Citation: Yan-nan ZHAO, Su-bing FAN, Qing-xiang MA, Jian-li ZHANG, Tian-sheng ZHAO. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5 shu

Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite

  • Corresponding author: Tian-sheng ZHAO, zhaots@nxu.edu.cn
  • Received Date: 19 May 2021
    Revised Date: 23 June 2021

Figures(11)

  • H-[B,Al]-ZSM-5 zeolites were synthesized with glucose as assistant template to catalyze methanol converting toward propylene. The superior catalytic performance in terms of the propylene selectivity and the activity longevity was related to high ratio of weak acid to strong acid for favorable production of propylene and to high mesoporosity for improved diffusion of reactants and prevention from fast coking. More framework Al siting in the straight or sinusoidal channels of the MFI zeolite could also enhance the propylene/ethylene ratio due to the promotional effect on propylene formation. Low weak acid density was conducive to the production of high propylene/ethylene ratio. With the B/Al ratio of 2 and the (Al2+B2)/Si ratio of 0.01, HZ5-G-2B was applied in the methanol to propylene reaction at CH3OH/H2O (1∶1.2) WHSV of 1.8 h−1 and 480 °C. Propylene selectivity of 51.6%, the \begin{document}${\rm{C}}_{{2-4}}^ {=} $\end{document} selectivity of 83.7% and complete conversion of methanol were achieved. The propylene/ethylene ratio was 2. The catalytic activity kept stable for 580 h.
  • 加载中
    1. [1]

      HAW J F, SONG W, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res,2003,36:317−326.  doi: 10.1021/ar020006o

    2. [2]

      INOUE M, DHUPATEMIYA P, PHATANASRI S, INUI T. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion[J]. Microporous Mesoporous Mater,1999,28(1):19−24.  doi: 10.1016/S1387-1811(98)00278-9

    3. [3]

      ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650.  doi: 10.1016/j.catcom.2005.11.009

    4. [4]

      LEE K Y, LEE S W, IHM S K. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons(MTH) reaction[J]. Ind Eng Chem Res,2014,53(24):10072−10079.

    5. [5]

      PALČIČ A, ORDOMSKY V V, QIN Z, GEORGIEVA V, VALTCHEV V. Tuning zeolite properties for highly efficient synthesis of propylene from methanol[J]. Chem-Eur J,2018,24(50):13136−13149.  doi: 10.1002/chem.201803136

    6. [6]

      UNNEBERG E, KOLBOE S. H--ZSM-5 as catalyst for methanol reactions[J]. Appl Catal A: Gen,1995,124:345−354.  doi: 10.1016/0926-860X(95)00005-4

    7. [7]

      CHU C T-W, KUEHL G H, LAGO R M, CHANG C D. lsomorphous substitution in zeolite frameworks II catalytic properties ofZSM-5[J]. J Catal,1985,89:1569−1571.

    8. [8]

      YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24(26):44−47.

    9. [9]

      YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous Mesoporous Mater,2015,203:41−53.

    10. [10]

      LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework Aluminum siting[J]. ACS Catal,2016,6:7311−7325.  doi: 10.1021/acscatal.6b01771

    11. [11]

      TAO J, ZHANG J, FAN S, MA Q, GAO X, ZHAO T S. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. J Fuel Chem Technol,2020,48(9):1105−1111.  doi: 10.1016/S1872-5813(20)30074-8

    12. [12]

      CUI N, GUO H, ZHOU J, LI L, GUO L, HUA Z. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction[J]. Microporous Mesoporous Mater,2020,306:110411.  doi: 10.1016/j.micromeso.2020.110411

    13. [13]

      HU Z, ZHANG H, WANG L, ZHANG H, ZHANG Y, XU H, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol,2014,4(9):2891−2895.  doi: 10.1039/C4CY00376D

    14. [14]

      DING J, JIA Y, CHEN P, ZHAO G, LIU Y, LU Y. Thin-felt hollow-B-ZSM-5/SS-fiber catalyst for methanol-to-propylene: toward remarkable stability improvement from mesoporosity-dependent diffusion enhancement[J]. Chem Eng J, 2019, 361: 588−598.

    15. [15]

      KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.

    16. [16]

      TAO J, ZHANG J, FAN S, ZHAO T S. Cocrystalline synthesis of ZSM-5/ZSM-11 and catalytic activity for methanol to propylene[J]. Cryst Res Technol,2020,55:2000027.  doi: 10.1002/crat.202000027

    17. [17]

      LIU H, ERNST H, FREUDDE D, SCHEFFLER F, SCHWIEGER W. In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J]. Microporous Mesoporous Mater,2002,54(3):319−330.  doi: 10.1016/S1387-1811(02)00392-X

    18. [18]

      CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordinations in zeolite mordenite by 27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem,2000,2:281−285.

    19. [19]

      YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C,2015,119(27):15303.  doi: 10.1021/acs.jpcc.5b03289

    20. [20]

      LI J, MA H, CHEN Y, XU Z, LI C, YING W. Conversion of methanol to propylene over hierarchical HZSM-5: Effect of Al spatial distribution[J]. Chem Commun,2018,54:6032−6035.  doi: 10.1039/C8CC02042F

    21. [21]

      RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182.

    22. [22]

      CHU C T-W, CHANG C D. Isomorphous substitution in zeolite frameworks. 1. acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [AI]-ZSM-5[J]. J Phys Chem,1985,89(30):1569−1571.

    23. [23]

      CHANG C D, CHU C T-W, SOCHA R F. Methanol conversion to olefins over ZSM-5 I. effect of temperature and zeolite SiO2/A12O3[J]. J Catal,1984,86(2):289−296.

    24. [24]

      ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun,2008,71(41):5164−5166.

    25. [25]

      KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal,2019,9:2880−2892.

  • 加载中
    1. [1]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    4. [4]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    5. [5]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    6. [6]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    7. [7]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    8. [8]

      Entian CuiYulian LuZhaoxia LiZhilei ChenChengyan GeJizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288

    9. [9]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    10. [10]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    11. [11]

      Tengfei XuanXinyu ZhangWei HanYidong HuangWeiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816

    12. [12]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    13. [13]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    16. [16]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    17. [17]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    18. [18]

      Bing XieQi JiangFang ZhuYaoyao LaiYueming ZhaoWei HePei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508

    19. [19]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(168)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return