Citation: Ruo-wei DAI, Rui-dong ZHAO, Zhi-qi WANG, Jian-guang QIN, Tian-ju CHEN, Jin-hu WU. Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics[J]. Journal of Fuel Chemistry and Technology, ;2022, 50(2): 152-159. doi: 10.1016/S1872-5813(21)60132-9 shu

Study on the oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics

  • Corresponding author: Rui-dong ZHAO, zhaord@qibebt.ac.cn
  • Received Date: 7 May 2021
    Revised Date: 1 July 2021

Figures(10)

  • The oxy-fuel co-combustion of coal gangue and semicoke and the pollutants emission characteristics were studied by thermogravimetric analyzer and tube furnace experiments. The effects of semicoke blending ratios, O2 concentration and temperature were investigated. The results showed that the combustion performance of blended fuel could be improved with the addition of semicoke and the increase of O2 concentration. The maximum ignition and burnout index were obtained when semicoke blending ratio was 75%. The xCO and \begin{document}${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $\end{document} gradually decreased with the increase of semicoke blending ratios. As the increase of temperature, the xCO decreased, \begin{document}${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $\end{document} increased while xNO firstly increased then decreased or slowly grew. The NO emission could be reduced with the addition of semicoke when the temperature was 900 ℃. However, it would aggravate NO emission at other temperatures. With the increase of O2 concentration, the xCO decreased, xNO increased while \begin{document}${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $\end{document} firstly decreased and then increased. The minimum \begin{document}${x_{{\rm{S}}{{\rm{O}}_{\rm{2}}}}} $\end{document} was obtained when O2 concentration was 20%.
  • 加载中
    1. [1]

      YANG Fang-liang. Current situation analysis and prospect discussion on comprehensive utilization of coal resources for power generation[J]. China Coal,2020,46(10):67−74.

    2. [2]

      GUO Jun-jun, ZHANG Tai, LI Peng-fei, LIU Zhao-hui, ZHENG Chu-guang. Industrial demonstration progress and trend in pulverized coal oxy-fuel combustion in China[J]. Proc CSEE,2021,41(4):1197−1208.

    3. [3]

      TANG R, LIU Q W, ZHONG W Q, LIAN G Q, YU H Q. Experimental study of SO2 emission and sulfur conversion characteristics of pressurized oxy-fuel co-combustion of coal and biomass[J]. Energy Fuels,2020,34:16693−16704.  doi: 10.1021/acs.energyfuels.0c03116

    4. [4]

      ZHU Cheng-cheng, XING Xian-jun, CHEN Ze-yu, MI Meng-xing, ZHANG Xue-fei. Combustion characteristics and kinetic analysis of corn straw and coal co-combustion in O2/CO2/N2 atmosphere[J]. Acta Energ Sol Sin,2021,42(1):385−391.

    5. [5]

      ZHU T, HU Y Y, TANG C L, WANG L M, LIU X, DENG L, CHE D F. Experimental study on NOx formation and burnout characteristics of pulverized coal in oxygen enriched and deep-staging combustion[J]. Fuel,2020,272:117639.  doi: 10.1016/j.fuel.2020.117639

    6. [6]

      TAN Y W, CROISET E, DOUGLAS M A, THAMBIMUTHU K V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas[J]. Fuel,2006,85:507−512.  doi: 10.1016/j.fuel.2005.08.010

    7. [7]

      MAFFEI T, KHATAMI R, PIERUCCI S, FARAVELLI T, RANZI E, LEVENDIS Y A. Experimental and modeling study of single coal particle combustion in O2/N2 and oxy-fuel (O2/CO2) atmospheres[J]. Combust Flame,2013,160:2559−2572.  doi: 10.1016/j.combustflame.2013.06.002

    8. [8]

      MUREDDU M, DESSI F, ORSINI A, FERRARA F, PETTINAU A. Air-and oxygen-blown characterization of coal and biomass by thermogravimetric analysis[J]. Fuel,2018,212:626−637.  doi: 10.1016/j.fuel.2017.10.005

    9. [9]

      LIU Yan. The experimental and theory study of characteristics about desurfurization and NO release under O2/CO2 coal combustion[D]. Hangzhou: Zhejiang University, 2004.

    10. [10]

      RIAZA J, GIL M V, ÁLVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Oxy-fuel combustion of coal and biomass blends[J]. Energy,2012,41:429−435.  doi: 10.1016/j.energy.2012.02.057

    11. [11]

      PU Ge, ZHANG Li, WANG Jiong, RAN Jing-Yu, TANG Qiang, YAN Yun-fei. Experimental study on co-combustion characteristics of biomass and coal residue[J]. J Eng Therm,2009,30(2):333−335.  doi: 10.3321/j.issn:0253-231X.2009.02.044

    12. [12]

      LIU Kun, SONG Chang-zhong, ZHANG Bo-wen, GONG Zhen, LIU Yan. Thermogravimetric analysis of combustion characteristics of coal gangue and petroleum coke mixture[J]. Clean Coal Technol,2019,25(S2):14−18.

    13. [13]

      BI H B, WANG C X, LIN Q Z, JIANG X D, JIANG C L, BAO L. Combustion behavior, kinetics, gas emission characteristics and artificial neural network modeling of coal gangue and biomass via TG-FTIR[J]. Energy,2020,213:118790.  doi: 10.1016/j.energy.2020.118790

    14. [14]

      GONG Zhen, SONG Chang-zhong, JIA Xiang-ru, LI Yuan-yuan, LI Ze. Study on pollutant emission from biomass and gangue combustion in CFB under oxygen-enriched atmosphere[J]. Proc CSEE,2020,40(12):3951−3958.

    15. [15]

      GONG Z, SONG C Z, LI Y Y, LI Z, JIA X R. Combustion characteristics of coal gangue and biomass under an O2/CO2 atmosphere[J]. Therm Sci,2020,24(5A):2809−2821.

    16. [16]

      ZHANG Y Y, NAKANO J, LIU L L, WANG X D, ZHANG Z T. Co-combustion and emission characteristics of coal gangue and low-quality coal[J]. J Therm Anal Calorim,2015,120:1883−1892.  doi: 10.1007/s10973-015-4477-4

    17. [17]

      YANG Z Z, ZHANG Y Y, LIU L L, WANG X D, ZHANG Z T. Environmental investigation on co-combustion of sewage sludge and coal gangue: SO2, NOx and trace elements emissions[J]. Waste Manage,2016,50:213−221.  doi: 10.1016/j.wasman.2015.11.011

    18. [18]

      ZHU S J, LYU Q G, ZHU J G, WU H X, WU G L. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy Fuels,2018,32:7909−7915.  doi: 10.1021/acs.energyfuels.8b01366

    19. [19]

      ZHANG J P, WANG C A, JIA X W, WANG P Q, CHE D F. Experimental study on combustion and NO formation characteristics of semicoke[J]. Fuel,2019,258:116108.  doi: 10.1016/j.fuel.2019.116108

    20. [20]

      ZHAO R D, QIN J G, CHEN T J, WANG L L, WU J H. Experimental study on co-combustion of low rank coal semicoke and oil sludge by TG-FTIR[J]. Waste Manage,2020,116:91−99.  doi: 10.1016/j.wasman.2020.08.007

    21. [21]

      ZHANG Yuan-yuan. The study of combustion characteristic and influence mechanism of coal gangue[D]. Taiyuan: Shanxi University, 2016.

    22. [22]

      LIN Y S, MA X Q, NING X X, YU Z S. TGA-FTIR analysis of co-combustion characteristics of paper sludge and oil-palm solid wastes[J]. Energy Conv Manage,2015,89:727−734.  doi: 10.1016/j.enconman.2014.10.042

    23. [23]

      WANG C B, LEI M, YAN W P, WANG S L, JIA L F. Combustion characteristics and ash formation of pulverized coal under pressurized oxy-fuel conditions[J]. Energy Fuels,2011,25:4333−4344.  doi: 10.1021/ef200956q

    24. [24]

      ZHANG Y Y, GUO Y X, CHENG F Q, YAN K Z, CAO Y. Investigation of combustion characteristics and kinetics of coal gangue with different feedstock properties by thermogravimetric analysis[J]. Thermochim Acta,2015,614:137−148.  doi: 10.1016/j.tca.2015.06.018

    25. [25]

      LI X G, MIAO W J, LV Y, WANG Y B, GAO C S, JIANG D B. TGA-FTIR investigation on the co-combustion characteristics of heavy oil fly ash and municipal sewage sludge[J]. Thermochim Acta,2018,666:1−9.  doi: 10.1016/j.tca.2018.05.023

    26. [26]

      CHEN L, LIU L, GENG K, ZHAO Y J, WU J Q, SUN R, SUN S Z, QIU P H. Investigation of heterogeneous NO reduction by biomass char and coal char blends in a microfluidized bed reaction analyzer[J]. Energy Fuels,2020,34:6317−6325.  doi: 10.1021/acs.energyfuels.0c00080

    27. [27]

      ULUSOY B, WU H, LIN W G, KARLSTROM O, LI S G, SONG W L, GLARBORG P, DAM-JOHANSEN K. Reactivity of sewage sludge, RDF, and straw chars towards NO[J]. Fuel,2019,236:297−305.  doi: 10.1016/j.fuel.2018.08.164

    28. [28]

      LI Wei. Study on SO2 emission and removal characteristics for oxy-fuel circulating fluidized bed combustion[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2015.

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    6. [6]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    7. [7]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    10. [10]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    15. [15]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    16. [16]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    17. [17]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

Metrics
  • PDF Downloads(0)
  • Abstract views(188)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return