Citation: Santos Pereira Viviane, Nandenha Júlio, Ramos Andrezza, Oliveira Neto Almir. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8 shu

Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell

  • Corresponding author: Santos Pereira Viviane, viviane_sp_saopaulo@yahoo.com.br
  • Received Date: 16 September 2021
    Revised Date: 26 October 2021
    Accepted Date: 28 October 2021

Figures(8)

  • The Pd-TiO2 electrocatalysts were synthesized via sodium borohydride reduction and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry, chronoamperometry and attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The X-ray diffraction experiments of the Pd-TiO2 showed peaks associated with Pd face-centered cubic (fcc) structure and peaks characteristics of TiO2 (anatase phase) with a tetragonal structure. The TEM images showed that the Pd and TiO2 nanoparticles were well distributed in the carbon support showing some clustered regions with nanoparticle sizes between 7 and 8 nm. Cyclic voltammograms showed an increase in current density values after the glycerol adsorption process. Experiments in alkaline direct glycerol fuel cells at 60 °C showed a higher power density for Pd-TiO2/C (70∶30) in comparison to the commercial Pd/C electrocatalyst indicating that the use of the TiO2 co-catalyst with Pd nanoparticles had a beneficial behavior. This effect can be attributed to the electronic effect or to the bifunctional mechanism. Molecules with high-value added glyceraldehyde, hydroxypyruvate and formate were identified as electrochemical reaction products of glycerol on all prepared electrocatalysts.
  • 加载中
    1. [1]

      ONG C B, KAMARUDIN K S, BASRI S. Direct liquid fuel cells: A review[J]. Int J Hydrogen Energy,2017,42(15):10142−10457.

    2. [2]

      ANTOLINI E, GONZALEZ R E. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450.  doi: 10.1016/j.jpowsour.2009.11.145

    3. [3]

      BANJONG J, THERDTHIANWONG A, THERDTHIANWONG S, YONGPRAGAT S, WONGYAO N. High performance alkaline-acid direct glycerol fuel cells for portable power supplies via electrode structure design[J]. Int J Hydrogen Energy,2020,45(3):2244−2256.  doi: 10.1016/j.ijhydene.2019.11.041

    4. [4]

      YAHYA N, KAMARUDIN S K, KARIM A N, MASDAR S M, LOH S K, LIM L K. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers Manag,2019,188:120−130.  doi: 10.1016/j.enconman.2019.02.087

    5. [5]

      GERALDES N A, DA SILVA F D, SILVA A G L, SPINACÉ V E, NETO O A, DOS SANTOS C M. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell[J]. J Power Sources,2015,293:823−830.  doi: 10.1016/j.jpowsour.2015.06.010

    6. [6]

      KIM M, LEE C, KO M S, NAM M-J. Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications[J]. J Solid State Chem,2019,270:295−303.  doi: 10.1016/j.jssc.2018.11.014

    7. [7]

      SANTOS C B J, VIEIRA C, CRISAFULLI R, LINARES J J. Promotional effect of auxiliary metals Bi on Pt, Pd, and Ag on Au, for glycerol electrolysis[J]. Int J Hydrogen. Energy,2020,45(47):25658−25671.  doi: 10.1016/j.ijhydene.2019.11.225

    8. [8]

      NANDENHA J, FONTES H E, PIASENTIN M R, FONSECA C F, NETO O A. Direct oxidation of methane at low temperature using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process[J]. J Fuel Chem Technol,2018,46(9):1137−1145.  doi: 10.1016/S1872-5813(18)30046-X

    9. [9]

      DASH S, MUNICHANDRAIAH N. Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis[J]. Electrochim Acta,2015,180:339−352.  doi: 10.1016/j.electacta.2015.07.020

    10. [10]

      HOUACHE E S M, SHUBAIR A, SANDOVAL G M, SAFARI R, BOTTON A G, JASEN V P, GONZÁLEZ A E, BARANOVA A E. Influence of Pd and Au on electrochemical valorization of glycerol over Ni-rich surfaces[J]. J Catal,2021,396:1−13.  doi: 10.1016/j.jcat.2021.02.008

    11. [11]

      VILLA A, DIMITRATOS N THAW-C E C, HAMMOND C, PRATI L, HUTCHING J G. Glycerol oxidation using old-containing catalysts[J]. Acc Chem Res.,2015,48:1403−1412.  doi: 10.1021/ar500426g

    12. [12]

      BENIPAL N, QI J, LIU Q, LI W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion Exchange membrane fuel cells[J]. Appl Catal,2017,210:121−130.  doi: 10.1016/j.apcatb.2017.02.082

    13. [13]

      NANDENHA J, RAMOS C E D, DA SILVA G S, DE SOUZA R F B, FONTES H E, OTTONI C A, NETO A O. Borohydride reduction method for PdIn/C electrocatalysts synthesis towards glycerol electrooxidation under alkaline condition[J]. Eletroanalysis,2021,33(4):1115−1120.  doi: 10.1002/elan.202060322

    14. [14]

      ROSTAMI H, OMRANI A, ROSTAMI A A. On the role of electrodeposited nanostrutured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alcaline media[J]. Int J Hydrogen Energy,2015,40(30):9444−9451.  doi: 10.1016/j.ijhydene.2015.05.154

    15. [15]

      HAN J, KIM Y, KIM W H, JACKSON K H D, LEE D, CHANG H, CHAE J-H, LEE Y-K, KIM J H. Effect of atomic-layer-deposited TiO2 on carbono-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media[J]. Electrochem Commun,2017,83:46−50.  doi: 10.1016/j.elecom.2017.08.023

    16. [16]

      SILVA M C J, BUZZO S G, DE SOUZA B F R, SPINACÉ V E, NETO O A, ASSUMPÇÃO T M H M. Enhanced eletrooxidation of ethanol using Pd/C + TiO2 electrocatalysts in alkaline media[J]. Electrocatalysis,2015,6:86−91.  doi: 10.1007/s12678-014-0224-z

    17. [17]

      HAN J, KIM Y, JACKSON K H D, JEONG E-K, CHAE J-H, LEE Y-K, KIM J-H. Role of Au-TiO2 interfacial sites in enchancing the electrocatalytic glycerol oxidation performance[J]. Electrochem Commun,2018,96:16−21.  doi: 10.1016/j.elecom.2018.09.004

    18. [18]

      DE SOUZA M F, DE SOUZA B F R, BATISTA L B, DOS SANTOS C M, FONSECA C F, NETO, O A, NANDENHA J. Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC[J]. Res Chem Intermed,2020,46:2481−2496.  doi: 10.1007/s11164-020-04102-1

    19. [19]

      DELGADO A J, CLAVER C, CASTILLÓN S, CURULLA-FERRÉ D, ORDOMSKY V V, GODARD C. Fisher-Tropsch synthesis catalyzed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction[J]. Appl Catal A: Gen,2016,513:39−46.  doi: 10.1016/j.apcata.2015.12.019

    20. [20]

      KIRKLAND A I, HUTCHISON J L. Nanocharacterization[M]. RSC Publishing: Cambridge, 2007, 304-307.

    21. [21]

      RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalysts for methanol oxidation[J]. J Catal,1995,154(1):98−106.  doi: 10.1006/jcat.1995.1151

    22. [22]

      ANTONIASSI M R, SILVA M C J, NETO O A, SPINACÉ V E. Synthesis of Pt+SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell[J]. Appl Catal,2017,218:91−100.  doi: 10.1016/j.apcatb.2017.06.031

    23. [23]

      OTTONI A C, DE SOUZA R R, DA SILVA S G, SPINACÉ V E, DE SOUZA B F R, NETO O A. Performance of Pd electrocatalyst supported on a physical mixture Indium tin oxide-carbon for glycerol electro-oxidation in alkaline media[J]. Electroanalysis,2017,29:960−964.  doi: 10.1002/elan.201600569

    24. [24]

      NETO O A, NANDENHA J, DE SOUZA B F R, BUZZO S G, SILVA M C J, SPINACÉ V E, ASSUMPÇÃO T M H M. Anodic oxidation of formic acid on PdAuIr/C-Sb2O5. SnO2 electrocatalysts prepared by borohydride reduction[J]. J Fuel Chem Technol,2014,42(7):851−857.  doi: 10.1016/S1872-5813(14)60037-2

    25. [25]

      GERALDES N A, SILVA F D, SILVA M C J, SOUZA B F R, SPINACÉ V E, NETO O A, LINARDI M, SANTOS C M. Glycerol electrooxidation in alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. J Braz Chem Soc,2014,25(5):831−840.

    26. [26]

      SIMÕES M, BARANTON S, COUTANCEAU C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl Catal,2010,93(3/4):354−362.  doi: 10.1016/j.apcatb.2009.10.008

    27. [27]

      GRDÉN M, CZERWINSKI A. EQCM studies on Pd-Ni alloy oxidation in basic solution[J]. J Solid State Electrochem,2008,12:375−385.  doi: 10.1007/s10008-007-0452-8

    28. [28]

      ZHIANI M, ROSTAMI H, MAJIDI S, KARAMI K. Bis (dibenzylidene acetone) palladium (O) catalysts for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell[J]. Int J Hydrogen Energy,2013,38(13):5435−5441.  doi: 10.1016/j.ijhydene.2012.09.001

    29. [29]

      WINIWARTER A, SILVIOLI L, SCOTT B S, RASMUSSEN-E K, SARIÇ M, TRIMARCO B D, VESBORG K C P, MOSES G P, STEPHENS L E I, SEGER B, ROSSMEISL J, CHORKENDORFF I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy Environ Sci,2019,12(3):1055−1067.  doi: 10.1039/C8EE03426E

    30. [30]

      GOMES F J, GARCIA C A, GASPAROTTO S H L, DE SOUZA E N, FERREIRA B E, PIRES C, FILHO-TREMILIOSI G. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study[J]. Electrochim Acta,2014,144:361−368.  doi: 10.1016/j.electacta.2014.08.035

    31. [31]

      ZALINEEVA A, BARANTON S, COUTANCEAU C. How do Bi-modified palladium nanoparticles work toward glycerol electrooxidation? An in situ FTIT study[J]. Electrochim Acta,2015,176:705−717.  doi: 10.1016/j.electacta.2015.07.073

    32. [32]

      NANDENHA J, NAGAHAMA F H L, YAMASHITA Y J, FONTE H E, AYOUB S M J, DE SOUZA B F R, FONSECA C F, NETO O A. Activation of methane on PdZn/C electrocatalysts in an acidic electrolyte at low temperatures[J]. Int J Electrochem Sci,2019,14:10819−10834.

    33. [33]

      LAI L, HUANG G, WANG X WENG J. Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity[J]. Carbon,2011,49(5):1581−1587.  doi: 10.1016/j.carbon.2010.12.040

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    3. [3]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    4. [4]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    5. [5]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    6. [6]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    7. [7]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    8. [8]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    9. [9]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    10. [10]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    11. [11]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    12. [12]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    13. [13]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    14. [14]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

    15. [15]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    16. [16]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    17. [17]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    18. [18]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    19. [19]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    20. [20]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

Metrics
  • PDF Downloads(0)
  • Abstract views(174)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return