Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite
- Corresponding author: Tian-sheng ZHAO, zhaots@nxu.edu.cn
Citation:
Yan-nan ZHAO, Su-bing FAN, Qing-xiang MA, Jian-li ZHANG, Tian-sheng ZHAO. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology,
;2022, 50(2): 210-217.
doi:
10.1016/S1872-5813(21)60175-5
HAW J F, SONG W, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res,2003,36:317−326.
doi: 10.1021/ar020006o
INOUE M, DHUPATEMIYA P, PHATANASRI S, INUI T. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion[J]. Microporous Mesoporous Mater,1999,28(1):19−24.
doi: 10.1016/S1387-1811(98)00278-9
ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650.
doi: 10.1016/j.catcom.2005.11.009
LEE K Y, LEE S W, IHM S K. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons(MTH) reaction[J]. Ind Eng Chem Res,2014,53(24):10072−10079.
PALČIČ A, ORDOMSKY V V, QIN Z, GEORGIEVA V, VALTCHEV V. Tuning zeolite properties for highly efficient synthesis of propylene from methanol[J]. Chem-Eur J,2018,24(50):13136−13149.
doi: 10.1002/chem.201803136
UNNEBERG E, KOLBOE S. H--ZSM-5 as catalyst for methanol reactions[J]. Appl Catal A: Gen,1995,124:345−354.
doi: 10.1016/0926-860X(95)00005-4
CHU C T-W, KUEHL G H, LAGO R M, CHANG C D. lsomorphous substitution in zeolite frameworks II catalytic properties ofZSM-5[J]. J Catal,1985,89:1569−1571.
YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24(26):44−47.
YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous Mesoporous Mater,2015,203:41−53.
LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework Aluminum siting[J]. ACS Catal,2016,6:7311−7325.
doi: 10.1021/acscatal.6b01771
TAO J, ZHANG J, FAN S, MA Q, GAO X, ZHAO T S. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. J Fuel Chem Technol,2020,48(9):1105−1111.
doi: 10.1016/S1872-5813(20)30074-8
CUI N, GUO H, ZHOU J, LI L, GUO L, HUA Z. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction[J]. Microporous Mesoporous Mater,2020,306:110411.
doi: 10.1016/j.micromeso.2020.110411
HU Z, ZHANG H, WANG L, ZHANG H, ZHANG Y, XU H, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol,2014,4(9):2891−2895.
doi: 10.1039/C4CY00376D
DING J, JIA Y, CHEN P, ZHAO G, LIU Y, LU Y. Thin-felt hollow-B-ZSM-5/SS-fiber catalyst for methanol-to-propylene: toward remarkable stability improvement from mesoporosity-dependent diffusion enhancement[J]. Chem Eng J, 2019, 361: 588−598.
KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.
TAO J, ZHANG J, FAN S, ZHAO T S. Cocrystalline synthesis of ZSM-5/ZSM-11 and catalytic activity for methanol to propylene[J]. Cryst Res Technol,2020,55:2000027.
doi: 10.1002/crat.202000027
LIU H, ERNST H, FREUDDE D, SCHEFFLER F, SCHWIEGER W. In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J]. Microporous Mesoporous Mater,2002,54(3):319−330.
doi: 10.1016/S1387-1811(02)00392-X
CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordinations in zeolite mordenite by 27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem,2000,2:281−285.
YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C,2015,119(27):15303.
doi: 10.1021/acs.jpcc.5b03289
LI J, MA H, CHEN Y, XU Z, LI C, YING W. Conversion of methanol to propylene over hierarchical HZSM-5: Effect of Al spatial distribution[J]. Chem Commun,2018,54:6032−6035.
doi: 10.1039/C8CC02042F
RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182.
CHU C T-W, CHANG C D. Isomorphous substitution in zeolite frameworks. 1. acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [AI]-ZSM-5[J]. J Phys Chem,1985,89(30):1569−1571.
CHANG C D, CHU C T-W, SOCHA R F. Methanol conversion to olefins over ZSM-5 I. effect of temperature and zeolite SiO2/A12O3[J]. J Catal,1984,86(2):289−296.
ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun,2008,71(41):5164−5166.
KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal,2019,9:2880−2892.
Xinyu You , Xin Zhang , Shican Jiang , Yiru Ye , Lin Gu , Hexun Zhou , Pandong Ma , Jamal Ftouni , Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Jie Ma , Jianxiang Wang , Jianhua Yuan , Xiao Liu , Yun Yang , Fei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693
Zhen Liu , Zhi-Yuan Ren , Chen Yang , Xiangyi Shao , Li Chen , Xin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Chao LIU , Jiang WU , Zhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
Jiying Liu , Zehua Li , Wenjing Zhang , Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Tengfei Xuan , Xinyu Zhang , Wei Han , Yidong Huang , Weiwu Ren . Total synthesis of (+)-taberdicatine B and (+)-tabernabovine B. Chinese Chemical Letters, 2025, 36(2): 109816-. doi: 10.1016/j.cclet.2024.109816
Hui Liu , Xiangyang Tang , Zhuang Cheng , Yin Hu , Yan Yan , Yangze Xu , Zihan Su , Futong Liu , Ping Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
Peiyan Zhu , Yanyan Yang , Hui Li , Jinhua Wang , Shiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
Bing Xie , Qi Jiang , Fang Zhu , Yaoyao Lai , Yueming Zhao , Wei He , Pei Yang . Transdermal delivery of amphotericin B using deep eutectic solvents for antifungal therapy. Chinese Chemical Letters, 2025, 36(5): 110508-. doi: 10.1016/j.cclet.2024.110508
Aimin Fu , Chunmei Chen , Qin Li , Nanjin Ding , Jiaxin Dong , Yu Chen , Mengsha Wei , Weiguang Sun , Hucheng Zhu , Yonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403