Citation: Mu-yao LIU, Jian-yun WANG, Lian DUAN, Xian LIU, Lei ZHANG. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4 shu

Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance

Figures(8)

  • Recently, a new carbon nitride (C3N5) photocatalyst has attracted much attention due to its excellent light harvesting and unique 2D structure. However, high recombination rates of electron-hole pairs of bulk C3N5 serious affect the photocatalytic performance. Herein, nickel oxide (NiO) modified C3N5 p-n junctions photocatalyst was synthesized by a facile hydrothermal method. Results indicated that the 9-Ni/C3N5 nanosheet photocatalyst showed excellent hydrogen production efficiency under visible light. The hydrogen production rate reached 357 μmol/(g·h), which was 107-fold higher than that of pristine C3N5. The high catalytic performace was attributed to the 9-Ni/C3N5 p-n junctions which could efficiently promote photogenerated electron-hole pair separation and thus promote the hydrogen evolution reaction.
  • 加载中
    1. [1]

      LIAO G F, GONG Y, ZHANG L, GAO H Y, YANG G J, FANG B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080−2147.  doi: 10.1039/C9EE00717B

    2. [2]

      HU B, CAI F P, CHEN T J, FAN M S, SONG C J, SHI W D. Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalystic activity for hydrogen production under visible light irradiation[J]. ACS Appl Mater Interfaces,2015,7(33):18247−18256.  doi: 10.1021/acsami.5b05715

    3. [3]

      MAO Z Y, CHEN J J, YANG Y F, WANG D J, BIE L J, FAHLMAN B D. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Appl Mater Interfaces,2017,9(14):12427−12435.  doi: 10.1021/acsami.7b00370

    4. [4]

      YE S, WANG R, WU M Z, YUAN Y P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Appl Surf Sci,2015,358:15−17.  doi: 10.1016/j.apsusc.2015.08.173

    5. [5]

      LI M L, ZHANG L X, FAN X Q, ZHOU Y J, WU M Y, SHI J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J Mater Chem A,2015,3(9):5189−5196.  doi: 10.1039/C4TA06295G

    6. [6]

      FENG W H, ZHANG L X, FANG J Z, LU S Y, WU S X, CHEN Y, FANG Z Q. Improved photodegradation efficiency of 2, 4-DCP through a combined Q3Fe(III)-decorated porous g-C3N4/H2O2 system[J]. Water Air Soil Poll,2017,228(9):373.  doi: 10.1007/s11270-017-3564-5

    7. [7]

      QIAN X F, WU Y W, KAN M, FANG M Y, YUE D T, ZENG J, ZHAO Y X. FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants[J]. Appl Catal B: Environ,2018,237:513−520.  doi: 10.1016/j.apcatb.2018.05.074

    8. [8]

      CUI Y J, ZHANG G G, LIN Z Z, WANG X C. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Appl Catal B: Environ,2016,181:413−419.  doi: 10.1016/j.apcatb.2015.08.018

    9. [9]

      DONG G H, ZHAO K, ZHANG L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178−6180.  doi: 10.1039/c2cc32181e

    10. [10]

      WANG H Y, LI M X, LU Q J, CEN Y M, ZHANG Y Y, YAO S Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: as a superior photocatalyst for degradation of organic pollutant[J]. ACS Sustainable Chem Eng,2019,7(1):625−631.  doi: 10.1021/acssuschemeng.8b04182

    11. [11]

      QI S Y, FAN Y C, WANG J R, SONG X H, LI W F, ZHAO M W. Metal-free highly efficient photocatalysts for overall water splitting: C3N5 multilayers[J]. Nanoscale,2020,12(1):306−315.  doi: 10.1039/C9NR08416A

    12. [12]

      KUMAR P, VAHIDZADEH E, THAKUR U K, KAR P, ALAM K M, GOSWAMI A, MANDI N, CUI K, BERNARD G M, MICHAELIS V K, SHANKAR K. C3N5: A low band gap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications[J]. J Am Chem Soc,2019,141(13):5415−5436.  doi: 10.1021/jacs.9b00144

    13. [13]

      JIN Z B, WEI T T, HUANG J Y, LI F Y, YANG Y, XU L. Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production[J]. Int J Hydrogen Energy,2020,45(43):22711−22721.  doi: 10.1016/j.ijhydene.2020.06.093

    14. [14]

      VADIVEL S, HARIGANESH S, PAUL B, MAMBA G, PUVIARASU P. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium[J]. Colloids Surf A,2020,592(5):124583.

    15. [15]

      LI M X, LU Q J, LIU M L, YIN P, WU C Y, LI H T, ZHANG Y Y, YAO S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl Mater Interfaces,2020,12(34):38266−38274.  doi: 10.1021/acsami.0c11894

    16. [16]

      SHI H L, BI J G, BAI C P, WU J B, XU Y, HAN Y, ZHANG X. Nickel ammine complex-derived NiO modified g-C3N4 composites with enhanced visible-light photocatalytic H2 evolution performance[J]. ChemistrySelect,2019,4(27):8095−8103.  doi: 10.1002/slct.201901813

    17. [17]

      LIU J N, JIA Q H, LONG J L, WANG X X, GAO Z W, GU Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst[J]. Appl Catal B: Environ,2018,222:35−43.  doi: 10.1016/j.apcatb.2017.09.073

    18. [18]

      HU C, TENG H. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting[J]. J Catal,2010,272(1):1−8.  doi: 10.1016/j.jcat.2010.03.020

    19. [19]

      CHEN C, LIAO C, HSU K, WU Y, WU J. P-N junction mechanism on improved NiO/TiO2 photocatalyst[J]. Catal Commun,2011,12(14):1307−1310.  doi: 10.1016/j.catcom.2011.05.009

    20. [20]

      LIN H, CHEN Y, CHEN Y. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. Int J Hydrogen Energy,2007,32(1):86−92.  doi: 10.1016/j.ijhydene.2006.04.007

    21. [21]

      SREETHAWONG T, SUZUKI Y, YOSHIKAWA S. Photocatalytic evolution of hydrogen over mesoporous supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template[J]. Int J Hydrogen Energy,2005,30(10):1053−1062.  doi: 10.1016/j.ijhydene.2004.09.007

    22. [22]

      IWASZUK A, NOLAN M, JIN Q, FUJISHIMA M, TADA H. Origin of the visible-light response of nickel(II) oxide cluster surface modified titanium(IV) dioxide[J]. J Phys Chem C,2013,117(6):2709−2718.  doi: 10.1021/jp306793r

    23. [23]

      FU Y, LIU C A, ZHU C, WANG H, DOU Y, SHI W, SHAO M, HUANG H, LIU Y, KANG Z. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652.  doi: 10.1039/C8QI00292D

    24. [24]

      TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133.  doi: 10.1016/j.spmi.2018.04.048

    25. [25]

      LIU T, YANG G, WANG W, WANG C, WANG M, SUN X, XU P, ZHANG J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting[J]. Environ Res,2020,188:109741.  doi: 10.1016/j.envres.2020.109741

    26. [26]

      LUO B, SONG R, GENG J, JING D, ZHANG Y. Facile preparation with high yield of a 3D porous graphitic carbon nitride for dramatically enhanced photocatalytic H2 evolution under visible light[J]. Appl Catal B: Environ,2018,238(15):294−301.

    27. [27]

      LIN X, XU D, ZHENG J, SONG M, CHE G, WANG Y, YANG Y, LIU C, ZHAO L, CHANG L. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nano-heterostructures with enhanced visible-light photocatalytic activity[J]. J Alloys Compd,2016,688(15):891−898.

    28. [28]

      WANG X, MA Z, CHAI L, XU L, ZHU Z, HU Y, QIAN J, HUANG S. MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction[J]. Carbon,2019,141:643−651.  doi: 10.1016/j.carbon.2018.10.023

    29. [29]

      KONG L, DONG Y, JIANG P, WANG G, ZHANG H, ZHAO N. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water[J]. J Mater Chem A,2016,4(25):9998−10007.  doi: 10.1039/C6TA03178A

    30. [30]

      HAN Q, WANG B, ZHAO Y, HU C, QU L. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution[J]. Angew Chem Int Ed,2015,54(39):11433−11437.  doi: 10.1002/anie.201504985

    31. [31]

      JIANG Z, CHEN X, LU J, LI Y, WEN T, ZHANG L. Ultrathin Ni(II)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H2 production[J]. Chem Commun,2019,55(46):6499.  doi: 10.1039/C9CC02680K

    32. [32]

      WEN J, XIE J, ZHANG H, ZHANG A, LIU Y, CHEN X, LI X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation[J]. ACS Appl Mater Interfaces,2017,9(16):14031−14042.  doi: 10.1021/acsami.7b02701

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Min ZHUYuxin WANGXiao LIYaxu XUJunwen ZHUZihao WANGYu ZHUXiaochen HUANGDan XUMonsur Showkot Hossain Abul . Construction of AgVO3/ZIF-8 composites for enhanced degradation of tetracycline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 994-1006. doi: 10.11862/CJIC.20240392

    3. [3]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    4. [4]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    5. [5]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    6. [6]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    7. [7]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    10. [10]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    11. [11]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    12. [12]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    13. [13]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    14. [14]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    15. [15]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    16. [16]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    20. [20]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

Metrics
  • PDF Downloads(0)
  • Abstract views(262)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return