Citation: Yan-hong QUAN, Chao MIAO, Tao LI, Na WANG, Meng-meng WU, Ning ZHANG, Jin-xian ZHAO, Jun REN. Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion[J]. Journal of Fuel Chemistry and Technology, ;2021, 49(2): 211-219. doi: 10.1016/S1872-5813(21)60014-2 shu

Effect of preparation methods on the structure and catalytic performance of CeO2 for toluene combustion

  • Corresponding author: Jun REN, renjun@tyut.edu.cn
  • Received Date: 28 October 2020
    Revised Date: 16 November 2020

Figures(9)

  • CeO2 aerogel (CeO2-A), nanorod (CeO2-R) and nanoflake (CeO2-F) were prepared via sol-gel, hydrothermal and coprecipitation methods, respectively. The effect of morphology and structure of CeO2 on the catalytic performance in toluene combustion reaction was investigated based on structure analysis provided by characterization. The results revealed that the activity of both CeO2-R and CeO2-F was inferior to that of CeO2-A, due to CeO2-R and CeO2-F smaller specific surface area only exposed (111) crystal plane dominantly detected from their TEM images. While, the CeO2-A had a larger specific surface area and more exposed (111) and (100) facet, which contributed to exposure and formation of more oxygen vacancies and further to the adsorption of more gaseous oxygen. In addition, highly mobile lattice oxygen was another critical factor for influencing the catalytic performance of CeO2, which was beneficial to the redox cycle of Ce3+/Ce4+ and could further accelerate the toluene combustion. As a result, the CeO2-A catalyst exhibited the superior performance in toluene catalytic combustion with t50 of 223℃ and t90 of 239℃, respectively, owing to the larger specific surface area, higher exposure of reactive crystal plane and stronger mobility of lattice oxygen.
  • 加载中
    1. [1]

      ZHANG Jia-ni. Scenario analyses of the volatile organic compound emission allowance and allocation in the 13th Five-Year period[J]. Chin J Environ Sci,2018,39(8):3544−3551.

    2. [2]

      XI Jin-ying, WU Jun-liang, HU Hong-ying, WANG Can. Application status of industrial VOCs gas treatment techniques[J]. China Environ Sci,2012,32(11):1955−1960.  doi: 10.3969/j.issn.1000-6923.2012.11.005

    3. [3]

      EVERAERT K, BAEYENS J. Catalytic combustion of volatile organic compounds[J]. J Hazard Mater,2004,109(1/3):113−139.  doi: 10.1016/j.jhazmat.2004.03.019

    4. [4]

      LU H, ZHOU Y, HUANG H, ZHANG B, CHEN Y. In-situ synthesis of monolithic Cu-Mn-Ce/cordierite catalysts towards VOCs combustion[J]. J Rare Earth,2011,29(9):855−860.  doi: 10.1016/S1002-0721(10)60555-8

    5. [5]

      ZHANG P, LU H, ZHOU Y, ZHANG L, WU Z, YANG S, SHI H, ZHU Q, CHEN Y, DAI S. Mesoporous MnCeOx solid solutions for low temperature and selective oxidation of hydrocarbons[J]. Nat Commun,2015,6:8446−8455.  doi: 10.1038/ncomms9446

    6. [6]

      LIAN W, YU Y, HE H, ZHANG Y, QIN X, WANG B. Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation[J]. Sci Rep,2017,1(7):12845−12850.

    7. [7]

      PENG R, SUN X, LI S, CHEN L, FU M, WU J, YE D. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J]. Chem Eng J,2016,306:1234−1246.  doi: 10.1016/j.cej.2016.08.056

    8. [8]

      FENG Z, REN Q, PENG R, MO S, ZHANG M, FU M, CHEN L, YE D. Effect of CeO2 morphologies on toluene catalytic combustion[J]. Catal Today,2019,332:177−182.  doi: 10.1016/j.cattod.2018.06.039

    9. [9]

      FENG Z, ZHANG M, REN Q, MO S, PENG R, YAN D, FU M, CHEN L, WU J, YE D. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chem Eng J,2019,369:18−25.  doi: 10.1016/j.cej.2019.03.051

    10. [10]

      LIAO Y, HE L, MAN C, CHEN L, FU M, WU J, YE D, HUANG B. Diameter-dependent catalytic activity of ceria nanorods with various aspect ratios for toluene oxidation[J]. Chem Eng J,2014,256:439−447.  doi: 10.1016/j.cej.2014.07.014

    11. [11]

      LV J, SHEN Y, PENG L, GUO X, DING W. Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen[J]. Chem Commun (Camb),2010,46(32):5909−5911.  doi: 10.1039/c0cc00777c

    12. [12]

      HUANG X, SUN H, WANG L, LIU Y, FAN K, CAO Y. Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation[J]. Appl Catal B: Environ,2009,90(1/2):224−232.  doi: 10.1016/j.apcatb.2009.03.015

    13. [13]

      PAN C, ZHANG D, SHI L. CTAB assisted hydrothermal synthesis, controlled conversion and CO oxidation properties of CeO2 nanoplates, nanotubes, and nanorods[J]. J Solid State Chem,2008,181(6):1298−1306.  doi: 10.1016/j.jssc.2008.02.011

    14. [14]

      YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. J Fuel Chem Technol,2020,48(4):466−475.  doi: 10.3969/j.issn.0253-2409.2020.04.010

    15. [15]

      LI Jian. Studies on CeO2-based aerogel catalysts used for preferential oxidation of carbon monoxide in excess hydrogen[D]. Inner Mongolia: Inner Mongolia University of Technology, 2007.

    16. [16]

      KEMPAIAH D M, YIN S, SATO T. A facile and quick solvothermal synthesis of 3D microflower CeO2 and Gd: CeO2 under subcritical and supercritical conditions for catalytic applications[J]. CrystEngComm,2011,13(3):741−746.  doi: 10.1039/C0CE00611D

    17. [17]

      TROVARELLI A, LLORCA J. Ceria catalysts at nanoscale: How do crystal shapes shape catalysis?[J]. ACS Catal,2017,7(7):4716−4735.  doi: 10.1021/acscatal.7b01246

    18. [18]

      BAI J, XU Z, ZHENG Y, YIN H. Shape control of CeO2 nanostructure materials in microemulsion systems[J]. Mater Lett,2006,60(9/10):1287−1290.  doi: 10.1016/j.matlet.2005.11.016

    19. [19]

      WU K. SUN L, YAN C. Recent progress in well-controlled synthesis of ceria-based nanocatalysts towards enhanced catalytic performance[J]. Adv Energy Mater,2016,6(17):1600501.  doi: 10.1002/aenm.201600501

    20. [20]

      ZHANG M, GUO S, ZHENG L, ZHANG G, HAO Z, KANG L, LIU Z. Preparation of NiMn2O4 with large specific surface area from an epoxide-driven sol-gel process and its capacitance[J]. Electrochim Acta,2013,87:546−553.  doi: 10.1016/j.electacta.2012.09.085

    21. [21]

      RAO R, ZHANG Q, LIU H, YANG M, LING Q, ZHANG A. Formaldehyde-assisted hydrothermal synthesis of one-dimensional CeO2 and their morphology-dependent properties[J]. CrystEngComm,2012,14(18):5929−5936.  doi: 10.1039/c2ce25644d

    22. [22]

      DAI Q, ZHANG Z, YAN J, WU J, JOHNSON G, SUN W, WANG X, ZHANG S, ZHAN W. Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane[J]. Environ Sci Technol,2018,52(22):13430−13437.  doi: 10.1021/acs.est.8b05002

    23. [23]

      YAN D, MO S, SUN Y, REN Q, FENG Z, CHEN P, WU J, FU M, YE D. Morphology-activity correlation of electrospun CeO2 for toluene catalytic combustion[J]. Chemosphere,2020,247:125860.  doi: 10.1016/j.chemosphere.2020.125860

    24. [24]

      JIANG Y, GAO J, ZHANG Q, LIU Z, FU M, WU J, HU Y, YE D. Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template[J]. Chem Eng J,2019,371:78−87.  doi: 10.1016/j.cej.2019.03.233

    25. [25]

      CHOWDHURY M B, SUI R, LUCKY R A, CHARPENTIER P A. One-pot procedure to synthesize high surface area alumina nanofibers using supercritical carbon dioxide[J]. Langmuir,2010,26(4):2707−2713.  doi: 10.1021/la902738y

    26. [26]

      WANG Y, XUE Y, ZHAO C, ZHAO D, LIU F, WANG K, DIONYSIOU D D. Catalytic combustion of toluene with La0.8Ce0.2MnO3 supported on CeO2 with different morphologies[J]. Chem Eng J,2016,300:300−305.  doi: 10.1016/j.cej.2016.04.007

    27. [27]

      YANG P, YANG S, SHI Z, MENG Z, ZHOU R. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Appl Catal B: Environ,2015,162:227−235.  doi: 10.1016/j.apcatb.2014.06.048

    28. [28]

      YAN Y, WANG L, ZHANG H. Catalytic combustion of volatile organic compounds over Co/ZSM-5 coated on stainless steel fibers[J]. Chem Eng J,2014,255:195−204.  doi: 10.1016/j.cej.2014.05.141

    29. [29]

      LI J, ZUO S, YANG P, QI C. Study of CeO2 modified AlNi mixed pillared clays supported palladium catalysts for benzene adsorption/desorption catalytic combustion[J]. Materials,2017,10(8):949.

    30. [30]

      WANG W, ZHU Q, DAI Q, WANG X. Fe doped CeO2 nanosheets for catalytic oxidation of 1,2-dichloroethane: Effect of preparation method[J]. Chem Eng J,2017,307:1037−1046.  doi: 10.1016/j.cej.2016.08.137

    31. [31]

      TANG X, XU Y, SHEN W. Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene[J]. Chem Eng J,2008,144(2):175−180.  doi: 10.1016/j.cej.2008.01.016

    32. [32]

      Zhang Xin-hua. Low-temperature catalytic combustion DCM on Ce and Mn oxides and performances tuning[D]. Hangzhou: Zhejiang University of Technology, 2019.

    33. [33]

      HU F, CHEN J, PENG Y, SONG H, LI K, LI J. Novel nanowire self-assembled hierarchical CeO2 microspheres for low temperature toluene catalytic combustion[J]. Chem Eng J,2018,331:425−434.  doi: 10.1016/j.cej.2017.08.110

    34. [34]

      LI P, HE C, CHENG J, MA C, DOU B, HAO Z. Catalytic oxidation of toluene over Pd/Co3AlO catalysts derived from hydrotalcite-like compounds: Effects of preparation methods[J]. Appl Catal B: Environ,2011,101(3/4):570−579.  doi: 10.1016/j.apcatb.2010.10.030

    35. [35]

      CHEN X, CHEN X, YU E, CAI S, JIA H, CHEN J, LIANG P. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chem Eng J,2018,344:469−479.  doi: 10.1016/j.cej.2018.03.091

    36. [36]

      HAN W, ZHAO H, DONG F, TANG Z. Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoOx catalysts by pyrolysis of Ce[Co(CN)6] and application for the catalytic combustion of toluene[J]. Nanoscale,2018,10(45):21307−21319.  doi: 10.1039/C8NR07882C

    37. [37]

      FENG X, GUO J, WEN X, XU M, CHU Y, YUAN S. Enhancing performance of Co/CeO2 catalyst by Sr doping for catalytic combustion of toluene[J]. Appl Surface Sci,2018,445:145−153.  doi: 10.1016/j.apsusc.2018.03.070

    38. [38]

      CHANG S, LI M, HUA Q, ZHANG L, MA Y, YE B, HUANG W. Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity[J]. J Catal,2012,293:195−204.  doi: 10.1016/j.jcat.2012.06.025

    39. [39]

      SAKTHIVEL T S, REID D L, BHATTA U M, MÖBUS G, SAYLE D C, SEAL S. Engineering of nanoscale defect patterns in CeO2 nanorods via ex situ and in situ annealing[J]. Nanoscale,2015,7(12):5169−5177.  doi: 10.1039/C4NR07308H

    40. [40]

      LIU X, ZHOU K, WANG L, WANG B, LI Y. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. J Am Chem Soc,2009,131(9):3140−3141.  doi: 10.1021/ja808433d

    41. [41]

      LUO Y, LIN D, ZHENG Y, FENG X, CHEN Q, ZHANG K, WANG X, JIANG L. MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation[J]. Appl Surf Sci,2020,504:144481.  doi: 10.1016/j.apsusc.2019.144481

    42. [42]

      HE H, LIN X, LI S, WU Z, GAO J, WU J, WEN W, YE D, FU M. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Appl Catal B: Environ,2018,223:134−142.  doi: 10.1016/j.apcatb.2017.08.084

    43. [43]

      LIOTTA L F, OUSMANE M, DI CARLO G, PANTALEO G, DEGANELLO G, BOREAVE A, GIROIR-FENDLER A. Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3[J]. Catal Lett,2008,127(3/4):270−276.

    44. [44]

      LIAO Y, FU M, CHEN L, WU J, HUANG B, YE D. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catal Today,2013,216:220−228.  doi: 10.1016/j.cattod.2013.06.017

    45. [45]

      LI Y, SHEN W. Morphology-dependent nanocatalysis on metal oxides[J]. Sci China Chem,2012,55(12):2485−2496.  doi: 10.1007/s11426-012-4565-2

    46. [46]

      GAO Y, WANG W, CHANG S, HUANG W. Morphology effect of CeO2 support in the preparation, metal-support interaction, and catalytic performance of Pt/CeO2 catalysts[J]. ChemCatChem,2013,5(12):3610−3620.  doi: 10.1002/cctc.201300709

  • 加载中
    1. [1]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    4. [4]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    5. [5]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    6. [6]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    7. [7]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    8. [8]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    9. [9]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    10. [10]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    11. [11]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    18. [18]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    19. [19]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(25)
  • Abstract views(3425)
  • HTML views(737)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return