Citation: Xiao-xing WANG, Yong-hong DUAN, Jun-feng ZHANG, Yi-sheng TAN. Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(5): 538-563. doi: 10.1016/S1872-5813(21)60181-0 shu

Catalytic conversion of CO2 into high value-added hydrocarbons over tandem catalyst

  • Corresponding author: Yong-hong DUAN, duanyh@cpcif.org.cn Yi-sheng TAN, tan@sxicc.ac.cn
  • Received Date: 24 September 2021
    Revised Date: 5 November 2021
    Accepted Date: 5 November 2021
    Available Online: 9 June 2022

Figures(17)

  • The conversion of CO2, an abundant carbon resource, into high value-added chemicals or liquid fuels is an attractive way to mitigate carbon emissions, which is also a sustainable approach for the cyclic utilization of carbon resources. However, the selective activation and controllable conversion of CO2 is challenging because of the inertness of CO2 and high C–C coupling barrier. In recent years, some obvious breakthroughs on CO2 hydrogenation to high value-added chemicals or liquid fuels have been made by construction of a tandem catalytic system. For the tandem catalysis, the matching of Fe-based catalyst or metal oxides and zeolites, the assembly between the two active sites, the pore structure and acidity of the zeolites, as well as the reaction conditions and atmosphere all have important effects on the product distribution. Herein, the critical factors affecting the CO2 activation and conversion and the formation of the target products, as well as the stability over the tandem catalysts are summarized. Finally, an outlook is provided.
  • 加载中
    1. [1]

      SHA F, HAN Z, TANG S, WANG J, LI C. Hydrogenation of carbon dioxide to methanol over non Cu-based heterogeneous catalysts[J]. ChemSusChem,2020,13:6160−6181.

    2. [2]

      CHENG Kang, ZHANG Qing-hong, KANG Jin-can, WANG Ye. The tandem catalysis of CO2 conversion to high value–added chemicals[J]. Sci Sin Chim,2020,50(7):743−755.  doi: 10.1360/SSC-2020-0053

    3. [3]

      BANDO K, SOGA K, KUNIMORI K, ICHIKUNI N, OKABE K, KUSAMA H, SAYAMA K, ARAKAWA H. CO2 hydrogenation activity and surface structure of zeolite-supported Rh catalysts[J]. Appl Catal A: Gen,1998,173(1):47−60.

    4. [4]

      JOO O-S, JUNG K-D, MOON I, ROZOVSKII A, LIN G, HAN S, UHM S. Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE Process) [J]. Ind Eng Chem Res, 1999, 38: 1808–1812.

    5. [5]

      ZHANG Lu-xiang, ZHANG Yong-chun, CHEN Shao-yun. Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol [J]. J Fuel Chem Technol, 2011, 39(12): 912–917.

    6. [6]

      ZHANG L, ZHANG Y, CHEN S. Effect of promoter SiO2, TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation [J]. Appl Catal A: Gen, 2012, 415–416: 118–123.

    7. [7]

      KOIZUMI N, JIANG X, KUGAI J, SONG C. Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis [J]. Catal Today, 2012, 194: 16–24.

    8. [8]

      STUDT F, SHARAFUTDINOV I, ABILD-PEDERSEN F, ELKJÆR C, HUMMELSHØJ J, DAHL S, CHORKENDORFF I, NØRSKOV J. Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol [J]. Nat Chem, 2014, 6: 320–324.

    9. [9]

      XIAO J, MAO D, GUO X, YU J. Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol [J]. Appl Sur Sci, 2015, 338: 146–153.

    10. [10]

      CAI W, DE LA PISCINA P, TOYIR J, HOMS N. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods [J]. Catal Today, 2015, 242: 193–199.

    11. [11]

      KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts [J]. Energy, 1997, 22(2/3): 343–348.

    12. [12]

      KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts [J]. Catal Today, 1996, 28: 261–266.

    13. [13]

      INUI T, YAMAMOTO T. Effective synthesis of ethanol from CO2 on polyfunctional composite catalysts [J]. Catal Today, 1998, 45: 209–214.

    14. [14]

      NAIK S, RYU T, BUI V, MILLER J, DRINNAN N, ZMIERCZAK W, Synthesis of DME from CO2/H2 gas mixture [J]. Chem Eng J, 2011, 167: 362–368.

    15. [15]

      BONURA G, CORDARO M, SPADARO L, CANNILLA C, ARENA F, FRUSTERI F. Hybrid Cu-ZnO-ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation[J]. Appl Catal B: Environ,2013,140–141:16−24.

    16. [16]

      WANG Y, WANG W, CHEN Y, MA J, LI R. Synthesis of dimethyl ether from syngas over core-shell structure catalyst CuO-ZnO-Al2O3@SiO2-Al2O3[J]. Chem Eng J,2014,250:248−256.

    17. [17]

      FRUSTERI F, CORDARO M, CANNILLA C, BONURA G. Multifunctionality of Cu-ZnO-ZrO2/H-ZSM5 catalysts for the one-step CO2-to-DME hydrogenation reaction[J]. Appl Catal B: Environ,2015,162:57−65.

    18. [18]

      SUO Z, KOU Y, NIU J, ZHANG W, WANG H. Characterization of TiO2-, ZrO2- and Al2O3-supported iron catalysts as used for CO2 hydrogenation[J]. Appl Catal A: Gen,1997,148:301−313.

    19. [19]

      LI C, YUAN X, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A: Gen,2014,475:155−160.

    20. [20]

      FUJIWARA M, SOUMA Y. Hydrocarbon synthesis from carbon dioxide and hydrogen over Cu-Zn-Cr oxide/zeolite hybrid catalysts[J]. J Chem Soc, Chem Commun,1992,23(42):767−768.

    21. [21]

      LI C, FUJIMOTO K. Efficient conversion of carbon dioxide to non-methane light hydrocarbons-two stage process with intercooler[J]. Fuel Process Technol,2015,136:50−55.

    22. [22]

      AL-DOSSARY M, ISMAIL A, FIERRO J, BOUZID H, AL-SAYARI S. Effect of Mn loading onto MnFeO nanocomposites for the CO2 hydrogenation reaction[J]. Appl Catal B: Environ,2015,165:651−660.

    23. [23]

      FUJIWARA M, SAKURAI H, SHIOKAWA K, LIZUKA Y. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and Hβ zeolite using two-stage reactor system under low pressure[J]. Catal Today,2015,242:255−260.

    24. [24]

      GAO P, DANG S, LI S, BU X, LIU Z, QIU M, YANG C, WANG H, ZHONG L, HAN Y, LIU Q, WEI W, SUN Y. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2018,8:571−578.  doi: 10.1021/acscatal.7b02649

    25. [25]

      WANG S, WANG P, QIN Z, YAN W, DONG M, LI J, WANG J, FAN W. Enhancement of light olefin production in CO2 hydrogenation over In2O3-based oxide and SAPO-34 composite[J]. J Catal,2020,391:459−470.  doi: 10.1016/j.jcat.2020.09.010

    26. [26]

      WANG X, ZENG C, GONG N, ZHANG T, WU Y, ZHANG J, SONG F, YANG G, TAN Y. Effective suppression of CO selectivity for CO2 hydrogenation to high-quality gasoline[J]. ACS Catal,2021,11:1528−1547.  doi: 10.1021/acscatal.0c04155

    27. [27]

      WANG Y, TAN L, TAN M, ZHANG P, FANG Y, YONEYAMA Y, YANG G, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9:895−901.  doi: 10.1021/acscatal.8b01344

    28. [28]

      ZHANG J, LU S, SU X, FAN S, MA Q, ZHAO T. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. J CO2 Util,2015,12:95−100.  doi: 10.1016/j.jcou.2015.05.004

    29. [29]

      BURK M, LEE J, MARTINEZ J. A versatile tandem catalysis procedure for the preparation of novel amino acids and peptides[J]. J Am Chem Soc,1994,116:10847−10848.

    30. [30]

      BALEMA V, HEY-HAWKINS E. The CuCl-catalyzed reaction of trimethylsilyl(t-butyl) chlorophosphane with dimethylzirco-nocene: An example for tandem catalysis[J]. Z Anorg Allg Chem,1996,622:2053−2056.  doi: 10.1002/zaac.19966221209

    31. [31]

      WILSON E. Heterogeneous tandem catalysis[J]. Chem Eng News,2011,89(16):9.

    32. [32]

      LOHR T, MARKS T. Orthogonal tandem catalysis[J]. Nat Chem,2015,7:477−482.  doi: 10.1038/nchem.2262

    33. [33]

      CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins: Design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew Chem Int Ed,2016,55:4725−4728.  doi: 10.1002/anie.201601208

    34. [34]

      LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, MIN X, ZHANG Q, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9:4708−4718.  doi: 10.1039/C8SC01597J

    35. [35]

      LI N, JIAO F, PAN X, CHEN Y, FENG J, LI G, BAO X. High-quality gasoline directly from syngas by dual metal oxide-zeolite (OX-ZEO) catalysis[J]. Angew Chem Int Ed,2019,58:1−6.  doi: 10.1002/anie.201813481

    36. [36]

      CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347.  doi: 10.1016/j.chempr.2017.05.007

    37. [37]

      ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to para–xylene[J]. Chem Sci,2017,8:7941−7946.  doi: 10.1039/C7SC03427J

    38. [38]

      XU Y, LIU J, WANG J, MA G, LIN J, YANG Y, LI Y, ZHANG C, DING M. Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts[J]. ACS Catal,2019,9:5147−5156.  doi: 10.1021/acscatal.9b01045

    39. [39]

      LI Z, WANG J, QU Y, LIU H, TANG C, MIAO S, FENG Z, AN H, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7:8544−8548.  doi: 10.1021/acscatal.7b03251

    40. [40]

      LI Z, QU Y, WANG J, LIU H, LI M, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3:570−583.  doi: 10.1016/j.joule.2018.10.027

    41. [41]

      DANG S, LI S, YANG C, CHEN X, LI X, ZHONG L, GAO P, SUN Y. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts[J]. ChemSusChem,2019,12:3582−3591.  doi: 10.1002/cssc.201900958

    42. [42]

      GAO J, JIA C, LIU B. Direct and selective hydrogenation of CO2 to ethylene and propene by bifunctional catalysts[J]. Catal Sci Technol,2017,7:5602−5607.  doi: 10.1039/C7CY01549F

    43. [43]

      LIU X, WANG M, ZHOU C, ZHOU W, CHENG K, KANG J, ZHANG Q, DENG W, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54:140−143.  doi: 10.1039/C7CC08642C

    44. [44]

      YANG Lang-lang, MENG Fan-hui, ZHANG Peng, LIANG Xiao-tong, LI Zhong, Catalytic performance for CO2 hydrogenation to light olefins Over ZrCdOx/SAPO-18 bifunctional catalyst [J]. Chin J Inorg Chem, 2021, 37(3): 448–456.

    45. [45]

      CHEN J, WANG X, WU D, ZHANG J, MA Q, GAO X, LAI X, XIA H, FAN S, ZHAO T-S. Hydrogenation of CO2 to light olefins on CuZnZr@(Zn-)SAPO-34 catalysts: Strategy for product distribution[J]. Fuel,2019,239:44−52.  doi: 10.1016/j.fuel.2018.10.148

    46. [46]

      WANG X, YANG G, ZHANG J, CHEN S, WU Y, ZHANG Q, WANG J, HAN Y, TAN Y. Synthesis of isoalkanes over a core (Fe-Zn-Zr)-shell (zeolite) catalyst by CO2 hydrogenation[J]. Chem Commun,2016,52:7352−7355.  doi: 10.1039/C6CC01965J

    47. [47]

      WANG X, YANG G, ZHANG J, SONG F, WU Y, ZHANG T, ZHANG Q, TSUBAKI N, TAN Y. Macroscopic assembly style of catalysts significantly determining their efficiency for converting CO2 to gasoline[J]. Catal Sci Technol,2019,9:5401−5412.  doi: 10.1039/C9CY01470E

    48. [48]

      WEI J, SUN J, WEN Z, FANG C, GE Q, XU H. New insights into the effect of sodium on Fe3O4-based nanocatalysts for CO2 hydrogenation to light olefins[J]. Catal Sci Technol,2016,6:4786−4793.  doi: 10.1039/C6CY00160B

    49. [49]

      WEI C, TU W, JIA L, LIU Y, LIAN H, WANG P, ZHANG Z. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622.

    50. [50]

      ZHANG Z, WEI C, JIA L, LIU Y, SUN C, WANG P, TU W. Insights into the regulation of FeNa catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO2 to light olefins[J]. J Catal,2020,390:12−22.

    51. [51]

      ZHANG Y, CAO C, ZHANG C, ZHANG Z, LIU X, YANG Z, ZHU M, MENG B, XU J, HAN Y–F. The study of structure–performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. J Catal,2019,378:51−62.

    52. [52]

      ZHANG Y, FU D, LIU X, ZHANG Z, ZHANG C, SHI B, XU J, HAN Y–F. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem,2018,10:1272−1276.

    53. [53]

      HUANG J, JIANG S, WANG M, WANG X, GAO J, SONG C. Dynamic evolution of Fe and carbon species over different ZrO2 supports during CO prereduction and their effects on CO2 hydrogenation to light olefins[J]. ACS Sustainable Chem Eng,2021,9:7891−7903.

    54. [54]

      YUAN F, ZHANG G, ZHU J, DING F, ZHANG A, SONG C, GUO X. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J]. Catal Today,2021,371:142−149.

    55. [55]

      LIU J, ZHANG G, JIANG X, WANG J, SONG C, GUO X. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons[J]. Catal Today,2021,371:162−170.

    56. [56]

      LIU J, LI K, SONG Y, SONG C, GUO X. Selective hydrogenation of CO2 to hydrocarbons: effects of Fe3O4 particle size on reduction, carburization, and catalytic performance[J]. Energy Fuels,2021,35:10703−10709.

    57. [57]

      PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, NUMPILAI T, POO-ARPORN Y, LIMPHIRAT W, DONPHAI W, DITTANET P, CHAREONPANICH M, LIMTRAKUL J. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: Effects of SiO2 contents[J]. Chem Eng J,2017,316:692−703.  doi: 10.1016/j.cej.2017.02.010

    58. [58]

      MOU J, FAN X, LIU F, WANG X, ZHAO T, CHEN P, LI Z, YANG C, CAO J. CO2 hydrogenation to lower olefins over Mn2O3-ZnO/SAPO-34 tandem catalysts[J]. Chem Eng J,2021,421:129978.

    59. [59]

      YE J, LIU C, MEI D, GE Q. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study[J]. ACS Catal,2013,3:1296−1306.

    60. [60]

      SUN K, FAN Z, YE J, YAN J, GE Q, LI Y, HE W, YANG W, LIU C. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. J CO2 Utili,2015,12:1−6.

    61. [61]

      WANG J, SUN K, JIA X, LIU C. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catal Today,2021,365:341−347.

    62. [62]

      WANG W, CHEN Y, ZHANG M. Facet effect of In2O3 for methanol synthesis by CO2 hydrogenation: A mechanistic and kinetic study[J]. Surf Interfaces,2021,25:101244.

    63. [63]

      DONG X, LI F, ZHAO N, XIAO F, WANG J, TAN Y. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B: Environ,2016,191:8−17.  doi: 10.1016/j.apcatb.2016.03.014

    64. [64]

      CHEN S, ZHANG J, SONG F, ZHANG Q, YANG G, ZHANG M, WANG X, XIE H, TAN Y. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst[J]. J Catal,2020,389:47−59.  doi: 10.1016/j.jcat.2020.05.023

    65. [65]

      FUJIWARA M, SOUMA Y. Hydrocarbon synthesis from carbon dioxide and hydrogen over Cu-Zn-Cr oxide/zeolite hybrid catalysts[J]. J Chem Soc, Chem Commun,1992,10:767−768.

    66. [66]

      PARK YK, PARK KC, IHM SK. Hydrocarbon synthesis through CO2 hydrogenation over CuZnOZrO2/zeolite hybrid catalysts[J]. Catal Today,1998,44:165−73.  doi: 10.1016/S0920-5861(98)00187-4

    67. [67]

      WANG S, ZHANG L, ZHANG W, WANG P, QIN Z, YAN W, DONG M, LI J, WANG J, HE L, OLSBYE U, FAN W. Selective conversion of CO2 into propene and butene[J]. Chem,2020,6:3344−3363.  doi: 10.1016/j.chempr.2020.09.025

    68. [68]

      TAN L, ZHANG P, CUI Y, SUZUKI Y, LI H, GUO L, YANG G, TSUBAKI N. Direct CO2 hydrogenation to light olefins by suppressing CO by-product formation[J]. Fuel Process Technol,2019,196:106174.  doi: 10.1016/j.fuproc.2019.106174

    69. [69]

      MARTIN O, MARTIN A J, MONDELLI C, MITCHELL S, SEGAWA T F, HAUERT R, DROUILLY C, FERRE D C, RAMÍREZ J P. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55:6261−6265.  doi: 10.1002/anie.201600943

    70. [70]

      XU Q, HE D, FUJIWARA M, SOUMA Y. Improved activity of Fe-Cu catalysts by physical mixing with zeolites for the hydrogenation of carbon dioxide[J]. J Mol Catal A: Chem,1997,120:L23−L26.  doi: 10.1016/S1381-1169(97)00014-9

    71. [71]

      Xu Q, HE D, FUJIWARA M, TANAKA M, SOUMA Y, YAMANAKA H. Hydrogenation of carbon dioxide over Fe-Cu-Na/zeolite composite catalysts: Na migration via solid–solid reaction and its effects on the catalytic activity[J]. J Mol Catal A: Chem,1998,136:161−168.  doi: 10.1016/S1381-1169(98)00047-8

    72. [72]

      WEI J, YAO R, GE Q, WEN Z, JI X, FANG C, ZHANG J, XU H, SUN J. Catalytic hydrogenation of CO2 to isoparaffins over Fe-based multifunctional catalysts[J]. ACS Catal,2018,8:9958−9967.  doi: 10.1021/acscatal.8b02267

    73. [73]

      GENG S, JIANG F, XU Y, LIU X. Iron-based Fischer-Tropsch synthesis for the efficient conversion of carbon dioxide into isoparaffins[J]. ChemCatChem,2016,8:1303−1307.  doi: 10.1002/cctc.201600058

    74. [74]

      NOREEN A, LI M, FU Y, AMOO C, WANG J, MATURURA E, DU C, YANG R, XING C, SUN J. One-pass hydrogenation of CO2 to multibranched isoparaffins over bifunctional zeolite-based catalysts[J]. ACS Catal,2020,10:14186−14194.  doi: 10.1021/acscatal.0c03292

    75. [75]

      TAN Y, FUJIWARA M, ANDO H, XU Q, SOUMA Y. Syntheses of isobutane and branched higher hydrocarbons from carbon dioxide and hydrogen over composite catalysts[J]. Ind Eng Chem Res,1999,38:3225−3229.  doi: 10.1021/ie980672m

    76. [76]

      BAI R, TAN Y, HAN Y. Study on the carbon dioxide hydrogenation to iso−alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Process Technol,2004,86:293−301.  doi: 10.1016/j.fuproc.2004.05.001

    77. [77]

      BAI Rong-xian, TAN Yi-sheng, HAN Yi-zhuo. Hydrogenation of carbon dioxide to isoalkanes over Fe-Zn-Zr/zeolite composite catalysts Ⅰ Effects of zeolites on catalytic performance of the catalysts[J]. Chin J Catal,2004,25(3):223−226.  doi: 10.3321/j.issn:0253-9837.2004.03.013

    78. [78]

      NI X, TAN Y, HAN Y, TSUBAKI N. Synthesis of isoalkanes over Fe-Zn-Zr/HY composite catalyst through carbon dioxide hydrogenation[J]. Catal Commun,2007,8:1711−1714.  doi: 10.1016/j.catcom.2007.01.023

    79. [79]

      WEI J, GE Q, YAO R, WEN Z, FANG C, GUO L, XU H, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174−15181.  doi: 10.1038/ncomms15174

    80. [80]

      GAO P, LI S, BU X, DANG S, LIU Z, WANG H, ZHONG L, QIU M, YANG C, CAI J, WEI W, SUN Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9:1019−1024.  doi: 10.1038/nchem.2794

    81. [81]

      CUI X, GAO P, LI S, YANG C, LIU Z, WANG H, ZHONG L, SUN Y. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catal,2019,9:3866−3876.  doi: 10.1021/acscatal.9b00640

    82. [82]

      XU Y, SHI C, LIU B, WANG T, ZHENG J, LI W, LIU D, LIU X. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9:593−610.  doi: 10.1039/C8CY02024H

    83. [83]

      WANG S, WU T, LIN J, TIAN J, JIY, PEI Y, YAN S, QIAO M, XU H, ZONG B. FeK on 3D graphene-zeolite tandem catalyst with high efficiency and versatility in direct CO2 conversion to aromatics[J]. ACS Sustainable Chem Eng,2019,7:17825−17833.  doi: 10.1021/acssuschemeng.9b04328

    84. [84]

      SONG G, LI M, YAN P, ASIF NAWAZ M, LIU D. High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5[J]. ACS Catal,2020,10:11268−11279.  doi: 10.1021/acscatal.0c02722

    85. [85]

      ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2020,10:302−310.  doi: 10.1021/acscatal.9b04309

    86. [86]

      ZHANG X, ZHANG A, JIANG X, ZHU J, LIU J, LI J, ZHANG G, SONG C, GUO X. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−145.  doi: 10.1016/j.jcou.2018.12.002

    87. [87]

      NI Y, CHEN Z, FU Y, LIU Y, ZHU W, LIU Z. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9:3457−3463.  doi: 10.1038/s41467-018-05880-4

    88. [88]

      ZHANG J, ZHANG M, CHEN S, WANG X, ZHOU Z, WU Y, ZHANG T, YANG G, HAN Y, TAN Y. Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J]. Chem Commun,2019,55:973−976.  doi: 10.1039/C8CC09019J

    89. [89]

      WANG Y, GAO W, KAZUMI S, LI H, YANG G, TSUBAKI N. Direct and oriented conversion of CO2 into value-added aromatics[J]. Chem Eur J,2019,25:5149−5153.  doi: 10.1002/chem.201806165

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    5. [5]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    16. [16]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(60)
  • Abstract views(5576)
  • HTML views(1208)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return