Citation: Xuan QU, Qin-fen WANG, Shuai YAN, Jun FENG, Jian-shu ZHANG, Rong ZHANG, Ji-cheng BI. The behavior of the different catalysts for model carbon hydrogasification[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(1): 1-10. doi: 10.1016/S1872-5813(21)60136-6 shu

The behavior of the different catalysts for model carbon hydrogasification

Figures(10)

  • The catalytic hydrogasification of activated carbon/bituminous char/anthracite char with the different catalysts were performed in a pressurized thermogravimetry analysis (PTGA). The GC, BET were used to characterize the physical structure and chemical reaction process of carbon. The function principle of Co to the carbon-hydrogen reaction was preliminarily obtained. The results showed that the catalytic activity of transition metals (Fe, Co, Ni) was significantly better than that of alkali metals and alkaline earth metals during the process of activated carbon hydrogasification. There were two catalytic zones of low temperature (600−750 ℃) and high temperature (> 800 ℃) in the catalytic process. The emergence of the low temperature catalytic zone could be attributed to the interaction between the transition metal oxides and carbon. The transition metal was embedded in carbon layer structure during the activated carbon hydrogasification, then parts of carbon structure was activated, resulting in the cleavage of carbon-carbon bonds. The adequate active hydrogen could be supplied by Co at 850 ℃ when the pressure was beyond 1 MPa. Briefly, the reaction temperature was the crucial factor for the cleavage of carbon-carbon bonds. The model carbon with higher specific surface area and weaker carbon structure could be converted efficiently even with lower loading amount of catalyst.
  • 加载中
    1. [1]

      YAN Shuai, XIA Zi-hong, CHEN Cai-xia, QU Xuan, BI Ji-cheng. Research progress on the technology of coal catalytic hydrogasification[J]. Clean Coal Technol,2021,27(1):60−72.

    2. [2]

      TAMAI Y, WATANABE H, TOMITA A. Catalytic gasification of carbon with steam carbon-dioxide and hydrogen[J]. Carbon,1977,15(2):103−106.  doi: 10.1016/0008-6223(77)90024-0

    3. [3]

      LEE S H, LEE J G, KIM J H, CHOI Y C. Hydrogasification characteristics of bituminous coals in an entrained-flow hydrogasifier[J]. Fuel,2006,85(5/6):803−806.  doi: 10.1016/j.fuel.2005.08.039

    4. [4]

      TOMITA A, HIGASHIYAMA K, TAMAI Y. Scanning electron-microscopic study on the catalytic gasification of coal[J]. Fuel,1981,60(2):103−114.  doi: 10.1016/0016-2361(81)90003-X

    5. [5]

      YUAN S F, ZHANG N, QU X, BI J C, CAO Q, WANG J L. Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal[J]. Fuel,2017,200:153−161.  doi: 10.1016/j.fuel.2017.03.066

    6. [6]

      HAGA T, NISHIYAMA Y. Enhancements in nickel-catalyzed hydrogasification of carbon by surface treatments[J]. Carbon,1983,21(3):219−223.  doi: 10.1016/0008-6223(83)90083-0

    7. [7]

      SUZUKI T, IWASAKI J, TANKA K, OKAZAKI N, FUNAKI M, YAMADA T. Influence of calcium on the catalytic behavior of nickel in low temperature hydrogasification of wood char[J]. Fuel,1998,77(7):763−767.  doi: 10.1016/S0016-2361(97)00240-8

    8. [8]

      JIANG J T, LIU Q Y, LIU Z Y. Superior catalytic effect of calcium oxide on the hydrogasification of char for CH4[J]. Fuel,2016,180:737−742.  doi: 10.1016/j.fuel.2016.04.093

    9. [9]

      MATSUMOTO S, SAKAGAMI S. Catalytic gasification activity of iron enhanced by spilt-over hydrogen[J]. Stud Surf Sci Catal,1993,77:409−412.

    10. [10]

      HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of coal chars[J]. Ind Eng Chem Res,1989,28(6):724−728.  doi: 10.1021/ie00090a013

    11. [11]

      LIU X H, XIONG B, HUANG X H, DING H R, ZHENG Y, LIU Z H, ZHENG C G. Effect of catalysts on char structural evolution during hydrogasification under high pressure[J]. Fuel,2017,188:474−482.  doi: 10.1016/j.fuel.2016.10.053

    12. [12]

      MATSUMOTO S. Catalyzed hydrogasification of Yallourn char in the presence of supported hydrogenation nickel catalyst[J]. Energy Fuels,1991,5(1):60−63.  doi: 10.1021/ef00025a009

    13. [13]

      NISHIYAMA Y. Catalytic behaviour of iron and nickel in coal gasification[J]. Fuel,1986,65(10):1404−1409.  doi: 10.1016/0016-2361(86)90114-6

    14. [14]

      HONG B Q, WANG X J, ZHOU Z J, YU G S. A comparison of the gas-product-release characteristics from coal pyrolysis and hydrogasification[J]. Energy Technol,2013,1:449−456.  doi: 10.1002/ente.201300052

    15. [15]

      JIANG J T, LIU Z Y, LIU Q Y. Synergetic catalysis of calcium oxide and iron in hydrogasification of char[J]. Energy Fuels,2017,31:198−204.  doi: 10.1021/acs.energyfuels.6b02026

    16. [16]

      ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. J Fuel Chem Technol,2012,40(1):8−14.  doi: 10.3969/j.issn.0253-2409.2012.01.002

    17. [17]

      ZHANG Feng, SUN Hao, ZHANG Jian-shu, YAN Shuai, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of dispersion degree of iron on catalytic hydrogasification of coal char[J]. J Fuel Chem Technol,2019,47(4):402−410.

    18. [18]

      HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of carbons at elevated pressures[J]. Ind Eng Chem Res,1987,26(6):1202−1206.  doi: 10.1021/ie00066a023

    19. [19]

      WU X T, TANG J, WANG J. A new active site/intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char[J]. Fuel,2016,165:59−67.  doi: 10.1016/j.fuel.2015.10.034

    20. [20]

      ZOHEIDI H, MILLER D J. Role of oxygen surface groups in catalysis of hydrogasification of carbon black by potassium carbonate[J]. Carbon,1987,25(6):809−819.  doi: 10.1016/0008-6223(87)90156-4

    21. [21]

      OHTSUKA Y, TAMAI Y, TOMITA A. Iron-catalyzed gasification of brown coal at low temperatures[J]. Energy Fuels,1987,1(1):32−36.  doi: 10.1021/ef00001a006

    22. [22]

      TOMITA A, TAMAI Y. Hydrogenation of carbons catalyzed by transition metals[J]. J Catal,1972,27(2):293−300.  doi: 10.1016/0021-9517(72)90271-0

    23. [23]

      HAGA T, OZAKI J I, SUZUKI K, NISHIYAMA Y. Role of MgO and CaO promoters in Ni-catalyzed hydrogenation reactions of CO and carbon[J]. J Catal,1992,134(1):107−117.  doi: 10.1016/0021-9517(92)90214-3

    24. [24]

      YAN S, ZHANG J S, YAN X Q, PAN D F, REN H, QU X. Catalytic coal hydrogasification by cobalt-calcium catalyst in a pressurized fluidized bed: role of hydropyrolysis and catalysis Process[J]. J Anal Appl Pyrolysis,2018,135:251−259.  doi: 10.1016/j.jaap.2018.08.028

    25. [25]

      YAN Shuai. Fundamental study on coal catalytic hydrogasification in a pressurized fluidized bed[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2019.

    26. [26]

      YUAN S F, QU X, ZHANG R, BI J C. Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal[J]. Fuel,2015,147:133−140.  doi: 10.1016/j.fuel.2015.01.004

    27. [27]

      YAN S, BI J C, QU X. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed[J]. Appl Energy,2017,206:401−412.  doi: 10.1016/j.apenergy.2017.08.189

    28. [28]

      SILVA I F, MCKEE D W, LOBO L S. A kinetic and in situ XRD study of carbon reactions catalyzed by nickel, cobalt, molybdenum, and their mixtures[J]. J Catal,1997,170(1):54−61.  doi: 10.1006/jcat.1997.1723

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    5. [5]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    6. [6]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    7. [7]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    8. [8]

      Qianqian ZHULihui XUHong PANChengjian YAOHong ZHAONan MAXiaolin SHIZihan SHENWeijun ZHANGZhongjian WANG . Waste cotton fabric-ased porous carbon materials: Preparation and wave-absorbing properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1555-1564. doi: 10.11862/CJIC.20250040

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Zixuan Jiang Yihan Wen Kejie Chai Weiming Xu . Exploring Chemistry Bridging Education from Data-Driven to Symbol Establishment within the Framework of AI Models. University Chemistry, 2025, 40(9): 132-141. doi: 10.12461/PKU.DXHX202502004

    11. [11]

      Yalu Ma Yun Tian Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109

    12. [12]

      Xiaolong Zhang Mingshan Jin Shaoli Liu Bingfei Yan Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049

    13. [13]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    15. [15]

      Jing ZhangSu ZhangQiqi LiLinken JiYutong LiYukang RenXiaobei ZangNing CaoHan HuPeng LiangZhuangjun Fan . Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching. Acta Physico-Chimica Sinica, 2025, 41(10): 100114-0. doi: 10.1016/j.actphy.2025.100114

    16. [16]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    17. [17]

      Wenwen Ma Liyan Liu Chengyang Yin Hongdan Zhang Lian Kong Na Wei Zhan Yu Zhen Zhao . Exploration of the Online and Offline Mixed Teaching Mode of Specialized English for Chemistry Majors Based on the BOPPPS Model. University Chemistry, 2025, 40(9): 287-294. doi: 10.12461/PKU.DXHX202410026

    18. [18]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 100028-0. doi: 10.3866/PKU.WHXB202406009

    19. [19]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-0. doi: 10.3866/PKU.WHXB202408004

    20. [20]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

Metrics
  • PDF Downloads(0)
  • Abstract views(840)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return