Citation: Lingbang Qiu,  Jiangmin Jiang,  Libo Wang,  Lang Bai,  Fei Zhou,  Gaoyu Zhou,  Quanchao Zhuang,  Yanhua Cui. 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制[J]. Acta Physico-Chimica Sinica, ;2025, 41(5): 100040. doi: 10.1016/j.actphy.2024.100040 shu

原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制

  • Received Date: 5 November 2024
    Revised Date: 6 December 2024
    Accepted Date: 6 December 2024

    Fund Project: The project was supported by the National Natural Science Foundation of China (U2030206, 22209204), and the Natural Science Foundation of Jiangsu Province (BK20221140).

  • 热电池作为一种一次贮备电池,具有高比能、高功率密度等优势,然而开发高比容量与高热稳定性的新型正极材料以适应新时期的热电池需求仍然存在巨大的挑战。Wadsley-Roth晶体剪切结构的铌钨氧化物作为锂离子电池负极材料表现出优异的倍率和循环循环性,其中Nb12WO33因内部具有独特的3D隧道,可以为Li+提供快速的脱嵌通道,因而具有优异的储锂性能。鉴于其具有较好的热稳定性及电化学稳定性,本文首次提出将Nb12WO33作为热电池正极材料,并在室温下使用电化学阻抗谱(EIS)来探究材料内部电子电导率阻抗变化规律。研究发现Nb12WO33电极电化学阻抗谱测试的Nyquist图显示在工作平台电位范围内,高、中频区出现了三个圆弧的独特现象,这主要归属于电子在Nb12WO33电极内部的传导,而与电子电导相关的电阻呈现先增大后降低的规律。采用该材料构筑的热电池单体电池在500 °C、500 mA∙g-1的电流密度(截止电压1.5 V)下放电,其具有436.8 mAh∙g-1的高比容量,脉冲放电的平均极化内阻为0.52 Ω。因此,Nb12WO33作为高比容量、高热稳定性热电池的正极材料非常具有潜力,本研究为其他铌钨氧化物作为热电池正极材料的研究开辟了新道路。
  • 加载中
    1. [1]

      Li, R.; Guo, W.; Qian, Y. J. Front. Chem. 2022, 10, 832972. doi: 10.3389/fchem.2022.832972

    2. [2]

      Masset, P.; Guidotti, R. A. J. Power Sources 2007, 164 (1), 397. doi: 10.1016/j.jpowsour.2006.10.080

    3. [3]

      Choi, Y.; Cho, S.; Lee, Y.-S. J. Ind. Eng. Chem. 2014, 20 (5), 3584. doi: 10.1016/j.jiec.2013.12.052

    4. [4]

      Meng, X.; Liu, H.; Bi, S.; Fan, S.; Cao, L.; Yi, T.; Li, X. J. Energy Storage 2024, 78, 109905. doi: 10.1016/j.est.2023.109905

    5. [5]

      Masset, P. J.; Guidotti, R. A. J. Power Sources 2008, 177 (2), 595. doi: 10.1016/j.jpowsour.2007.11.017

    6. [6]

      Jin, C.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Mater. Chem. A 2018, 6 (16), 7123. doi: 10.1039/c8ta00346g

    7. [7]

      Ko, J.; Kang, S.; Cheong, H.-W.; Yoon, Y.-S. J. Korean Ceram. Soc. 2019, 56 (3), 233. doi: 10.4191/kcers.2019.56.3.05

    8. [8]

      Giagloglou, K.; Payne, J. L.; Crouch, C.; Gover, R. K.; Connor, P. A.; Irvine, J. T. J. Electrochem. Soc. 2018, 165 (14), A3510. doi: 10.1149/2.1231814jes

    9. [9]

      Jin, C.; Fu, L.; Ge, B.; Pu, X.; Li, W.; Zhou, L. J. Alloy. Compd. 2019, 800, 518. doi: 10.1016/j.jallcom.2019.06.128

    10. [10]

      Liao, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 463, 228237. doi: 10.1016/j.jpowsour.2020.228237

    11. [11]

      Luo, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 448, 227569. doi: 10.1016/j.jpowsour.2019.227569

    12. [12]

      Guo, S. N.; Guo, H.; Wang, X.; Zhu, Y.; Hu, J.; Yang, M.; Zhao, L.; Wang, J. J. Electrochem. Soc. 2019, 166 (15), A3599. doi: 10.1149/2.0371915jes

    13. [13]

      Xu, C.; Jin, C.; Wang, X.; Gong, X.; Yin, J.; Zhao, L.; Pu, X.; Li, W. Electrochim. Acta 2022, 401, 139496. doi: 10.1016/j.electacta.2021.139496

    14. [14]

      Hillel, T.; Ein-Eli, Y. J. Power Sources 2013, 229, 112. doi: 10.1016/j.jpowsour.2012.11.128

    15. [15]

      Yang, Y.; Zhao, J. Adv. Sci. 2021, 8, 2004855. doi: 10.1002/advs.202004855

    16. [16]

      Roth, R. S.; Waring, J. L. J. Res. Natl. Bur. Stand. A Phys. Chem. 1966, 70A (4), 281. doi: 10.6028/jres.070A.025

    17. [17]

      Cava, R. J.; Murphy, D. W.; Zahurak, S. M. J. Electrochem. Soc. 1983, 130 (12), 2345. doi: 10.1149/1.2119583

    18. [18]

      Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 32. doi: 10.1107/S0365110X65002724

    19. [19]

      Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 38. doi: 10.1107/S0365110X65002736

    20. [20]

      Shen, C.; Jiang, S. N.; Ding, C. M.; Xue, W. S.; Xie, K. Y. T. Nonferr. Metal. Soc. 2022, 32 (11), 3679. doi: 10.1016/S1003-6326(22)66048-5

    21. [21]

      Stephenson, N. C. Acta Crystallogr. B 1968, 24 (5), 637. doi: 10.1107/S0567740868002979

    22. [22]

      Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Nature 2018, 559 (7715), 556. doi: 10.1038/s41586-018-0347-0

    23. [23]

      Yan, L.; Lan, H.; Yu, H.; Qian, S.; Cheng, X.; Long, N.; Zhang, R.; Shui, M.; Shu, J. J. Mater. Chem. A 2017, 5 (19), 8972. doi: 10.1039/C7TA01784G

    24. [24]

      Cheng, Q. L.; Zhang, W. H.; Tao, B. Acta Phys. -Chim. Sin. 2015, 31 (7), 1345.

    25. [25]

      Wei, R. F.; Li, D. F; Yin, H.; Wang, X. L.; Li, C. Acta Phys. -Chim. Sin. 2023, 39 (2), 2207035.

    26. [26]

      Aurbach, D.; Levi, M. D.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R. J. Power Sources 1999, 81, 472. doi: 10.1016/S0378-7753(99)00204-9

    27. [27]

      Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. J. Electrochem. Soc. 1998, 145 (9), 3024. doi: 10.1149/1.1838758

    28. [28]

      Bao, W.; Zhuang, Q.; Xu, S.; Cui, Y.; Shi, Y.; Qiang, Y. Ionics 2013, 19 1005. doi: 10.1007/s11581-012-0823-8

    29. [29]

      Zhuang, Q.-C.; Wei, T.; Du, L.-L.; Cui, Y.-L.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2010, 114 (18), 8614. doi: 10.1021/jp9109157

    30. [30]

      Zhuang, Q.; Xu, J.; Fan, X.; Dong, Q.; Jiang, Y.; Huang, L.; Sun, S. Chinese Sci. Bull. 2007, 52 (9), 1187. doi: 10.1007/s11434-007-0169-1

    31. [31]

      Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41. doi: 10.1016/S0022-0728(03)00144-X

    32. [32]

      Shi, W. Y.; Jia, C.; Zhang, Y. L.; Lü, Z. W.; Han, M. F. Acta Phys. -Chim. Sin. 2019, 35 (5), 509.

    33. [33]

      Cui, T. H.; Li, H. Y.; Lü, Z. W.; Wang, Y. G.; Han, M. F.; Sun, Z. H.; Sun, K. H. Acta Phys. -Chim. Sin. 2022, 38 (8), 2011009.

    34. [34]

      Yang, Y.; Zhu, H.; Xiao, J.; Geng, H.; Zhang, Y.; Zhao, J.; Li, G.; Wang, X.-L.; Li, C. C.; Liu, Q. Adv. Mater. 2020, 32 (12), 1905295. doi: 10.1002/adma.201905295

    35. [35]

      Koçer, C. P.; Griffith, K. J.; Grey, C. P.; Morris, A. J. J. Am. Chem. Soc. 2019, 141 (38), 15121. doi: 10.1021/jacs.9b06316

    36. [36]

      Han, J.-T.; Goodenough, J. B. Chem. Mater. 2011, 23 (15), 3404. doi: 10.1021/cm201515g

    37. [37]

      Lu, X. X.; Dong, S. Y.; Chen, Z. J.; Wu, L. Y.; Zhang, X. G. Acta Phys. -Chim. Sin. 2020, 36 (5), 1906024.

    38. [38]

      Takashima, T.; Tojo, T.; Inada, R.; Sakurai, Y. J. Power Sources 2015, 276, 113. doi: 10.1016/j.jpowsour.2014.11.109

    39. [39]

      Lin, C.; Wang, G.; Lin, S.; Li, J.; Lu, L. Chem. Commun. 2015, 51 (43), 8970. doi: 10.1039/C5CC01494H

    40. [40]

      Yu, H.; Cheng, X.; Zhu, H.; Zheng, R.; Liu, T.; Zhang, J.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2018, 54, 227. doi: 10.1016/j.nanoen.2018.10.025

    41. [41]

      Yu, H.; Zhang, J.; Zheng, R.; Liu, T.; Peng, N.; Yuan, Y.; Liu, Y.; Shu, J.; Wang, Z.-B. Mater. Chem. Front. 2020, 4 (2), 631. doi: 10.1039/C9QM00694J

  • 加载中
    1. [1]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    2. [2]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    5. [5]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    9. [9]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    17. [17]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    20. [20]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return