Citation: Bo WANG, Yao BIAN, Shuo FENG, Shao-qi WANG, Bo-xiong SHEN. Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 503-512. doi: 10.1016/S1872-5813(21)60177-9 shu

Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx

  • Corresponding author: Bo-xiong SHEN, shenbx@hebut.edu.cn
  • Received Date: 16 September 2021
    Revised Date: 20 October 2021
    Accepted Date: 20 October 2021

Figures(13)

  • A series of Nb-modified V2O5-WO3/TiO2 catalysts were prepared by the impregnation method and the effect of Nb loading on their SO2 oxidation activity during the selective catalytic reduction of NOx was investigated. The results indicate that the Nb2O5-V2O5-WO3/TiO2 catalyst with a Nb2O5 loading of 2% exhibits the lowest SO2 conversion of 0.6% for oxidation at 350 °C, whereas the conversion of NOx is still above 95%. The catalysts were characterized by TGA, BET, XRD, H2-TPR, CO2-TPD, XPS and in-situ DRIFTS. The results illustrate that the influence of Nb modification on the crystal structure of V2O5-WO3/TiO2 catalyst is rather insignificant; however, the surface area of the Nb2O5-V2O5-WO3/TiO2 catalyst decreases slightly after the modification with Nb, conducing to a decrease of SO2 adsorption on the catalyst. Meanwhile, the content of oxygen adsorbed on the catalyst surface decreases considerably upon the Nb modification, suggesting a weakened redox performance, which is beneficial to reducing the oxidation of SO2. The in-situ DRIFTS results illustrate that the content of the intermediate VOSO4 product on the catalyst surface decreases over the Nb-modified Nb2O5-V2O5-WO3/TiO2 catalyst, leading to a decrease of SO3 production.
  • 加载中
    1. [1]

      LUO Hang-cheng, PAN Wei-guo, DING Hong-lei, LI Fu-xiao, GUO Rui-tang, JIN Qiang, DING Cheng-gang. Mechanism and control technology of SO3 in flue gas of coal-fired boiler[J]. Boiler Technol,2015,46(6):69−72.  doi: 10.3969/j.issn.1672-4763.2015.06.015

    2. [2]

      KAMATA H, OHARA H, TAKAHASHI K, YUKIMURA A, SEO Y. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catal Lett,2001,73(1):79−83.  doi: 10.1023/A:1009065030750

    3. [3]

      WANG Fei. Review of SO3 suppression and removal technologies in coal-fired power plants[J]. Sci Technol Inf,2019,31:150−151.

    4. [4]

      ZHANG Y, LAUMB J, LIGGETT R, HOLMES M, PAVLISH J. Impacts of acid gases on mercury oxidation cross SCR catalyst[J]. Fuel Process Technol,2007,88(10):929−934.  doi: 10.1016/j.fuproc.2007.03.010

    5. [5]

      ZHANG Dao-jun, MA Zi-ran, SUN Qi, XU Wen-qiang, LI Yong-long, WANG Bao-dong, ZHU Tao, LIN De-hai, JI Guang-hui, MA Jing. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chem Ind Eng Prog,2018,37(7):2635−2643.

    6. [6]

      VEMOT E H, MACEWEN J D, HAUN C C, KINKEAD E R. Acute Toxicity and Skin Corrosion Data for Some Organic and Inorganic Compounds and Aqueous Solutions[J]. Toxicol Appl Pharmacol,1977,42(2):417−423.  doi: 10.1016/0041-008X(77)90019-9

    7. [7]

      CHEN M M, JIN Q J, TAO X J, PAN Y C, GU S S, SHEN Y S. Novel W-Zr-Ox/TiO2 catalyst for selective catalytic reduction of NO by NH3 at high temperature[J]. Catal Today,2020,358:254−262.  doi: 10.1016/j.cattod.2019.06.045

    8. [8]

      KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2, and V2O5/TiO2-SiO2, catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2005, 60(3/4): 173–179.

    9. [9]

      CHOO S T, YIM S D, NAM I S, HAM S W, LEE J B. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Appl Catal B: Environ,2003,44(3):237−252.  doi: 10.1016/S0926-3373(03)00073-0

    10. [10]

      HOU Y Q, WANG J C, LI Q Y, LIU Y J, BAI Y R, ZENG Z Q, HUANG Z G. Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal[J]. Fuel,2021,285:119133.  doi: 10.1016/j.fuel.2020.119133

    11. [11]

      CAO L, WU X D, CHEN Z, MA Y, MA Z R, RAN R, SI Z C, WENG D, WANG B D. A comprehensive study on sulfur tolerance of niobia modified CeO2/WO3-TiO2 catalyst for low-temperature NH3-SCR[J]. Appl Catal A: Gen,2019,580:121−130.  doi: 10.1016/j.apcata.2019.05.007

    12. [12]

      SAZONOVA N N, TSYKOZA L T, SIMAKOV A V, BARANNIK G B, ISMAGILOV Z R. Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5-TiO2 catalysts doped with WO3, and Nb2O5[J]. React Kinet Catal Lett,1994,52(1):101−106.  doi: 10.1007/BF02129856

    13. [13]

      AHN J, OKERLUND R, FRY A, EDDINGS E G. Sulfur trioxide formation during oxy-coal combustion[J]. Int J Greenhouse Gas Control,2011,5(12):127−135.

    14. [14]

      ZHANG Han-zhi. Influencing Factors of SO2/SO3 conversion rate in SCR catalytic process[D]. Baoding: North China Electric Power University, 2018.

    15. [15]

      REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V2O5/CeO2-ZrO2 catalysts[J]. Langmuir,2003,19:3025−3030.  doi: 10.1021/la0208528

    16. [16]

      LIU Zhi. Study on SO2 oxidation mechanism on commercial SCR catalysts surface[D]. Tianjin: Hebei University of Technology, 2019.

    17. [17]

      KANG T A, YOUN S, KIM D H. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR[J]. Catal Today,2021,376:95−103.  doi: 10.1016/j.cattod.2020.07.042

    18. [18]

      CHAO Jing-di, HE Hong, SONG Li-yun, FANG Yu-jiao, LIANG Quan-ming, ZHANG Gui-zhen, QIU Wen-ge, ZHANG Ran. Promotional effect of Pr-doping on the NH3-SCR activity over the V2O5-MoO3/TiO2 catalyst[J]. Chem J Chin Univ,2015,36(3):523−530.

    19. [19]

      ZHU L, ZHONG Z P, XUE J M, XU Y Y, WANG C H, WANG L X. NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures[J]. J Environ Sci,2018,65:306−316.  doi: 10.1016/j.jes.2017.06.033

    20. [20]

      LIAN Z, LIU F, HE H, LIU K. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. RSC Adv,2015,5(47):37675−37681.  doi: 10.1039/C5RA02752G

    21. [21]

      WACHS I E, BRIAND L E, JEHNG J M, BURCHAM L, GAO X T. Molecular structure and reactivity of the group V metal oxides[J]. Catal Today,2000,57:323−330.  doi: 10.1016/S0920-5861(99)00343-0

    22. [22]

      MARSAL A, ROSSINYOL E, BIMBELA F, TELLEZ C, CORONAS J, CORENT A, MORANTE J R. Characterisation of LaOCl sensing materials using CO2-TPD, XRD, TEM and XPS[J]. Sens Actuators, B,2005,109(1):38−43.  doi: 10.1016/j.snb.2005.03.022

    23. [23]

      PI Z P, SHEN B X, ZHAO J G, LIU J C. CuO, CeO2 modified Mg-Al spinel for removal of SO2 from fluid catalytic cracking flue gas[J]. Ind Eng Chem Res,2015,54(43):10622−10628.  doi: 10.1021/acs.iecr.5b02329

    24. [24]

      LEE K M, LIM Y H, JO Y M. Evaluation of moisture effect on low-level CO2 adsorption by ion-exchanged zeolite[J]. Environ Technol,2012,33(1):77−84.  doi: 10.1080/09593330.2011.551837

    25. [25]

      YU Y K, MIAO J F, HE C, CHEN J S, LI C, DOUTHWAITE M. The remarkable promotional effect of SO2 on Pb-poisoned V2W5-WO3/TiO2 catalysts: An in-depth experimental and theoretical study[J]. Chem Eng J,2018,338:191−201.  doi: 10.1016/j.cej.2018.01.031

    26. [26]

      BOUDALI L K, GHORBEL A, GRANGE P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction[J]. Comptes Rendus Chim, 2009, 12(6/7): 779–786.

    27. [27]

      QING M X, SU S, WANG L L, LIU L J, XU K, HE L M, JUN X, HU S, WANG Y, XIANG J. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3[J]. Chem Eng J,2019,361:1215−1224.  doi: 10.1016/j.cej.2018.12.165

    28. [28]

      ZHANG Y S, MEI D Q, WANG T, WANG J W, GU Y Z, ZHANG Z L, ROMERO C E, PAN W P. In-situ capture of mercury in coal-fired power plants using high surface energy fly ash[J]. Environ Sci Technol,2019,53(13):7913−7920.  doi: 10.1021/acs.est.9b01725

    29. [29]

      CAI W, ZHONG Q, ZHAO W, BU Y F. Focus on the modified CexZr1−xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO[J]. Appl Catal B: Environ, 2014, 158–159: 258–268.

    30. [30]

      DU X S, DAO X, FU Y C, GAO F, LUO Z Y, CEN K F. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. J Colloid Interface Sci,2012,368:406−412.  doi: 10.1016/j.jcis.2011.11.026

    31. [31]

      GAO X, JIANG Y, ZHONG Y, LUO Z Y, CEN K F. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater, 2010, 174(1/3): 734–739.

    32. [32]

      YE D, QU R, SONG H, GAO X, LUO Z Y, NI M J, CEN K F. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2W5/TiO2 catalyst surfaces[J]. Chem Eng J,2016,283:846−854.  doi: 10.1016/j.cej.2015.08.020

    33. [33]

      LIU Y M, SHU H, XU Q S, ZHANG Y H, YANG L J. FT-IR study of the SO2 oxidation behavior in the selective catalytic reduction of NO with NH3 over commercial catalysts[J]. J Fuel Chem Technol,2015,43(8):1018−1024.  doi: 10.1016/S1872-5813(15)30030-X

    34. [34]

      WEI L, CUI S P, GUO H X, MA X Y, ZHANG L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR[J]. J Mol Catal A: Chem, 2016, 421: 102–108.

    35. [35]

      PAN S W, LUO H C, LI L, WEI Z L, HUANG B C. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. J Mol Catal A: Chem, 2013, 377: 154–161.

    36. [36]

      QING M X, SU S, WANG L L, LIU L J, XU K, HE L M, JUN X, HU S, WANG Y, XIANG J. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3[J]. Chem Eng J, 2019, 361: 1215–1224.

    37. [37]

      JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014, 148–149: 582-588.

    38. [38]

      WENG Shi-fu, XU Yi-zhuang. Fourier Transform Infrared Spectroscopy Analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016.

    39. [39]

      LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chem Eng J, 2013, 219: 319–326.

    40. [40]

      ULERSTAM M, JOHNSON M S, VOGT R, LJUNGSTROM E. DRIFTS and Kundsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust[J]. Atmos Chem Phys,2003,3:2043−2051.  doi: 10.5194/acp-3-2043-2003

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    6. [6]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    7. [7]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    11. [11]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    15. [15]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    16. [16]

      Xinlin ZhangCheng TangHaitao LiJie SunAijun DuMinghong WuHaijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088

    17. [17]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    18. [18]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    20. [20]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

Metrics
  • PDF Downloads(0)
  • Abstract views(349)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return