Citation:
Lingbang Qiu, Jiangmin Jiang, Libo Wang, Lang Bai, Fei Zhou, Gaoyu Zhou, Quanchao Zhuang, Yanhua Cui. 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制[J]. Acta Physico-Chimica Sinica,
;2025, 41(5): 100040.
doi:
10.1016/j.actphy.2024.100040
-
热电池作为一种一次贮备电池,具有高比能、高功率密度等优势,然而开发高比容量与高热稳定性的新型正极材料以适应新时期的热电池需求仍然存在巨大的挑战。Wadsley-Roth晶体剪切结构的铌钨氧化物作为锂离子电池负极材料表现出优异的倍率和循环循环性,其中Nb12WO33因内部具有独特的3D隧道,可以为Li+提供快速的脱嵌通道,因而具有优异的储锂性能。鉴于其具有较好的热稳定性及电化学稳定性,本文首次提出将Nb12WO33作为热电池正极材料,并在室温下使用电化学阻抗谱(EIS)来探究材料内部电子电导率阻抗变化规律。研究发现Nb12WO33电极电化学阻抗谱测试的Nyquist图显示在工作平台电位范围内,高、中频区出现了三个圆弧的独特现象,这主要归属于电子在Nb12WO33电极内部的传导,而与电子电导相关的电阻呈现先增大后降低的规律。采用该材料构筑的热电池单体电池在500 °C、500 mA∙g-1的电流密度(截止电压1.5 V)下放电,其具有436.8 mAh∙g-1的高比容量,脉冲放电的平均极化内阻为0.52 Ω。因此,Nb12WO33作为高比容量、高热稳定性热电池的正极材料非常具有潜力,本研究为其他铌钨氧化物作为热电池正极材料的研究开辟了新道路。
-
-
-
[1]
Li, R.; Guo, W.; Qian, Y. J. Front. Chem. 2022, 10, 832972. doi: 10.3389/fchem.2022.832972
-
[2]
Masset, P.; Guidotti, R. A. J. Power Sources 2007, 164 (1), 397. doi: 10.1016/j.jpowsour.2006.10.080
-
[3]
Choi, Y.; Cho, S.; Lee, Y.-S. J. Ind. Eng. Chem. 2014, 20 (5), 3584. doi: 10.1016/j.jiec.2013.12.052
-
[4]
Meng, X.; Liu, H.; Bi, S.; Fan, S.; Cao, L.; Yi, T.; Li, X. J. Energy Storage 2024, 78, 109905. doi: 10.1016/j.est.2023.109905
-
[5]
Masset, P. J.; Guidotti, R. A. J. Power Sources 2008, 177 (2), 595. doi: 10.1016/j.jpowsour.2007.11.017
-
[6]
Jin, C.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Mater. Chem. A 2018, 6 (16), 7123. doi: 10.1039/c8ta00346g
-
[7]
Ko, J.; Kang, S.; Cheong, H.-W.; Yoon, Y.-S. J. Korean Ceram. Soc. 2019, 56 (3), 233. doi: 10.4191/kcers.2019.56.3.05
-
[8]
Giagloglou, K.; Payne, J. L.; Crouch, C.; Gover, R. K.; Connor, P. A.; Irvine, J. T. J. Electrochem. Soc. 2018, 165 (14), A3510. doi: 10.1149/2.1231814jes
-
[9]
Jin, C.; Fu, L.; Ge, B.; Pu, X.; Li, W.; Zhou, L. J. Alloy. Compd. 2019, 800, 518. doi: 10.1016/j.jallcom.2019.06.128
-
[10]
Liao, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 463, 228237. doi: 10.1016/j.jpowsour.2020.228237
-
[11]
Luo, Z.; Fu, L.; Zhu, J.; Yang, W.; Li, D.; Zhou, L. J. Power Sources 2020, 448, 227569. doi: 10.1016/j.jpowsour.2019.227569
-
[12]
Guo, S. N.; Guo, H.; Wang, X.; Zhu, Y.; Hu, J.; Yang, M.; Zhao, L.; Wang, J. J. Electrochem. Soc. 2019, 166 (15), A3599. doi: 10.1149/2.0371915jes
-
[13]
Xu, C.; Jin, C.; Wang, X.; Gong, X.; Yin, J.; Zhao, L.; Pu, X.; Li, W. Electrochim. Acta 2022, 401, 139496. doi: 10.1016/j.electacta.2021.139496
-
[14]
Hillel, T.; Ein-Eli, Y. J. Power Sources 2013, 229, 112. doi: 10.1016/j.jpowsour.2012.11.128
-
[15]
Yang, Y.; Zhao, J. Adv. Sci. 2021, 8, 2004855. doi: 10.1002/advs.202004855
-
[16]
Roth, R. S.; Waring, J. L. J. Res. Natl. Bur. Stand. A Phys. Chem. 1966, 70A (4), 281. doi: 10.6028/jres.070A.025
-
[17]
Cava, R. J.; Murphy, D. W.; Zahurak, S. M. J. Electrochem. Soc. 1983, 130 (12), 2345. doi: 10.1149/1.2119583
-
[18]
Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 32. doi: 10.1107/S0365110X65002724
-
[19]
Roth, R. S.; Wadsley, A. D. Acta Crystallogr. A 1965, 19 (1), 38. doi: 10.1107/S0365110X65002736
-
[20]
Shen, C.; Jiang, S. N.; Ding, C. M.; Xue, W. S.; Xie, K. Y. T. Nonferr. Metal. Soc. 2022, 32 (11), 3679. doi: 10.1016/S1003-6326(22)66048-5
-
[21]
Stephenson, N. C. Acta Crystallogr. B 1968, 24 (5), 637. doi: 10.1107/S0567740868002979
-
[22]
Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Nature 2018, 559 (7715), 556. doi: 10.1038/s41586-018-0347-0
-
[23]
Yan, L.; Lan, H.; Yu, H.; Qian, S.; Cheng, X.; Long, N.; Zhang, R.; Shui, M.; Shu, J. J. Mater. Chem. A 2017, 5 (19), 8972. doi: 10.1039/C7TA01784G
-
[24]
Cheng, Q. L.; Zhang, W. H.; Tao, B. Acta Phys. -Chim. Sin. 2015, 31 (7), 1345.
-
[25]
Wei, R. F.; Li, D. F; Yin, H.; Wang, X. L.; Li, C. Acta Phys. -Chim. Sin. 2023, 39 (2), 2207035.
-
[26]
Aurbach, D.; Levi, M. D.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R. J. Power Sources 1999, 81, 472. doi: 10.1016/S0378-7753(99)00204-9
-
[27]
Aurbach, D.; Levi, M. D.; Levi, E.; Teller, H.; Markovsky, B.; Salitra, G.; Heider, U.; Heider, L. J. Electrochem. Soc. 1998, 145 (9), 3024. doi: 10.1149/1.1838758
-
[28]
Bao, W.; Zhuang, Q.; Xu, S.; Cui, Y.; Shi, Y.; Qiang, Y. Ionics 2013, 19 1005. doi: 10.1007/s11581-012-0823-8
-
[29]
Zhuang, Q.-C.; Wei, T.; Du, L.-L.; Cui, Y.-L.; Fang, L.; Sun, S.-G. J. Phys. Chem. C 2010, 114 (18), 8614. doi: 10.1021/jp9109157
-
[30]
Zhuang, Q.; Xu, J.; Fan, X.; Dong, Q.; Jiang, Y.; Huang, L.; Sun, S. Chinese Sci. Bull. 2007, 52 (9), 1187. doi: 10.1007/s11434-007-0169-1
-
[31]
Holzapfel, M.; Martinent, A.; Alloin, F.; Le Gorrec, B.; Yazami, R.; Montella, C. J. Electroanal. Chem. 2003, 546, 41. doi: 10.1016/S0022-0728(03)00144-X
-
[32]
Shi, W. Y.; Jia, C.; Zhang, Y. L.; Lü, Z. W.; Han, M. F. Acta Phys. -Chim. Sin. 2019, 35 (5), 509.
-
[33]
Cui, T. H.; Li, H. Y.; Lü, Z. W.; Wang, Y. G.; Han, M. F.; Sun, Z. H.; Sun, K. H. Acta Phys. -Chim. Sin. 2022, 38 (8), 2011009.
-
[34]
Yang, Y.; Zhu, H.; Xiao, J.; Geng, H.; Zhang, Y.; Zhao, J.; Li, G.; Wang, X.-L.; Li, C. C.; Liu, Q. Adv. Mater. 2020, 32 (12), 1905295. doi: 10.1002/adma.201905295
-
[35]
Koçer, C. P.; Griffith, K. J.; Grey, C. P.; Morris, A. J. J. Am. Chem. Soc. 2019, 141 (38), 15121. doi: 10.1021/jacs.9b06316
-
[36]
Han, J.-T.; Goodenough, J. B. Chem. Mater. 2011, 23 (15), 3404. doi: 10.1021/cm201515g
-
[37]
Lu, X. X.; Dong, S. Y.; Chen, Z. J.; Wu, L. Y.; Zhang, X. G. Acta Phys. -Chim. Sin. 2020, 36 (5), 1906024.
-
[38]
Takashima, T.; Tojo, T.; Inada, R.; Sakurai, Y. J. Power Sources 2015, 276, 113. doi: 10.1016/j.jpowsour.2014.11.109
-
[39]
Lin, C.; Wang, G.; Lin, S.; Li, J.; Lu, L. Chem. Commun. 2015, 51 (43), 8970. doi: 10.1039/C5CC01494H
-
[40]
Yu, H.; Cheng, X.; Zhu, H.; Zheng, R.; Liu, T.; Zhang, J.; Shui, M.; Xie, Y.; Shu, J. Nano Energy 2018, 54, 227. doi: 10.1016/j.nanoen.2018.10.025
-
[41]
Yu, H.; Zhang, J.; Zheng, R.; Liu, T.; Peng, N.; Yuan, Y.; Liu, Y.; Shu, J.; Wang, Z.-B. Mater. Chem. Front. 2020, 4 (2), 631. doi: 10.1039/C9QM00694J
-
[1]
-
-
-
[1]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[2]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[3]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[4]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[5]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[6]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[7]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[8]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[9]
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
-
[10]
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
-
[11]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[12]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[13]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[14]
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
-
[15]
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
-
[16]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[17]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[18]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[19]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[20]
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(20)
- HTML views(0)