Citation: Xueting Cao,  Shuangshuang Cha,  Ming Gong. 电催化反应中的界面双电层:理论、表征与应用[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100041. doi: 10.1016/j.actphy.2024.100041 shu

电催化反应中的界面双电层:理论、表征与应用

  • Received Date: 25 October 2024
    Revised Date: 18 November 2024
    Accepted Date: 19 November 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (22172036) and the Fundamental Research Funds for the Central Universities (20720220011).

  • 界面双电层是电催化反应的核心区域。催化剂表面原子、反应物、中间体、产物、溶剂分子和离子等组分,共同构成了复杂的动态反应网络。这种特殊的组成和结构赋予界面双电层以特殊的性质,深刻地影响了电催化反应的路径与结果。本文将以电催化反应中的双电层为主要研究对象,围绕双电层理论模型及其历史沿革、双电层的实验表征方法和双电层对电催化反应的影响这三个方面,以若干电催化反应前沿研究为例,阐述双电层与电催化反应之间的关联,并介绍一些特定情形下电催化双电层研究的研究方法和研究逻辑。
  • 加载中
    1. [1]

      Shao, Y. Y.; Markovic, N. M. Nano Energy 2016, 29, 1. doi: 10.1016/j.nanoen.2016.09.025

    2. [2]

      Steinmann, S. N.; Seh, Z. W. Nat. Rev. Mater. 2021, 6 (4), 289. doi: 10.1038/s41578-021-00303-1

    3. [3]

      Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 771-775.

    4. [4]

      Xu, Y. F.; Yang, H.; Chang, X. X.; Xu, B. J. Acta Phys. -Chim. Sin. 2023, 39, 2210025.

    5. [5]

      Elliott, J. D.; Papaderakis, A. A.; Dryfe, R. A. W.; Carbone, P. J. Mater. Chem. C 2022, 10 (41), 15225. doi: 10.1039/D2TC01631A

    6. [6]

      Ivanov, V. D. J. Solid State Electrochem. 2024, 28, 2487. doi: 10.1007/s10008-024-05850-5

    7. [7]

      Gouy, G. J. Physique 1910, 9, 457. doi: 10.1051/jphystap:019100090045700

    8. [8]

      Chapman, D. L. Phil. Mag. 1913, 25, 475. doi: 10.1080/14786440408634187

    9. [9]

      Stern, H. O. Z. Electrochem. 1924, 30, 508. doi: 10.1002/bbpc.192400182

    10. [10]

      Grahame, D. C. Chem. Rev. 1947, 41 (3), 441. doi: 10.1021/cr60130a002

    11. [11]

      Hou, J. J.; Xu, B. J.; Lu, Q. Nat. Commun. 2024, 15 (1), 1926. doi: 10.1038/s41467-024-46318-4

    12. [12]

      Boettcher, S. W.; Surendranath, Y. Nat. Catal. 2021, 4 (1), 4. doi: 10.1038/s41929-020-00570-1

    13. [13]

      Lyu, D. Y.; Xu, J. C.; Wang, Z. Y. Front. Chem. 2023, 11, 1231886. doi: 10.3389/fchem.2023.1231886

    14. [14]

      Fawcett, W. R. J. Solid State Electrochem. 2011, 15 (7-8), 1347. doi: 10.1007/s10008-011-1337-4

    15. [15]

      Timmer, B.; Sluyters-Rehbach, M.; Sluyters, J. H. Surf. Sci. 1969, 18 (1), 44. doi: 10.1016/0039-6028(69)90266-0

    16. [16]

      Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 933-959, 1190-1201.

    17. [17]

      Chen, S.; Liu, Y.; Chen, J. Chem. Soc. Rev. 2014, 43 (15), 5372. doi: 10.1039/C4CS00087K

    18. [18]

      Wu, J. X.; Wang, R.; Kang, Y. K.; Li, J. L.; Hao, Y. M.; Li, Y. F.; Liu, Z. P.; Gong, M. Angew Chem. Int, Ed. 2024, 63 (22), e202403466. doi: 10.1002/anie.202403466

    19. [19]

      Bikerman J. J. Lond. Edinb. Phil. Mag. 1942, 33 (220), 384. doi: 10.1080/14786444208520813

    20. [20]

      Webb, T. J. J. Am. Chem. Soc. 1926, 48 (10), 2589. doi: 10.1021/ja01421a013

    21. [21]

      Conway, B. E.; Bockris, J. O’. M.; Ammar, I. A. Trans. Faraday Soc. 1951, 47, 756. doi: 10.1039/tf9514700756

    22. [22]

      Bockris, J. O’. M.; Devanathan, M. A. V.; Müller, K.; Butler, J. A. V. Proc. R. Soc. Lond. A 1963, 274 (1356), 55. doi: 10.1098/rspa.1963.0114

    23. [23]

      Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 895-919.

    24. [24]

      Li, P.; Jiang, Y. L.; Hu, Y. C.; Men, Y. N.; Liu, Y. W.; Cai, W. B.; Chen, S. L. Nat. Catal. 2022, 5 (10), 900. doi: 10.1038/s41929-022-00846-8

    25. [25]

      Gonella, G.; Backus, E. H. G.; Nagata, Y.; Bonthuis, D. J.; Loche, P.; Schlaich, A.; Netz, R. R.; Kühnle, A.; McCrum, I. T.; Koper, M. T. M.; et al. Nat. Rev. Chem. 2021, 5 (7), 466. doi: 10.1038/s41570-021-00293-2

    26. [26]

      Wang, Q.; Qu, Z. G.; Tian, D. Adv. Energy Mater. 2024, 2402974. doi: 10.1002/aenm.202402974

    27. [27]

      Zhang, L. L.; Li, C. K.; Huang, J. J. Electrochem. 2022, 28 (2), 2108471.

    28. [28]

      Horng, T. L.; Tsai, P. H.; Lin, T. C. Comput. Math. Biophys. 2017, 5 (1), 142. doi: 10.1515/mlbmb-2017-0010

    29. [29]

      Blum, L. Mol. Phys. 1975, 30 (5), 1529. doi: 10.1080/00268977500103051

    30. [30]

      Outhwaite, C. W.; Bhuiyan, L. B.; Levine, S. J. Chem. Soc. Faraday Trans. 2 1980, 76, 1388. doi: 10.1039/F29807601388

    31. [31]

      Lück, J.; Latz, A. Phys. Chem. Chem. Phys. 2018, 20 (44), 27804. doi: 10.1039/C8CP05113E

    32. [32]

      Drude, P. Ann. Phys. 1900, 306, 566. doi: 10.1002/andp.19003060312

    33. [33]

      Schmickler, W.; Henderson, D. J. Chem. Phys. 1984, 80 (7), 3381. doi: 10.1063/1.447092

    34. [34]

      Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 919-968.

    35. [35]

      Petrii, O. A. Electrochim. Acta 1996, 41 (14), 2307. doi: 10.1016/0013-4686(96)00060-6

    36. [36]

      Wang, Z. Y.; Chen, J.; Ni, C. W.; Nie, W.; Li, D. F.; Ta, N.; Zhang, D. Y.; Sun, Y. M.; Sun, F. S.; Li, Q.; et al. Natl. Sci. Rev. 2023, 10 (9), nwad166. doi: 10.1093/nsr/nwad166

    37. [37]

      Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Science 2006, 313 (5794), 1760. doi: 10.1126/science.1132195

    38. [38]

      Schmickler, W. J. Solid State Electrochem. 2020, 24 (9), 2175. doi: 10.1007/s10008-020-04597-z

    39. [39]

      Fang, Y. H.; Liu, Z. P. Chin. J. Catal. 2019, 40 (s1), 90.

    40. [40]

      Fang, Y. H.; Liu, Z. P. J. Electrochem. 2020, 26 (1), 32.

    41. [41]

      Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. J. Phys. Chem. B 2004, 108 (46), 17886. doi: 10.1021/jp047349j

    42. [42]

      Masood, Z.; Ge, Q. F. J. Phys. Chem. C 2023, 127 (48), 23170. doi: 10.1021/acs.jpcc.3c03796

    43. [43]

      Zhang, X.; Zhou, Z. J. Phys. Chem. C 2022, 126 (8), 3820. doi: 10.1021/acs.jpcc.1c10870

    44. [44]

      Hu, X.; Chen, S.; Chen, L.; Tian, Y.; Yao, S.; Lu, Z.; Zhang, X.; Zhou, Z. J. Am. Chem. Soc. 2022, 144 (39), 18144. doi: 10.1021/jacs.2c08743

    45. [45]

      Chan, K.; Nørskov, J. K. J. Phys. Chem. Lett. 2015, 6 (14), 2663. doi: 10.1021/acs.jpclett.5b01043

    46. [46]

      Jaugstetter, M.; Blanc, N.; Kratz, M.; Tschulik, K. Chem. Soc. Rev. 2022, 51 (7), 2491. doi: 10.1039/D1CS00789K

    47. [47]

      Zhang, D.; Li, Hao. J. Mater. Chem. A, 2024, 12, 13742. doi: 10.1039/D4TA02285H

    48. [48]

      Li, P.; Jiao. Y. Z.; Huang, J.; Chen, S. L. JACS Au 2023, 3(10), 2640. doi: 10.1021/jacsau.3c00410

    49. [49]

      Hu, X.; Yao, S.; Chen, L. T.; Zhang, X.; Jiao, M. G.; Lu, Z. Y; Zhou, Z. J. Mater. Chem. A 2021, 9, 23515. doi: 10.1039/D1TA07791K

    50. [50]

      Agrawal, A.; Choudhary, A. APL Mater. 2016, 4 (5), 053208. doi: 10.1063/1.4946894

    51. [51]

      Huang, S. D.; Shang, C.; Kang, P. L.; Zhang, X. J.; Liu, Z. P. WIREs Comput. Mol. Sci. 2019, 9, e1415. doi: 10.1002/wcms.1415

    52. [52]

      Naserifar, S.; Chen, Y. L.; Kwon, S.; Xiao, H.; Goddard, W. A. Matter 2021, 4 (1), 195. doi: 10.1016/j.matt.2020.11.010

    53. [53]

      Schlüter, N.; Novák, P.; Schröder, D. Adv. Energy Mater. 2022, 12 (21), 2200708. doi: 10.1002/aenm.202200708

    54. [54]

      Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 156-417.

    55. [55]

      Zhang, J. Q. Electrochemical Measurement Technology, 1st ed.; Chemical Industry Press: Beijing, 2010; pp. 73-300.

    56. [56]

      Scholz, F. ChemTexts 2015, 1 (4), 17. doi: 10.1007/s40828-015-0016-y

    57. [57]

      Bockris, J. O’. M.; Reddy, A. K. N.; Gamboa-Aldeco, M. Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd ed.; Kluwer Academic Publishers: New York, NY, USA, 2000; pp. 859-869.

    58. [58]

      Beck, T. R. J. Phys. Chem. 1969, 73 (2), 466. doi: 10.1021/j100722a045

    59. [59]

      Fredlein, R. A.; Damjanovic, A.; Bockris, J. O’. M. Surf. Sci. 1971, 25 (2), 261. doi: 10.1016/0039-6028(71)90246-9

    60. [60]

      Hamm, U. W.; Kramer, D.; Zhai, R. S.; Kolb, D. M. J. Electroanal. Chem. 1996, 414 (1), 85. doi: 10.1016/0022-0728(96)01006-6

    61. [61]

      Bond, A. M.; Duffy, N. W.; Guo, S. X.; Zhang, J.; Elton, D. Anal. Chem. 2005, 77 (9), 186 A. doi: 10.1021/ac053370k

    62. [62]

      Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2018, 122 (22), 11777. doi: 10.1021/acs.jpcc.8b00272

    63. [63]

      Ojha, K.; Arulmozhi, N.; Aranzales, D.; Koper, M. T. M. Angew. Chem. Int. Ed. 2020, 59 (2), 711. doi: 10.1002/anie.201911929

    64. [64]

      Lertanantawong, B.; O’Mullane, A. P.; Surareungchai, W.; Somasundrum, M.; Burke, L. D.; Bond, A. M. Langmuir 2008, 24 (6), 2856. doi: 10.1021/la702454k

    65. [65]

      Lucio, A. J.; Shaw, S. K.; Zhang, J.; Bond, A. M. J. Phys. Chem. C 2017, 121 (22), 12136. doi: 10.1021/acs.jpcc.7b00287

    66. [66]

      Pettit, C. M.; Goonetilleke, P. C.; Roy, D. J. Electroanal. Chem. 2006, 589 (2), 219. doi: 10.1016/j.jelechem.2006.02.012

    67. [67]

      Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2001; pp. 537-544.

    68. [68]

      Tymoczko, J.; Colic, V.; Bandarenka, A. S.; Schuhmann, W. Surf. Sci. 2015, 631, 81. doi: 10.1016/j.susc.2014.04.014

    69. [69]

      Yun, C.; Hwang, S. Int. J. Electrochem. Sci. 2021, 16 (3), 210355. doi: 10.20964/2021.03.50

    70. [70]

      Bandarenka, A. S. Analyst 2013, 138 (19), 5540. doi: 10.1039/C3AN00791J

    71. [71]

      Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F. J.; Brock, Joel. D.; et al. ACS Catal. 2021, 11 (3), 1136. doi: 10.1021/acscatal.0c04789

    72. [72]

      Ji, Y.; Yin, Z. W.; Yang, Z.; Deng, Y. P.; Chen, H.; Lin, C.; Yang, L.; Yang, K.; Zhang, M.; Xiao, Q.; et al. Chem. Soc. Rev. 2021, 50 (19), 10743. doi: 10.1039/D1CS00629K

    73. [73]

      Łukaszewski, M.; Siwek, H.; Czerwiński, A. J. Solid State Electrochem. 2010, 14 (7), 1279. doi: 10.1007/s10008-009-0926-y

    74. [74]

      Bockris, J. O.; Gamboa-Aldeco, M.; Szklarczyk, M. J. Electroanal. Chem. 1992, 339 (1), 355. doi: 10.1016/0022-0728(92)80463-E

    75. [75]

      Su, H. S.; Chang, X. X.; Xu, B. J. Chinese J. Catal. 2022, 43 (11), 2757. doi: 10.1016/S1872-2067(22)64157-3

    76. [76]

      Jiang, Z.; Zhang, Q.; Liang, Z. X.; Chen, J. G. G. Appl. Catal. B Environ. 2018, 234, 329. doi: 10.1016/j.apcatb.2018.04.052

    77. [77]

      Zhu, S. Q; Jiang, B.; Cai, W. B.; Shao, M. H. J. Am. Chem. Soc. 2017, 139 (44), 15664. doi: 10.1021/jacs.7b10462

    78. [78]

      Sun, Q.; Oliveira, N. J.; Kwon, S.; Tyukhtenko, S.; Guo, J. J.; Myrthil, N.; Lopez, S. A.; Kendrick, I.; Mukerjee, S.; Ma, L.; et al. Nat. Energy 2023, 8 (8), 859. doi: 10.1038/s41560-023-01302-y

    79. [79]

      Wu, J. X.; Li, J. L.; Li, Y. F.; Ma, X. Y.; Zhang, W. Y.; Hao, Y. M.; Cai, W. B.; Liu, Z. P.; Gong, M. Angew. Chem. Int. Ed. 2022, 61 (11), e202113362. doi: 10.1002/anie.202113362

    80. [80]

      Yang, K. L.; Kas, R.; Smith, W. A. J. Am. Chem. Soc. 2019, 141 (40), 15891. doi: 10.1021/jacs.9b07000.

    81. [81]

      Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. ACS Catal. 2017, 7, 2033. doi: 10.1021/acscatal.6b03108

    82. [82]

      Liu, T.; Chen, Y. X.; Hao, Y. M.; Wu, J. X.; Wang, R.; Gu, L. M.; Yang, X. J.; Yang, Q.; Lian, C.; Liu, H. L.; Gong, M. Chem 2022, 8 (10), 2700. doi: 10.1016/j.chempr.2022.06.012

    83. [83]

      Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; et al. Nature 2010, 464 (7287), 392. doi: 10.1038/nature08907

    84. [84]

      Cho, K. H.; Park, S.; Seo, H.; Choi, S.; Lee, M. Y.; Ko, C.; Nam, K. T. Angew. Chem. Int. Ed. 2021, 60, 4673. doi: 10.1002/anie.202014551

    85. [85]

      Hao, Y. M.; Li, Y. F.; Wu, J. X.; Meng, L. S.; Wang, J. L.; Jia, C. L.; Liu, T.; Yang, X. J.; Liu, Z. P.; Gong, M. J. Am. Chem. Soc. 2021, 143, 1493. doi: 10.1021/jacs.0c11307

    86. [86]

      Moysiadou, A.; Lee, S.; Hsu, C. S.; Chen, H. M.; Hu, X. L. J. Am. Chem. Soc. 2020, 142, 11901. doi: 10.1021/jacs.0c04867

    87. [87]

      Xu, Z. Z.; Liang, Z. B.; Guo, W. H.; Zou, R. Q. Coordin. Chem. Rev. 2021, 436, 213824. doi: 10.1016/j.ccr.2021.213824

    88. [88]

      Wang, Y. H.; Zheng, S.; Yang, W. M.; Zhou, R. Y.; He, Q. F.; Radjenovic, P.; Dong, J. C.; Li, S.; Zheng, J.; Yang, Z. L.; et al. Nature 2021, 600 (7887), 81. doi: 10.1038/s41586-021-04068-z

    89. [89]

      Bhattacharyya, D.; E. Videla, P.; Cattaneo, M.; S. Batista, V.; Lian, T.; P. Kubiak, C. Chem. Sci. 2021, 12 (30), 10131. doi: 10.1039/D1SC01876K

    90. [90]

      Chang, X. X.; Xiong, H. C.; Xu, Y. F.; Zhao, Y. R.; Xu, B. J. Catal. Sci. Technol., 2021, 11, 6825. doi: 10.1039/D1CY01090E

    91. [91]

      Yang, L. J.; Zhang, W. K.; Bian, H. T.; Ma, G. Biointerphases 2022, 17 (5), 051201. doi: 10.1116/6.0002007

    92. [92]

      Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Angew. Chem. Int. Ed. 2019, 58 (44), 15895. doi: 10.1002/anie.201908722

    93. [93]

      Ge, A.; Rudshteyn, B.; Videla, P. E.; Miller, C. J.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. Acc. Chem. Res. 2019, 52 (5), 1289. doi: 10.1021/acs.accounts.9b00001

    94. [94]

      Bhattacharyya, D.; Videla, P. E.; Palasz, J. M.; Tangen, I.; Meng, J. H.; Kubiak, C. P.; Batista, V. S.; Lian, T. Q. J. Am. Chem. Soc. 2022, 144 (31), 14330. doi: 10.1021/jacs.2c05563

    95. [95]

      Xu, P. T.; von Rueden, A. D.; Schimmenti, R.; Mavrikakis, M.; Suntivich, J. Nat. Mater. 2023, 22 (4), 503. doi: 10.1038/s41563-023-01474-8

    96. [96]

      Harlow, G. S.; Lundgren, E.; Escudero-Escribano, M. Curr. Opin. Electrochem. 2020, 23, 162. doi: 10.1016/j.coelec.2020.08.005

    97. [97]

      Hung, S. F. Pure Appl. Chem. 2020, 92 (5), 733. doi: 10.1515/pac-2019-1006

    98. [98]

      Favaro, M.; Jeong, B.; Ross, P. N.; Yano, J.; Hussain, Z.; Liu, Z.; Crumlin, E. J. Nat. Commun. 2016, 7 (1), 12695. doi: 10.1038/ncomms12695

    99. [99]

      Wang, Y. Q.; Skaanvik, S. A.; Xiong, X. Y.; Wang, S. Y.; Dong, M. D. Matter 2021, 4 (11), 3483. doi: 10.1016/j.matt.2021.09.024

    100. [100]

      Santos, C. S.; Jaato, B. N.; Sanjuán, I.; Schuhmann, W.; Andronescu, C. Chem. Rev. 2023, 123 (8), 4972. doi: 10.1021/acs.chemrev.2c00766

    101. [101]

      Liang, Y. C.; Pfisterer, J. H. K.; McLaughlin, D.; Csoklich, C.; Seidl, L.; Bandarenka, A. S.; Schneider, O. Small Methods 2019, 3 (8), 1800387. doi: 10.1002/smtd.201800387

    102. [102]

      Bae, S. E.; Stewart, K. L.; Gewirth, A. A. J. Am. Chem. Soc. 2007, 129 (33), 10171. doi: 10.1021/ja071330n

    103. [103]

      Tong, L.; Yu, Z.; Gao, Y. J.; Li, X. C.; Zheng, J. F.; Shao, Y.; Wang, Y. H.; Zhou, X. S. Nat. Commun. 2023, 14 (1), 3397. doi: 10.1038/s41467-023-39206-w

    104. [104]

      Polcari, D.; Dauphin-Ducharme, P.; Mauzeroll, J. Chem. Rev. 2016, 116 (22), 13234. doi: 10.1021/acs.chemrev.6b00067

    105. [105]

      Barman, K.; Askarova, G.; Jia, R.; Hu, G. X.; Mirkin, M. V. J. Am. Chem. Soc. 2023, 145 (10), 5786. doi: 10.1021/jacs.2c12775

    106. [106]

      Monteiro, M. C. O.; Jacobse, L.; Touzalin, T.; Koper, M. T. M. Anal. Chem. 2020, 92 (2), 2237. doi: 10.1021/acs.analchem.9b04952

    107. [107]

      Kim, D.; Yu, S.; Zheng, F.; Roh, I.; Li, Y. F.; Louisia, S.; Qi, Z. Y.; Somorjai, G. A.; Frei, H.; Wang, L. W. W.; et al. Nat. Energy 2020, 5 (12), 1032. doi: 10.1038/s41560-020-00730-4

    108. [108]

      Wu, Q. B.; Liang, J. W.; Xiao, M. J.; Long, C.; Li, L.; Zeng, Z. H.; Mavrič, A.; Zheng, X.; Zhu, J.; Liang, H. W.; et al. Nat. Commun. 2023, 14 (1), 997. doi: 10.1038/s41467-023-36718-3

    109. [109]

      Lim, C. Y. J.; Yilmaz, M.; Arce-Ramos, J. M.; Handoko, A. D.; Teh, W. J.; Zheng, Y.; Khoo, Z. H. J.; Lin, M.; Isaacs, M.; Tam, T. L. D.; et al. Nat. Commun. 2023, 14 (1), 335. doi: 10.1038/s41467-023-35912-7

    110. [110]

      Wang, T.; Zhang, Y. R.; Huang, B. T.; Cai, B.; Rao, R. R.; Giordano, L.; Sun, S. G.; Shao-Horn, Y. Nat. Catal. 2021, 4 (9), 753. doi: 10.1038/s41929-021-00668-0

    111. [111]

      Huang, W. Z.; Li, J. T.; Liao, X. B.; Lu, R. H.; Ling, C. H.; Liu, X.; Meng, J. S.; Qu, L. B.; Lin, M. T.; Hong, X. F.; et al. Adv. Mater. 2022, 34 (18), 2200270. doi: 10.1002/adma.202200270

    112. [112]

      Li, F. W.; Li, Y. G. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F.; et al. Nat. Catal. 2020, 3 (1), 75. doi: 10.1038/s41929-019-0383-7

    113. [113]

      Omura, J.; Yano, H.; Watanabe, M.; Uchida, H. Langmuir 2011, 27 (10), 6464. doi: 10.1021/la200694a

    114. [114]

      Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Nat. Catal. 2021, 4 (8), 654. doi: 10.1038/s41929-021-00655-5

    115. [115]

      Monteiro, M. C. O.; Dattila, F.; López, N.; Koper, M. T. M. J. Am. Chem. Soc. 2022, 144 (4), 1589. doi: 10.1021/jacs.1c10171

    116. [116]

      Ringe, S.; Clark, E. L.; Resasco, J.; Walton, A.; Seger, B.; Bell, A. T.; Chan, K. Energy Environ. Sci. 2019, 12 (10), 3001. doi: 10.1039/C9EE01341E

    117. [117]

      Resasco, J.; Chen, L. D.; Clark, E.; Tsai, C.; Hahn, C.; Jaramillo, T. F.; Chan, K.; Bell, A. T. J. Am. Chem. Soc. 2017, 139 (32), 11277. doi: 10.1021/jacs.7b06765

    118. [118]

      Malkani, A. S.; Li, J.; Oliveira, N. J.; He, M.; Chang, X.; Xu, B.; Lu, Q. Sci. Adv. 2020, 6 (45), eabd2569. doi: 10.1126/sciadv.abd2569

    119. [119]

      Zhao, Y.; Xu, J. P.; Huang, K.; Ge, W. X.; Liu, Z.; Lian, C.; Liu, H. L.; Jiang, H. L.; Li, C. Z. J. Am. Chem. Soc. 2023, 145 (11), 6516. doi: 10.1021/jacs.3c00565

    120. [120]

      Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Nat. Mater. 2020, 19 (3), 266. doi: 10.1038/s41563-020-0610-2

  • 加载中
    1. [1]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    6. [6]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    7. [7]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    8. [8]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    9. [9]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    10. [10]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    18. [18]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

Metrics
  • PDF Downloads(0)
  • Abstract views(21)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return