper, M. T. M. J. Am. Chem. Soc. 2022, 144 (4), 1589. doi: 10.1021/jacs.1c10171
-
[116]
Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Energy Environ. Sci. 2019, 12 (10), 3001. doi: 10.1039/C9EE01341E
-
[117]
Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139 (32), 11277. doi: 10.1021/jacs.7b06765
-
[118]
Malkani, A. S.; Li, J.; Oliveira, N. J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Sci. Adv. 2020, 6 (45), eabd2569. doi: 10.1126/sciadv.abd2569
-
[119]
Zhao, Y.; Xu, J. P.; Huang, K.; Ge, W. X.; Liu, Z.; Lian, C.; Liu, H. L.; Jiang, H. L.; Li, C. Z. J. Am. Chem. Soc. 2023, 145 (11), 6516. doi: 10.1021/jacs.3c00565
-
[120]
Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Nat. Mater. 2020, 19 (3), 266. doi: 10.1038/s41563-020-0610-2
-
[1]
-
-
-
[1]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[2]
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
-
[3]
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
-
[4]
Tongtong Zhao , Yan Wang , Shiyue Qin , Liang Xu , Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003
-
[5]
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
-
[6]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[7]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[8]
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
-
[9]
Xi Xu , Chaokai Zhu , Leiqing Cao , Zhuozhao Wu , Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039
-
[10]
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
-
[11]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[12]
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
-
[13]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[14]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[15]
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
-
[16]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[17]
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
-
[18]
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
-
[19]
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
-
[20]
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(21)
- HTML views(0)